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QCD in the nilpotency expansion Fabrizio Palumbo

1. Introduction

We have developed a method to derive the (approximate) quarkcontribution to the fermion
free energy of QCD on a lattice, at finite temperature and chemical potential, with Kogut-Susskind
fermions in the flavor basis. This result has been obtained atthe lowest order of the nilpotency
expansion [1–3], an approach which will be outlined in the following.

For the understanding of our result it is only necessary to anticipate that in our approximation
the QCD vacuum is dominated by static chromomagnetic fields.At vanishing temperature the
expression of the partition function we have found is

Z ≈

∫

[d~U ]exp
(

−Smagnetic(~U)−Smatter(~U)
)

(1.1)

whereSmagneticis the gluon action restricted to spatial plaquettes whose values do not change with
time,Smatter is the quark action which depends on the spatial link variables denoted by~U and more
precisely is given by

Smatter=−
L0

2 ∑
i

[

2µ +θ (Ni −2sinhµ) ln

{

e−2µ
[

1+
1
2

(

N2
i +

√

4N2
i +N4

i

)]}]

(1.2)

whereL0 is temporal size of the lattice and is, therefore, the inverse temperature, and should be
sent to infinity,µ is the chemical potential,θ is the step function andNi are the eigenvalues ofN
which is (twice) the Dirac Hamiltonian of Kogut-Susskind fermions

N =−2γ0⊗1l

{

m+
3

∑
j=1

γ j ⊗1l
[

P(−)
j ∇(+)

j +P(+)
j ∇(−)

j

]

}

. (1.3)

In the definition of this Hamiltonianγµ and tµ are Dirac and taste matrices, andP(±)
µ ,∇(+)

j are
projection operators and covariant derivatives

P(±)
µ =

1
2
(1l ⊗1l ± γµγ5⊗ t5tµ) , ∇(+)

j =
1
2

(

U j T
(+)
j −1

)

, ∇(−)
j =

1
2

(

1−T(−)
j U†

j

)

(1.4)

whereT(±)
µ are forward / backward translation operators of one block used to define the Kogut-

Susskind fermions in the flavor basis andU j is the j-th component of~U , the spatial link variables
associated to the blocks of size twice the lattice spacing.

We notice some features of our expression of the partition function:

1) In the leading order of our expansion the well known “sign problem" does not arise and
the quark contribution to the action can be used as a statistical weight in the Monte Carlo
procedure.

2) Even though the quark-determinant appears to be non-local,its evaluation requires only the
knowledge of the eigenvalues of the local Hamiltonian N/2. In the formal continuum limit
the quark contribution to the action becomes proportional to |N|/2− µ and we can expect
that when we approach the continuum non-local effects vanish.

3) The spatial link variables do not depend on time and the temporal one does not appear at
all, so that the dimensionality of the system is effectivelyreduced by one.
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As in the functional integral formulation the fermionic fields are represented by Grassmann
variables in a Berezin integral, it is quite difficult, in this formalism, to understand what are the sta-
tistically relevant configurations which drive the interesting physical phenomena. We have there-
fore been induced to go back to the operator formulation in the Fock space representation, where
we used Bogoliubov transformations generating Cooper pairs, whose structure functions can be
studied in a variational approach, and only afterwards we went back to the functional formulation.

In general standard Bogoliubov transformations change theterms of an action which are in-
dividually invariant with respect to some symmetry into terms which are no longer invariant, even
though the total action remains of course symmetric. It is therefore dangerous to perform ap-
proximations on the transformed action. To avoid this difficulty in a series of papers [1–3] we
generalized Bogoliubov transformations in the following way. We perform at each time slice an
independent transformation whose coefficients are functions of the spatial link variables and of ad-
ditional bosonic compensating fields. These fields become dynamical fields which describe bosonic
composites of quarks and antiquarks. The resulting action can be studied in a nilpotency expansion
whose asymptotic parameter is the index of nilpotency of thecomposites, which is the number of
fermionic components in their structure functions. The lowest order is the saddle point approxima-
tion, in which composites and quasiparticles move in a background field which is the solution of
the saddle-point equations.

In the application to QCD at finite chemical potential we assume that the most important
quark-quark correlations are pairwise, because diquarks are thought to be stable substructures at
low baryon density (nucleons [4–6], multiquark mesons [7])and basic constituents of the color
superconducting phases at high baryon density [8–11]. If this were true diquarks should give con-
tributions of the same sign to the free energy, and large cancellations among fermion determinants
at nonzero chemical potential would be due to highly fluctuating, energetically unstable fermionic
configurations. We then constructed the QCD ground state in terms of diquarks by means of ap-
propriate (time dependent) Bogoliubov transformations.

2. First Bogoliubov transformation

We start from the transfer-matrix formulation of the partition function for Kogut-Susskind
fermions [12]

Z =

∫

[dU]exp[−SG(U)]TrF
{

L0/2−1

∏
t=0

(

T̂†
t V̂t exp(2µ n̂B)T̂t+1

)

}

(2.1)

where

T̂t = exp( v̂Nt û) , V̂t = exp
(

û† lnU0,t û+ v̂† lnU∗
0,t v̂

)

(2.2)

andSG is the full gluon action, ˆnB the baryon number operator, TrF is the trace on the fermion
Fock space, ˆu, v̂ are fermion-antifermion canonical annihilation operators, U0,t are temporal link
variables andNt = N(~Ut) is defined in Eq. (1.3) in which the spatial link variables aredefined at
time t.
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We evaluate the trace on states obtained at each time from fermion coherent states by the
Bogoliubov transformation

α̂ = R
1
2
(

û− F
† v̂†) , β̂ =

(

v̂+ û†
F

†)
◦
R

1
2

(2.3)

R= (1+F
†
F )−1 ,

◦
R= (1+FF

†)−1 . (2.4)

The quasiparticle vacuum has the form of a condensate of fermion pairs|F 〉 = exp
(

û†F †v̂†
)

|0〉.
Such transformation must be carried out independently at each time slice if we want that the quasi-
particle operatorŝα , β̂ have definite transformation properties. Moreover at each time the matrix
F must depend on the link variables at this time and in general on compensating fields which
describe dynamical bosons:

(Ft)x1,x2
= ∑

K

ϕ∗
K(x, t)

(

ΦK,x(~Ut)
)

x1,x2

. (2.5)

ϕK(x, t) are bosonic fields with quantum numbersK, and
(

ΦK,x(~Ut)
)

x1,x2

their structure functions

which must depend on the spatial link variables. Since the Bolgoliubov transformation is unitary
we could perform a transformation with an arbitraryF -matrix, that is arbitraryϕK ’s, and we can
integrate over them in the partition function with an arbitrary measuredµ(ϕ∗,ϕ). The trace over
the transformed states in the partition function can be performed exactly yielding its functional
form

Z =

∫

[dU]exp[−SG(U)]

∫

dµ(ϕ∗,ϕ)exp
(

−Seff
)

(2.6)

where

Seff= Smesons(F )−∑
t

α∗
t (∇t −Ht )αt+1−βt+1

( ◦

∇t −
◦

H t

)

β ∗
t +βtI

(2,1)
t αt +α∗

t I
(1,2)

t β ∗
t .

(2.7)
We do not have the space to report the explicit expressions ofSmesons(F ), of the quasiparticle

hamiltoniansHt and
◦

H t and of the coefficientsI (1,2)
t andI

(2,1)
t .

3. Nilpotency expansion and background field

Let us consider the composite operatorΦ̂†
K = û†Φ†

K v̂†. It is characterized by the index of

nilpotency, which we denote byΩK , defined as largest integer such that
(

Φ̂†
K

)ΩK

6= 0. ΩK (usually
much greater than the number of the internal degrees of freedom of the fermions) is the maxi-
mum number of composites we can put in the stateK. A necessary condition to approximateΦ̂K

by a canonical bosonic operator is therefore thatΩK >> 1. So the index of nilpotency of com-
posites which approximate physical bosons can be assumed asasymptotic parameter to set up an
expansion in its inverse, the nilpotency expansion. To construct such an expansion we look for the
minimum of Seff with respect toF neglecting the quasiparticle contribution. This is the saddle
point approximation which provides the background fieldF . We find the remarkable result that
I (1,2)(F ) = I (2,1)(F ) = 0, meaning that in the background field there is no direct quasiparticle
-antiquasiparticle mixing. We then setFt =F +δFt and expandSmesonsin powers of the fluctua-
tionsδFt . This results to be an expansion in the inverse ofΩ that we call nilpotency expansion [1].
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The background field determines the vacuum energy and therefore the phases of the theory while
the fluctuationsδFt represent meson fields.

We found [3] an exact expression of the background field at zero temperature and chemical
potential, which requires stationarity of gauge fields in the sense that spatial plaquettes are constant
in time while spatial-temporal plaquettes vanish. We showed that in the saddle point approximation
color is confined in the quasiparticle sector because quasiparticles propagate only in point-like color
singlets. We have checked that the nilpotency expansion reproduces correctly the results of a four-
fermion model both at zero and nonzero chemical potential.

4. Second Bogoliubov transformation and diquark action

In the Hamiltonian formalism diquarks are constructed in terms of positive energy states,
which correspond to quasiparticles in the formalism of the transfer matrix at the saddle point.
Therefore, at fixed gauge configuration, we construct diquarks as Cooper pairs of quasiparticles by
a second Bogoliubov transformation

σ̂ = r
1
2
(

α̂ −D
†α̂†) (4.1)

where
r =

1
1+D†D

. (4.2)

The matrixD in an anti-symmetric matrix with the quantum numbers of the diquark field. The
vacuum of the new quasiparticle operatorsσ̂ is

|D ,F 〉= exp

(

1
2

α̂†
D

†α̂†
)

|F 〉= exp

(

1
2

α̂†
D

†α̂†
)

exp
(

û†
F

†
v̂†
)

|0〉 , (4.3)

namely a condensate of Cooper pairs of quasiparticles living in the background|F 〉.
The saddle point equations for the background field are not changed by the presence of di-

quarks.Using their solution the diquark field action can be written

Smatter=
L0

2
tr

{

ln
(

1−2e−2µ
H

)

+
1
2

ln
(

1+D
†
D
)

−
1
2

ln
[

1+D
(

e2µ −2H
)

D
†(e2µ −2H

)T
]

}

. (4.4)

Lat us represent our operators in the base in which the Hamiltonian of the quasiparticles is diagonal.
We will restrict ourselves to the so called simple pairing structure functions for the diquark field

Di j = δ j ic εi ic Di , Di = Dic (4.5)

in which any quasiparticle statei is associated to one and only one conjugate stateic. The effective
quark action takes a minimal contribution for states for which Di vanishes or diverges. We will
denote byip the states for which|Dip|= ∞. For given chemical potential this action is minimal if
the ip are all the states for which

e2µ −2H ip > 1. (4.6)

Introducing the expression of the quasiparticle Hamiltonian [2] we get Eq. (1.2).
Of course, integrating over the gauge fields with their statistical weight will smooth out the

distribution of the values ofDi ’s.
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5. Perturbative expansion in the gauge coupling constant

Suppose that for sufficiently high values of the chemical potential an expansion with respect
to the gauge coupling constant can be justified

e2µ −2H ≈ 1+A+gB+g2C. (5.1)

Assuming simple pairing we get the standard expression of the diquark action

Smatter≈−
L0

2 ∑
i

{

−2µ − ln
(

1+Aii +gBii +g2Cii
)

+ρi (Aii +gBii +g2Cii )

−
1
2

g2ρi Bi j ρ jB ji +
1
2
(ψ∗

i △i +△∗
i ψi)

}

(5.2)

where

ρi =
|Di |

2

1+ |Di|2
, ψi =

1
1+ |Di |2

Di (5.3)

and

△i =
1
2

g2ε iic ∑
k

εkkc Bik Bickc ψk (5.4)

is the celebrated gap function. By variation with respect toF a gap equation is obtained of the
standard form, compatible with standard results also in thesense that the gap is dominated by
chromomagnetic fields with static propagator [13].

6. Conclusion

We have investigated QCD at finite chemical potential guidedby the theoretical indications
that two quarks correlations are important at all baryon densities. We introduced such correlated
pairs in the formalism of the transfer matrix with lattice regularization by means of two indepen-
dent Bogoliubov transformations at each time slice. Both transformations at each time depend on
spatial gauge links and compensating fields at that time. This makes it possible to enforce for
quasiparticles the same symmetry transformations as for quarks. The first transformation produces
a background field and quasiparticles, the second yields thediquark field in terms of quasiparticles.

We have formulated a nilpotency expansion for the effectivetheory, namely an expansion in
the inverse of the number of fermionic states in the structure functions of the composites, called the
index of nilpotency. We have studied the effective action inthe saddle point approximation of this
expansion, which is equivalent to a variational calculation, minimizing the free energy with respect
to a background and a diquark field. According to the solutionfor the background field the QCD
vacuum is a dual superconductor (not color superconductor)from which the chromoelectric field is
totally expelled (perfect dual Meissner effect) and the fermion Fock space contains only point-like
color singlets.

We have derived an equation for the minimum of the quark free energy for any given gauge
field configuration under the assumption of simple pairing. It cannot be evaluated analytically, but
there is no sign problem in a numerical simulation.
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If the effective action in the saddle point approximation isexpanded in powers of the gauge
coupling constant, a gap equation is obtained compatible with standard results. The gap is domi-
nated by static chromomagnetic fields.

We think, however, that a perturbative expansion in the gauge coupling constant cannot be
justified, at least in the simple form in which it is usually done. Schematically, at the baryon
density at which condensation of molecular diquarks is expected, the gauge coupling constant is
presumably too large. For baryon densities for which the expansion might be justified, on the
other hand, we expect a BCS ground state, in which dibaryons have a size much bigger than the
interquark separations, so that the dependence of the diquark structure functions on the spatial
gauge fields cannot be ignored.

We hope that our formulation should give a reasonable approximation to the QCD partition
function for values of chemical potential of the order of thenucleon mass. Increasing the chemical
potential we should meet chiral symmetry restoration, which we conjecture should be accompanied
by the vanishing of the background field. If the phase transition is of first order, to determine its
location we should compare the free energy evaluated in the present paper with that of the chirally
symmetric phase in which the background field should vanish.But we notice that the latter cannot
be simply obtained by setting the background field to zero in our equations. In fact in our saddle
point approximation we disregarded quasiparticles, on theusual, reasonable assumption that they
are separated from the vacuum by a large gap. If instead the background field vanishes, the particle-
antiparticle mixing in the action is again active, and if we construct the diquark field in terms of
particles, we have no reason to expect that a gap exists for antiparticles. We must therefore proceed
in a different way that we will illustrate in a future work.
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