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1. Motivation

In the study of semileptonic and leptonic processes,Bike rv andB — |v, the nonpertur-
bativeZ factors for heavy-light currents are needed. One way tatoatculate these (nonperturba-
tively on the lattice) is the current-current correlatorthwoal, that has been successfully tested and
used in the heavyonium cagé [IL, 2]. We now want to extend tiessidts and use the same method
in the heavy-light case. Here we report on the first resultsggutie HISQ action. The eventual aim
is to extract NRQCD heavy-light factors.

2. Current-current correlator method

The idea is to match time moments of meson correlators toggramrivative moments at
g? = 0 of polarization function$l calculated in continuum QCD perturbation theory to higheord
The pseudoscalar current-current correlators are defmed a

G(t) =a° (amy)*(0ljs(X,t)j5(0,0)|0). (2.1)
X

Then the time moments are ¢

Gn=3 (5> "G(t) 2.2)

(see e.g.[[1}]2]). To help reducing the errors we divide eacemt by the tree level valué},(f)),
and define reduced momerRs as

G Gn \ "
RAt= —%  and R&'=[ 7 for n>6. (2.3)
gl clo
4 n
In the continuum the reduced moments are
ont 04 ont mf]h On
=—- and = —— for n>6. 2.4

Theg, are perturbative series (1), known for the heavy-heavy case througf( 1) [B] and for
heavy-light througha2(u) [f]. The massn, is the heavy quark mass in tMS scheme at the scale
p. Comparing the lattice and continuuRy allows us to extract the mass ratig, /(2m (1)), and
thus the quark mass. The calculation above is for the casenwit factor. If the lattice current
has aZ factor then that can also be extracted.

3. Heavy-light JJ correlators

We compare lattice calculations to continuum perturbatieory througha?2(u). In this
work we have used coarse, fine, superfine and ultrafine MiLii€datonfigurations. We calculate
heavy-light correlators using the HISQ actidh [5] for botracks with several heavy quark masses
from charm up to thé» quark mass. Note that = 1 in the HISQ case. Some of the calculated
reduced momentR, are shown in Fig[]1 as examples of our results. Comparingykstzange,
heavy-charm and heavy-heavy correlator reduced momeaigssinat we can clearly distinguish
between these three cases. In the following subsectionsldress some challenges of the heavy-
light calculations.



Heavy-light current-current correlators Jonna Koponen

o 8 & coarse
o 1.6 A fine B
< [ O superfine ]
o r O i ]
3 15 ° ultrafine 4
< r A ]
o 2) ]
g’l.4j A b
S é 8 ]
? 130 ¢ a e g ]
% r 8 £ B8 BRy 1
220 © & p o g Ry
- [ 5 A 8 BR 1
= © L =1 S 8 10
o [ g e g gRlz:
1.1F e & B 8 8 g BRC
E | | | | | | \RIGE
]2 4 5 6 7 8 10
Mnh
1.6[ 8 & coarse ]
L > A fine i
F O superfine
1.5- O ultrafine| 7]
1.4F ® :
~ A ]
T3 o ]
L § A =] ]
2 ° ]
1_, —
L © S =] (S] |
i ° A e o © ]
[ & A ,E 8 E'BS ]
1.1~ —
I e 8 g8 |
i Mh ]
o b b e b b e b b
5 5 10
Mﬂh
1.35- & coarse 4
r A fine ]
A g O superfine
1.3- O ultrafine| 7]
[ A ]
1.25j g o ]
0:8 [ o a ]
1.2? Ae g S 8 ]
i £ . gn, |
1.15- ®e = B .
r © 8 8 By ]
i BB, ]
11f ]
I I T R I R S B
2 4 5 6 7 8 9 10
Mﬂh

Figure 1: Top figure: Heavy-strange correlator reduced momBntas a function of heavy-heavy meson
massMj, (in GeV). The other two figures show the heavy-strange, helsaym and heavy-heavy reduced
momentsR, andRyg as a function oMy, . The range is from charm (at about 3 GeVtabout 10 GeV).
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Figure 2: The reduced moments in the free, non-interacting theorgui@épn the volume.
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Figure 3: The ratio of reduced moments calculated on two differentsmhattices (one with = 20, other
one withL = 28) shows that there is no volume dependence in the intagacéise.

3.1 Volume dependence

The tree level (free) moments depend on volume — note thatishan artifact of the free
case only. This is illustrated in Figurfls 2 gid 3 — Bxedepend on volume in the non-interacting
theory, but not in the interacting case. Therefore we needltulate the tree level moments in the
infinite volume limit. We do this by calculating the free momusing different volumes.,®, and
fitting them with

e AL

Ag+Ar o (3.1)

The result in the infinite volume limit is then simply given the fit parametedy.
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Figure 4: Fraction of the tree levaiq condensate in reduced moméhtas a function of the heavy-heavy
meson maskl,, (in GeV).

3.2 Quark condensate
The quark condensate appears in the reduced moRaettttree level ag]6]

ar (n-1(n-2)(0- 32 + 5] myd)

3 1+% mﬁ]‘

(3.2)

The quark condensate is not present in the heavy-heavy lmatsit is sizeable in the heavy-light
case — the fraction of tree levef] condensate iR, can easily be 10-30% for heavy quark masses
masses between andb, as can be seen in Fif] 4. Note that the leading termyig21 This
poses a challenge, as theg corrections to the condensate are not known. The gluon osate
contribution is much smaller and can be safely neglectedarahalysis.

3.3 m/my corrections to perturbative series

Perturbation theory witiny = 0 is not sufficient, asn (u)/mn(u) corrections become im-
portant forBe: mg(u)/my(u) =~ 0.22. At small values of the ratio the (u)/mn (1) expansion is
good, i.e. it works foBs. At large values of the ratio the expansion is not good enoddgtis is
illustrated in Fig[p. However, we now have the exact coeffits for given ratiosn (11)/mn(u)
for tree level (shown in the plot as bursts) and ordgrso this problem can be partly avoided. The
exact coefficients are still needed f@f and higher orders.

3.4 Fits

We fit the lattice dat®2®, n > 6, with
mf]h

fit _
i _<2mh(u)
(1+ by(amn(p))? + bo(amn(p))* + bg(am(u))® + dha® + dpa?)

)(1+clors+cza52+03a§+c4a;‘+c5a55+csa§’+q6 condensatp 63)
3.3
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Figure5: m(u)/my(u) corrections to continuum perturbation theory coefficietdgrex = m/my. The
tree level values of the coefficients have been divided byréeelevel value atn /my, = 0.

and choose the scale=m,. We take the first few coefficients;(andc, in the heavy-light case)
from continuum perturbation theory, and treat the coeffitsidor the higher ordeag terms as fit
parameters. The quark condensate is given in[E{. 3.2 ateveé |We take theyq condensate
value to be(msss) = (0.2 GeV)* from the Gell-Mann — Oakes — Renner relation, allowing she
condensate to be 0.7 times the light quark condensate. \Weabdsv for the presence of higher
order condensate terms estimating them with powers of thdirlg condensate. IB; there is
no condensate contribution, and we get a good fit using thet exefficients (ordens). As the
lattice calculations are done at a non-zero lattice spagimge includea-dependent terms in the fit
function — even powers af andam, ().

To extract the mass ratio, /(2mn(u)) we use the lattice simulation data (Hg.]2.3), with
amy, /am, from the lattice simulations, and compare thB¥# to the continuum perturbation the-
ory result (Eq[2]4). That is, we find values fogg(u) andmy, /(2my(u)) that make lattice and
continuum results agree for smalt> 4. This can then be combined with experimental results for
the ny, nc meson masses to obtain the quark masses. In the heavydiggte can use thog;s(u)
values extracted from the heavy-heavy calculation.

To test the method in the heavy-light case we look at the na&sm,, /(2my(u)) and com-
pare to heavy-heavy results. This is shown in Fidlire 6. Inhiésmvy-strange case the fits are to
oneR, at a time, not to alR, simultaneously as in the heavy-heavy case. The mass ratacted
from the heavy-strange correlator moments is the same d®ihdavy-heavy case, as expected,
but currently a lot less accurate.

4. Conclusions and future

We are extending the use of current-current correlator aggtearlier used to study heavy-
heavy systems, to heavy-light systems. The full analysiseaivy-light data is still in progress,
but we can already say that the JJ correlator method worlds Wet quark condensate sets some
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Figure6: The mass rationy, /(2my(u)).

limitations — we can not use high moments in Biecase. However, iB. there is no condensate
contribution. Our aim is to extrad for NRQCD — there the challenge is to control relativistic

corrections.
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