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1. Introduction

The supersymmetry (SUSY) is believed as a symmetry of thication theory such as su-
perstring theory and supersymmetric gauge theory is a datelbdf a theory beyond the Standard
model. However, it is broken in our current universe anyw&ince it cannot be broken by higher
loop effects in perturbation, it is important to study theddting nonperturbatively.

Witten index [1] is a useful index related to the spontane®uSY breaking, which is defined
nonperturbatively. Using the fermion number oper#ioit is given by the following trace,

w=tr(—1)FeP" = (Ng— Ng (1.1)

)‘E:O )
whereH is the Hamiltonian of the system arttlis its eigenvalue. As long as the spectrum is
discrete, the index does not depend on a paranfiert is simply a difference of numbers of
bosonic supersymmetric vacua and fermionic vacua. If tdexns not zero, there exists at least
one supersymmetric vacuum so SUSY is not broken. But if theris zero, SUSY may or may not
be broken, since it can be a result of cancellation betwesnrbo and fermion vacua, or a result
of no supersymmetric vacua at all. The purpose of this talio ipropose a method to measure
the Witten index using lattice simulation based on Rgf. P2r a different approach from lattice
simulation, see Ref[]3].

In terms of the path integral, the index becomes a partitimetion with periodic boundary

condition [3,[5]
W=Zp— /.@q;@rp@wexp(—sp), (1.2)

where@ is boson,y and@ are fermion, and subscript P stands for periodic boundangitions
for all the fields in the temporal direction. It seems difficial measure this quantity using lattice
simulation, since what we usually measure is an expectatiduie normalized by the partition
function but we need the normalization factor here. The mdiration of the path integral measure
is relevant as well.

In the following section, we will discuss how to obtain thereat normalization of the par-
tition function and thus the Witten index. And then in sea{pwe confirm that it in fact works
in supersymmetric qguantum mechanics of which the Wittemxnid well known using a lattice
simulation. We also test a method which would improve theiefficy of the measuring the Witten
index.

2. ldea

We have to determine two normalizations: one for the patgirai measure and the other is
for the partition function (from the lattice data).

The path integral measure with a correct normalization &y d¢a obtain. We only have to
follow a standard derivation of the path integral from thesrgpor formalism, where we insert
normalizedcomplete sets at each of discretized time slices ([Fig. 1 y§aRkng the discretization

1if the spectrum is continuum, one has to take a lifit> .
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T =aN

insert complete sets

Figure1: Obtaining the correct measure: Derivation of the path iratlig exactly the lattice regularization.

is the lattice discretization, we obtain the following ma&s for bosons and fermions:

Bosons: /Q(p: /00 M \/%Td(g('at), (2.1)
Fermions: / TT DY — / 197 dy ™. 2.2)

The correct normalization of the partition function is nioivial. Let us start with a 1-dimensional
bosonic system witlN lattice sites and consider the following quantity:

<e+sexp [—% Zﬂz(fﬁlat)z} > = f%(pes’ (2.3)

regularization functional

wherep is an arbitrary (positive) real number which should be tulaéer and
_ 12 daty2| N
C—/%eXp[ ZZu(cq )= (2.4)

Here, we have used ef]. (2.1). Combining €q](2.3) pnfl (2epivain

Z/@(pes< c

exp {+S— : |Z “2(<qlat)2] > )

Since we can calculate the value®@analytically, and the denominator in the r.h.s is an obddeva
in the lattice simulation, we can measure the patrtition fioncZ. Notice that though we have used
a gaussian functional as a regularization functional in(@), one can use any functional as long
as it gives a calculable and convergent value like in[eq) (2.4

In the r.h.s. of eq.[(25), the actidhappears with a “wrong sign” which cancels the original
distribution. That is, the partition function is calculdtesing an extreme reweighting. To obtain a
better efficiency, we have to tune the valueuof

Next let us introduce fermions. After integrating out thenfeons, we obtain the effective
action as usual:

(2.5)

S =% —In|det D), (2.6)

where S is the bosonic part of the action amis the the fermion bilinear operator (i.e., the
Dirac operator plus the Yukawa interactichs)'he phase factor of ddd) should be reweighted

2|f the fermion is Majorana, the determinant should be regdagith a Pfaffian
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afterwards which gives for arbitrary expectation values

_ J2¢9AcDle®  (Ad[D))o

W =T 2¢0Dles ~ (o))’

2.7)

where g[D] is the phase factor and the subscript 0 stands for a phasehpemverage. This
time we have to cancel e a factafD]e~S to obtain the partition function. Therefore, measuring
(o[D] S exp(—1 3, H3(¢®)?)), we obtain the Witten index as

W=2Zp=C (9[Del)op 2.8)

(exp[+S =3 5i 20 )op’

whereC is given in eq.[(2]4).

The r.h.s of eq.[(2]7) implies the phase quenched averadegfttase factoo|D] is almost
the partition function. This observation is correct, and@dp) provides the correct normalization
to the partition function.

3. Numerical Test: Supersymmetric Quantum Mechanics

We test our method using supersymmetric quantum mechafic$’ (= 2 Wess-Zumino type)
[A], of which the Witten index is known.

If the lattice action keeps a part of supersymmetry as anteygometry on the lattice, we
expect that the Witten index is well defined. More precisiélihe action is given a®A with an
exact supertransformation which satisfi@gs= 0, we can repeat a similar argument to the contin-
uum case. As a result, the index is well defined even at firitiedespacing in such lattice models.
In particular, the index from a finite lattice spacing sholoddan integer.

A Q-exact lattice action for the supersymmetric quantum meickes given as[7]

N-1
S= 3 [5(he1— @0+ W0+ (ot~ GOW(9) — SR+ Bt — )+ W (@) .

= (3.1)
where ¢ is a real bosony and @, are fermions, andk is a real bosonic auxiliary field. The
potentialW is a function ofp and the prime’} indicates a derivative. If the asymptotic behavior
is W(+400)W(—0) > 0 the supersymmetry is not broken amg+o)W(—) < 0 it is broken. We
use the following two cases:

e N=4:W = A¢0* + A2¢? SUSY, w=1
e N=3W=2A30>+ ¢ SUSY, w=0

where); are parameters of the potential. We use the Hybrid MonteoCGagorithm. See[]8] for
the implementation for this system.

The results are plotted in Figl. 2 ajd 3. With a suitable ehoicu?, the known indexes
are reproduced. There is almost no dependence on the Ispdaing, as expected from the exact
Q-symmetry of the action.

Next, we consider a possible way to improve the efficiency.cabse of the factoe® in
eq. [2.B), the efficiency is poor and we need large statistibis factor cancels the weight from the
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Figure 2: n=4 case, where the index is known to bellis the physical size of the system. (left panel)
u? dependence. (right panel) Lattice spacing 1/N dependence. (bottom) valuesiof and the measured
indexw, which minimize the error.
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Figure 3: n= 3 case, where the index is known to belOis the physical size of the system. (left panel)
u? dependence. (right panel) Lattice spacing 1/N dependence. (bottom) valuesjof and the measured
indexw, which minimize the error.

action so we do not have to use importance sampling with cespe weight factoe—S. Therefore,
we can also use configurations generated leisisimportance sampling. Decomposing the weight
factor ase S = e "Se~(1-1)S, we rewrite a general expectation value as

B f g(pAeeref(lfr)S B <Aeer>r
< >_ f@(pe—rSe—(l—l’)S o <e—l’s>r ?

(3.2)

where( - ), is an expectation value with a weight facast—")S. Therefore, preparing configurations
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usingell"% we can obtain the Witten index as follow:

W=C <G[DP]€ rS,F’>r7P . (3.3)
(exp[(1-1)S%— 3 Zi HA(@*)?] rp
Note thatr = 0 is the usual importance sampling.

We plot the result from the less importance sampling in Fig.Gh the left panel, we see
that the correct index is reproduced with a suitable chofcg?o On the right panel, we plot the
behavior of the errors versus number of the configuratiors Usthe measurements. Contrary to
the naive expectation, the magnitudes of the error are the $ear large statistics in both= 0 case
andr > 0 case. For small statistics, however; 0 cases converge to a lifaum. of confs)~1/2
faster thar = 0 case. This implies that the less importance sampling rdéthmbuster for small
statistics.
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Figure 4: Results from the less importance sampling. (left panel) @b&ined Witten index. Set la-
bels are the same in FigE. 2 aﬂd 3. (right panel) Behavior efethors, for set 4b. The dotted line is
(num. of conf)~1/2,

4. Conclusion and Discussion

We proposed a method for measuring the Witten index, which useful index to detect a
spontaneous supersymmetry breaking. Since the indexés gis a partition function under the
periodic boundary condition, it is important to use the eotmormalization of the path integral
measure. We also normalized overall factor of the partifiorction measuring a special regular-
ization functional. As a test of the method, we measuredntlex of supersymmetric quantum
mechanics. The results reproduced the known values of texinA disadvantage of the method
is its poor efficiency. A less importance sampling method mgyrove it to some extend.

Finally, we mention possible applications of the methodiclwimay or may not be practical.
It is straightforward to use the method in higher dimendi@yatems. Within one-dimensional
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systems, the most interesting one is supersymmetric Yaillg-fulantum mechanics with 16 su-
percharges. This model is one of the candidates of M(atiiepry, and assumes the Witten index
should be 1 to obtain a suitable supergravity limit.
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