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QCD in the nilpotency expansion Fabrizio Palumbo

1. Introduction

We have developed a method to derive the (approximate) quaarkibution to the fermion
free energy of QCD on a lattice, at finite temperature and aterpotential, with Kogut-Susskind
fermions in the flavor basis. This result has been obtaindgdeatowest order of the nilpotency
expansion [1-3], an approach which will be outlined in thiéofeing.

For the understanding of our result it is only necessary twigate that in our approximation
the QCD vacuum is dominated by static chromomagnetic fieldsvanishing temperature the
expression of the partition function we have found is

Z =~ /[dU] eXp(_Snagnetic(lj) - Snatter(lj)) (1.1)

whereSnagneticis the gluon action restricted to spatial plaquettes whadgeg do not change with
time, Snatter IS the quark action which depends on the spatial link vagsbenoted bﬁ and more
precisely is given by

smatter:—% . [2u+6(Ni—23inhu) In{e‘z“ [1+%<N?+M4NF+N{">}H (1.2)

wherelg is temporal size of the lattice and is, therefore, the irvdesnperature, and should be
sent to infinity,u is the chemical potential is the step function anll; are the eigenvalues of
which is (twice) the Dirac Hamiltonian of Kogut-Susskindrfeons

3
N=—2y& 1{m+ Y yel [PJHDEH + PJ-(*)DP] } . (1.3)
=1

In the definition of this Hamiltoniary, andt, are Dirac and taste matrices, aﬁﬁt),Dgﬂ are
projection operators and covariant derivatives

1 1 o1 _
Pﬁi):§(1®1ivm®tstu) : DEHZE(UjTjH)_l) : DE):Q(l_Tj( )UD (1.4)

whereTﬁi) are forward / backward translation operators of one blo@dus define the Kogut-

Susskind fermions in the flavor basis dnglis the j-th component obi, the spatial link variables
associated to the blocks of size twice the lattice spacing.
We notice some features of our expression of the partitioctfan:

1) In the leading order of our expansion the well known “sign tgesn" does not arise and
the quark contribution to the action can be used as a statiktiveight in the Monte Carlo
procedure.

2) Even though the quark-determinant appears to be non-ldgsatyvaluation requires only the
knowledge of the eigenvalues of the local Hamiltonigf2NIn the formal continuum limit
the quark contribution to the action becomes proportiora]N|/2 — u and we can expect
that when we approach the continuum non-local effects tanis

3) The spatial link variables do not depend on time and the teadfmme does not appear at
all, so that the dimensionality of the system is effectivatiyced by one
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As in the functional integral formulation the fermionic fisl are represented by Grassmann
variables in a Berezin integral, it is quite difficult, in$Hiormalism, to understand what are the sta-
tistically relevant configurations which drive the intaieg physical phenomena. We have there-
fore been induced to go back to the operator formulation énRiick space representation, where
we used Bogoliubov transformations generating Coopesspaihose structure functions can be
studied in a variational approach, and only afterwards wet\wack to the functional formulation.

In general standard Bogoliubov transformations changeeims of an action which are in-
dividually invariant with respect to some symmetry intaterwhich are no longer invariant, even
though the total action remains of course symmetric. It erdfore dangerous to perform ap-
proximations on the transformed action. To avoid this diffic in a series of papers [1-3] we
generalized Bogoliubov transformations in the followingyw We perform at each time slice an
independent transformation whose coefficients are funstad the spatial link variables and of ad-
ditional bosonic compensating fields. These fields becomardical fields which describe bosonic
composites of quarks and antiquarks. The resulting acaorbe studied in a nilpotency expansion
whose asymptotic parameter is the index of nilpotency otcttraposites, which is the number of
fermionic components in their structure functions. Thedstorder is the saddle point approxima-
tion, in which composites and quasiparticles move in a baxkgd field which is the solution of
the saddle-point equations.

In the application to QCD at finite chemical potential we assuhat the most important
quark-quark correlations are pairwise, because diquakshaught to be stable substructures at
low baryon density (nucleons [4-6], multiquark mesons Bfjil basic constituents of the color
superconducting phases at high baryon density [8—11]idfviere true diquarks should give con-
tributions of the same sign to the free energy, and largeadi@ations among fermion determinants
at nonzero chemical potential would be due to highly fluehgatenergetically unstable fermionic
configurations. We then constructed the QCD ground statering of diquarks by means of ap-
propriate (time dependent) Bogoliubov transformations.

2. First Bogoliubov transformation

We start from the transfer-matrix formulation of the paotit function for Kogut-Susskind
fermions [12]

Lo/-1 , i
ff:/[dU]exp[—SG(U)]TrF{ l_!> (TtTVteXp(ZIJ ﬁB)Tt+1>} (2.1)

t=

where
Ti=exp(INQ) , Vi =exp(a'InUg; 0+ 9T INUG, 0) (2.2)

and s is the full gluon actionng the baryon number operator, FTis the trace on the fermion
Fock spacey,V are fermion-antifermion canonical annihilation operajbfy; are temporal link
variables and\; = N(Ut) is defined in Eq.[(1]3) in which the spatial link variables dedined at
timet.
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We evaluate the trace on states obtained at each time fromodiercoherent states by the
Bogoliubov transformation

Nl

1

G=Ri(0-ZN") | B=(0+a" )R (2.3)
R=(1+7'#)! | R=(1+z7H L. (2.4)

The quasiparticle vacuum has the form of a condensate ofderpairs|.7) = exp(a".70") |0).
Such transformation must be carried out independentlyclt gae slice if we want that the quasi-
particle operatorgr, B have definite transformation properties. Moreover at el the matrix
Z must depend on the link variables at this time and in generatanpensating fields which
describe dynamical bosons:

(R = F 60 (@) (2.5)

X1,X2

¢k (X,t) are bosonic fields with quantum numbé&rsand (d)K X(Ut)) their structure functions
X1,

which must depend on the spatial link variabl&ince the Bolgollubov transformation is unitary
we could perform a transformation with an arbitra®+matrix, that is arbitrarypg’s, and we can
integrate over them in the partition function with an adoiyr measurelu(¢*, ¢ ). The trace over
the transformed states in the partition function can begpertd exactly yielding its functional
form

¥ = /dU exp[— /du ¢*, ) exp(—Ser) (2.6)
where
St = Smesonk ) = ¥ f (01— A) a1 = oo (D=0 ) B+ AN+ g A
(2.7)

We do not have the space to report the explicit expressior&@ongﬁ’ ), of the quasiparticle
hamiltonians# andjﬁ and of the coefﬁuentsﬂt andﬂ @D,

3. Nilpotency expansion and background field

Let us consider the composite operafn& = 0*(1)&\7*. It is characterized by the index of

nilpotency, which we denote 9k, defined as largest integer such tﬁéﬁ) o = 0. Qg (usually
much greater than the number of the internal degrees ofdreeaaf the fermions) is the maxi-
mum number of composites we can put in the skteA necessary condition to approximatg

by a canonical bosonic operator is therefore dat>> 1. So the index of nilpotency of com-
posites which approximate physical bosons can be assumesl/agptotic parameter to set up an
expansion in its inverse, the nilpotency expansion. Toftoossuch an expansion we look for the
minimum of Sy¢ with respect to# neglecting the quasiparticle contribution. This is thedéad
point approximation which provides the background figid We find the remarkable result that
s 12 (7)) = 7@Y(F) =0, meaning that in the background field there is no directigasticle
-antiquasiparticle mixing. We then sé& = .# + 8.%; and expan®mesondn powers of the fluctua-
tionsd.%;. This results to be an expansion in the invers@difiat we call nilpotency expansion [1].
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The background field determines the vacuum energy and therdie phases of the theory while
the fluctuation®.%; represent meson fields.

We found [3] an exact expression of the background field ai manperature and chemical
potential, which requires stationarity of gauge fields msknse that spatial plaquettes are constant
in time while spatial-temporal plaguettes vanish. We stibthiat in the saddle point approximation
color is confined in the quasiparticle sector because qadgiles propagate only in point-like color
singlets. We have checked that the nilpotency expansiaodepes correctly the results of a four-
fermion model both at zero and nonzero chemical potential.

4. Second Bogoliubov transformation and diquark action

In the Hamiltonian formalism diquarks are constructed immte of positive energy states,
which correspond to quasiparticles in the formalism of ttamdfer matrix at the saddle point.
Therefore, at fixed gauge configuration, we construct dkgias Cooper pairs of quasiparticles by
a second Bogoliubov transformation

&=r:(a—2'a" (4.2)
where
B 1
1+ 99
The matrix2 in an anti-symmetric matrix with the quantum numbers of tigudrk field. The
vacuum of the new quasiparticle operatorss

r (4.2)

|2, F) = exp(% 5 T@W*) |Z) = exp<%€ﬁ.@*d*> exp(OTﬁT\‘fr) |0), (4.3)

namely a condensate of Cooper pairs of quasiparticleglivithe background ).
The saddle point equations for the background field are nahghd by the presence of di-
guarks.Using their solution the diquark field action can be written

Satter — %tr{ln (126 %377) + 2 In (1+2'9)
_ %In 1+ (& -2) 9" (- 272)' | } . (4.9)

Lat us represent our operators in the base in which the Hamralh of the quasiparticles is diagonal.
We will restrict ourselves to the so called simple pairingisture functions for the diquark field

D = 6ii&i. % . Y=Y (4.5)

in which any quasiparticle states associated to one and only one conjugate stafehe effective
quark action takes a minimal contribution for states forcahhi; vanishes or diverges. We will
denote byip, the states for which?; | = . For given chemical potential this action is minimal if
thei, are all the states for which

-2, > 1. (4.6)

Introducing the expression of the quasiparticle Hamikor{2] we get Eq.[(1]2).
Of course, integrating over the gauge fields with their stigal weight will smooth out the
distribution of the values o¥;’s.
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5. Perturbative expansion in the gauge coupling constant

Suppose that for sufficiently high values of the chemicaéptal an expansion with respect
to the gauge coupling constant can be justified

et — 27 ~1+A+gB+g°C. (5.1)

Assuming simple pairing we get the standard expressioneodlifuark action

L
Shatter =~ — Eo {—2u—In(1+Ai+9gBi +9°Ci) + pi (Ai +9Bi +g°Ci)
|
1 2 1 * *

—59°P BiijBji‘f‘é(L/—’i AN+ ATg) » (5.2)

where ,

|Z| 1

= = - 5.3
pl 1+|%|2 ) ‘M l—|—|.@||2% ( )

and 1
ANES Egzgiicggkkc Bik Bick, Yk (5.4)

is the celebrated gap function. By variation with respectia gap equation is obtained of the
standard form, compatible with standard results also instrese that the gap is dominated by
chromomagnetic fields with static propagator [13].

6. Conclusion

We have investigated QCD at finite chemical potential guidedhe theoretical indications
that two quarks correlations are important at all baryonsdiexs. We introduced such correlated
pairs in the formalism of the transfer matrix with latticeyudarization by means of two indepen-
dent Bogoliubov transformations at each time slice. Bathgformations at each time depend on
spatial gauge links and compensating fields at that times Wdkes it possible to enforce for
guasiparticles the same symmetry transformations as fmkquThe first transformation produces
a background field and quasiparticles, the second yielddituark field in terms of quasiparticles.

We have formulated a nilpotency expansion for the effedt®ry, namely an expansion in
the inverse of the number of fermionic states in the strectunctions of the composites, called the
index of nilpotency. We have studied the effective actiothmsaddle point approximation of this
expansion, which is equivalent to a variational calculgtiminimizing the free energy with respect
to a background and a diquark field. According to the solutmrthe background field the QCD
vacuum is a dual superconductor (not color supercondufrtom) which the chromoelectric field is
totally expelled (perfect dual Meissner effect) and thenfien Fock space contains only point-like
color singlets.

We have derived an equation for the minimum of the quark freergy for any given gauge
field configuration under the assumption of simple pairingahnot be evaluated analytically, but
there is no sign problem in a numerical simulation.
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If the effective action in the saddle point approximatiorexpanded in powers of the gauge
coupling constant, a gap equation is obtained compatitile standard results. The gap is domi-
nated by static chromomagnetic fields.

We think, however, that a perturbative expansion in the gazaupling constant cannot be
justified, at least in the simple form in which it is usuallyndo Schematically, at the baryon
density at which condensation of molecular diquarks is etqat the gauge coupling constant is
presumably too large. For baryon densities for which theargpn might be justified, on the
other hand, we expect a BCS ground state, in which dibaryams & size much bigger than the
interquark separations, so that the dependence of ther#ligtraicture functions on the spatial
gauge fields cannot be ignored.

We hope that our formulation should give a reasonable appeadion to the QCD partition
function for values of chemical potential of the order of theeleon mass. Increasing the chemical
potential we should meet chiral symmetry restoration, Whve conjecture should be accompanied
by the vanishing of the background field. If the phase tramsis of first order, to determine its
location we should compare the free energy evaluated inréssept paper with that of the chirally
symmetric phase in which the background field should varBst we notice that the latter cannot
be simply obtained by setting the background field to zerouinemuations. In fact in our saddle
point approximation we disregarded quasiparticles, oruthel, reasonable assumption that they
are separated from the vacuum by a large gap. If instead thgimund field vanishes, the particle-
antiparticle mixing in the action is again active, and if vamstruct the diquark field in terms of
particles, we have no reason to expect that a gap existstipasitles. We must therefore proceed
in a different way that we will illustrate in a future work.
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