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Two-flavor chiral expansions provide a useful perturbditimenework to study hadron properties.
Such expansions should exhibit marked improvement ovecdmeentional three-flavor chiral
expansion. Although in principle one can formulate two-dlatheories for the various hyperon
multiplets, the nearness of kaon thresholds can seriouslgnnine the effectiveness of such two-
flavor theories in practice. We investigate the importarfoartual kaon thresholds on hyperon
properties, specifically their isovector axial charges aeledtromagnetic observables. In partic-
ular we uncover the underlying expansion parameter gowgrihie description of virtual kaon
thresholds. For spin-half hyperons, this expansion pat@mie under theoretical control. As a
result, the virtual kaon contributions are well describedhe two-flavor theory by terms ana-
Iytic in the pion mass-squared. For spin three-half hypgrbowever, one is closer to the kaon
production threshold, and the expansion parameter is nemadl. Breakdown oBU(2) chiral
perturbation theory is shown to arise from a pole in the egmanparameter associated with the
kaon threshold. We find that, despite the fact that highdewzorrections to the expansion param-
eter is necessary to ascertain whether the two-flavor thefospin three-half hyperons remains
perturbative, there is a useful perturbative expansiorisiovector axial charges and magnetic
moments of both spin-half and spin three-half hyperons.
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1. Introduction

An effective description of low-energy QCD is possible pdad a systematic power count-
ing can be established to order the infinite terms in the Lagem of chiral perturbation theory
(xPT) [@.[2]. AnSU(2) chiral expansion is better suited for this task compare®l(B), because
the eta mass squaremﬁ, is not particularly small compared to the square of theatliymme-
try breaking scale’,\)z(. The inclusion of baryons can be done systematically byitrgahe baryon
massMg, as a large parametdi [3, 4]. Au(2) expansion for baryons is expected to be more effec-
tive thanSU(3), because the latter expansion contains terms that scasljrwithm, /Mg ~ 0.5.
TheSU(2) theory of hyperons exploits the hierarchy of scatgsmy < ms ~ Agcp. Consequently
the strange quark mass dependence is either absorbed énteattting low-energy constants of
SU(2), or arises through power-law suppressed term$m/ms)", which are absorbed into low-
energy constants of pion-mass dependent operators.niiigrased to denote the average of the up
and down quark masses. The resulting theory sums all paligriirge strange quark mass contri-
butions to all orders. Efficacy of the two-flavor theory sgyndepends on the underlyirgJ(3)
dynamics. Kinematically, hyperons are forbidden to pradkaons through strong decays. The
nearness of strangeness-changing thresholds, howewdearhto significant non-analytic quark
mass dependence in hyperon observables. Such dependgnoetrba adequately captured in the
two-flavor theory because explicit kaons are absent. Dueetsize of hyperon mass splittings, spin
three-half hyperon resonances are particularly sengiik@on contributions. A detailed analysis
for the hyperon observables demonstrates thaSthe) chiral expansion of kaon loop contribu-
tions are under control for hyperon masses and isovectat elxarges[[5[]6[] 7] 8]. Further, for
the spin one-half hyperon electromagnetic propertiesnkaop contributions are well captured
by terms analytic in the pion mass squarfld [9]. The same remaie for magnetic moments
of the spin three-half hyperons. Electromagnetic radii gnddrupole moments of the hyperon
resonances are shown to be quite sensitive to the nearbytkezsholds. Th&U(2) expansion
of these kaon contributions appears to converge at the giysion mass, however, the efficacy
of the two-flavor theory does not extend considerably faobéythe physical point. Despite the
fact that higher-order corrections to the expansion paranie necessary to ascertain whether the
two-flavor theory of spin three-half hyperons remains pédtive, there is a useful perturbative
expansion for isovector axial charges and magnetic monaéiisth spin-half and spin three-half
hyperons.

2. Two-Flavor Chiral Expansion

As a schematic example, we consider the mass of theryon. InSU(3) chiral perturbation
theory, there are contributions from pion, kaon, and etadoat next-to-leading order. To this
order, the contributions can be written in the fag = MSY®) -a, m2 +-ax m2 + b, m3 -+ by mg +
by m3. The parameteM =Y is the average octet baryon mass in the SU(3) chiral limitlexthe
ay andb, coefficients depend on the low-energy constants of the hiearyon theory.

By virtue of the Gell-Mann—Oakes—Renner (GMOR) relatiom, ¢an write the kaon mass
in the formmZ = im 4+ Img wherem;, is the mass of the quark basismeson. Using leading-

2 ns’
order chiral perturbation theory and the mass of the nepioal and the averaged mass-squared of
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the kaons, we have,, = 0.688GeV. A natural expansion suggests itself: expand in powers of

n;
SSU(Z) = Fﬂ ~ 0.04. (21)

Ns

The eta-mass contributions can also be treated using am&RrRp&s») through the Gell-Mann—
Okubo formulam? = m2 + $m?2 . Carrying out the expansion in powers &y on Mg =
MSYG) 1 apme + ax Mg + by Mg+ bk Mg + by, my, we arrive at an expression for tﬁemass per-
turbed about th&U(2) chiral limit,

Ms = MY 4 a2¥ P2 4 0o @md 4 2.2)

where the omitted terms in Eq. (R.2) consist of higher poveétsie expansion parameter. In the
above form, the non-analytic strange quark mass depend&scbeen absorbed into the relevant
low-energy constants of the two-flavor chiral expansiorhefsigma mass. The convergence of the
< mass is now governed by: the chiral expansiofy//A2, and the heavy expansionmy,/ MZSU(2>.

An expansion of hyperon observables in powersgf,) is very well behaved. There are
additional expansion parameters which are related to kamthuption thresholds. Clearly for the
two-flavor theory to be effective, kaon production threglsotannot be reached. Typically loop
diagrams in which the baryon strangeness changes haveagtigible mass splittings between the
external and intermediate-state baryons. For examplenerigB’ — KB process is d\S= —
strangeness changing baryon transition, and is charzetieby the mass splittindsg, given by

%8s = Mg — M. (2.3)

When the splitting exceeds the kaon mags; > m, the decay is kinematically allowed, otherwise
the proces® — KB is virtual.

To deduce the expansion parameter relevant f@af2) description of hyperons, we focus
on a schematic example, and include 8ié(3) splitting, dsg. The introduction of this scale into
loop integrals produces a more complicated non-analyhctfan involving bothmk anddgg. For
diagrams of the sunset type, a logarithm is generically yced of the form

_555(_\/5%8'_n1%+i8
g('“ﬁ? _6BB’) = Iog - ) (24)
_5BB’+\/ 5BZB/_m%+|S

which contains the non-analyticities associated with kamduction. Our concern is with the
region below threshold. In the limégg < Mk, theSU(2) treatment must fail, and we must address
whether the physical splittings actually put us in this negi Applying the perturbative expansion
about theSU(2) chiral limit for the generic logarithm, we make the followiobservation, namely
terms in the logarithm that are expanded can be written agimns of the form

1
f(mé - 5§B/>_f( %)+ n12f(2 2 6§B,)+8 f”(2 2~ &)+ (25)
Thus for the subthreshold case, the expansion paransggeris of the form

m2

&y = .
12 _ 52
2My, — %w

l\.)ll—‘

(2.6)
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We can diagnose the convergence properties oSthg) expansion by estimating the size
of the expansion parameters governing the descriptionari Karesholds. For th&S= —1 virtual
transitions, we havegys+ = 0.24, ea=+ = 0.15, = = 0.08, &=+ = 0.08, gys = 0.05, o= = 0.05,
ena = 0.04, eps+ = 0.04, &5:=- = 0.04, e=:o = 0.04, andes= = 0.04, while for theAS= 1 vir-
tual transitions, the parameters amyy = 0.04, e=3» = 0.04, andesp = 0.04. For a majority
of the strangeness changing transitions, the mass-sgéttplay little role in theSU(2) expan-
sion, i.e.&p ~ €sy2). Despite the nearness of thresholds (compared to the kass)nthe
expansion parameters BU(2) are all better than the generic expansion parameteSti3),

g ~my/MSUG) =05,

We have estimated the mass of thgneson by using the GMOR relation for the neutral kaon
mass. Allowing this mass to vary 10% shows that one of thesitians listed has a potentially fal-
lible expansion. If the mass of thg, is 10% smaller, then the expansion&gs- is ill-fated. To
further address the convergenceSal(2) chiral perturbation theory for hyperons, we must assess
the impact of next-to-leading order corrections, namelymuest find an appropriate expanion pa-
rameter forSU(2) beyond leading order. This parameter must take into acashat is practically
done in performing ai®U(2) chiral expansion, namely re-summing strange quark madsilmen
tions while treating the lighter quark mass dependencaugiEtively. Beyond leading-order, the
mass parameters that naturally enter the two-flavor theeryh@SU(2) chiral limit valuesmiu(z)
and 6§§(2) = MS,UQ) - MES;U@. The SU(2) superscripts denote the evaluation of quantities in the
limit of vanishing lighter quark masses, = my = 0.

To match theSU(3) loop contributions onto th8U(2) theory, we should only include baryon
mass splittings due to the strange quaﬂ@j@. Non-analytic contributions associated with the
kaon threshold then schematically have the dependence

f (g — 355 712) = f (& — [ @12+ M2 — (8557 2). (2.7)
Expanding about th8U(2) chiral limit gives an expansion parameter
_ iSY@)52 142
8 = QJ%Z) z[mK su]<2> s S0 uE (.8)
M1 —10gg 717 Mk 71— [0 "]

Because the expansion parameters are highly sensitiveetwallne of the denominator, it is a
good approximation to expand the numerator to leading ordierorder to deduce the fate of
the SU(2) expansion, we need to estimate ®id(2) chiral limit values of the mass parameters.
Using lattice data and inputs from phenomenology, we findvidaes foreys+ and ea=+, which
are the two worst possible cases fold(2) description of hyperons to fail, are given by3@ <
ens: < 0.37 and 016 < ep=+ < 0.18, respectively. Having considered the two worst possihatgon
transitions, although they are larger than what we haveagtid in previous section, we still expect
theSU(2) chiral expansion to provide a good description of kaon tiw&scontributions to hyperon
observables.

3. Effects of Kaon Thresholds

In this section we turn our attention specifically to the hygpeisovector axial charges and
hyperon electromagnetic properties below.
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Figure 1: Virtual threshold contribution from the kaon loop with inteediate-state isovector axial transition

N — N for X (left) and>* (right) baryons.

At leading loop order, one encounters a variety of diagramghvcontribute to thresholds
in the evaluation of axial-vector current matrix elemeriiarther the evaluation of loop diagrams
of these types produces terms proportional to the followiog-analytic functions

2 1
f(mﬁy_éBB’y_éB”B/) = ém [g(mﬁ,—éBB/) —y(rﬂ%,—éBuB/)}

(M, —3g) = —20p(d5y — M) V2.2(mE, —sm), (3.1)

where.7 is related toZ introduced earlier by? = — (625 — m&)%¥2.#. Notice while.7 is associ-
ated with an isospin transition and possibly a transitiomfia spin-half baryon to a spin three-halp
baryon or vice versa,# appears when evaluating diagrams related to spin-comgeaxial current.

A SU(2) chiral expansion of the non-analytic functigai up ton; for £ and=* with intermediate-
state isovector axial transitidd — N are shown in figure 1. Notice the dashed green line in both
panel of figure 1 is the non-analytic contributiong. Further, the red curve is the zeroth-order
approximation, # (9, while the blue curve also includes the first-order corcgc{which is of or-
derm?), and finally the black curve includes all termsrtd. Figure 1 clearly demonstrates that
the virtual kaon loop contributions with intermediatetstagsovector axial transitiohl — N to the
isovector axial charge & andX* can be captured very nicely bySiJ(2) chiral expansion. Simi-
lar results are obtained for the non-analytic functi#nas well. These results in turn imply all the
virtual kaon contributions to the isovector axial chargelyperons are well-described by terms in
me.

Notice the non-analytic function? appears in the virtual loop contributions to the hyperon
magnetic moments as well. As a result, the virtual kaon laoyrédbutions to the hyperon magnetic
moments can also be captured nicely witBld(2) chiral expansion.

Similarly, the non-analytic functions appearing in thedamntributions to hyperon charge
radii (quadrupole moments) and quadrupole radii are giyen b

OBpR
Gr(Mm2, —3ss) = — B8 o(m2,—&g), and
Th(Mk, —%Be) % m2) " (Mg, —d%g), an
(M, —dBR) = L 2 g ZL(mg,—dsm) | » (3.2)

108 M (@8, -mg) ™"
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Figure2: Contribution from theK-N loop diagram for the charge radii (left) and quadrupoleuadright)
of 2* baryons.

respectively. Foz*, contribution from theK-N loop to charge radius (quadrupole moment) and
guadrupole radius &t* is shown as dashed green line in the left panel and right pdHigjure 2.
Compared with these curves are the first three approxinsatiotheSU(2) expansion that are ana-
lytic in mZ. The red curve is the zeroth-order approximation, the blureecincludes the first-order
correction proportional tor2, and finally the black curve includes all termsné. The results in
figure 2 shows that the kaon contributionstocharge radius, quadrupole moment and quadrupole
radius remain perturbative not far away from physical pi@asm The increased sensitivity in these
observables is due to the threshold singularities in theawaiytic functions, Eqs[(3.2). By con-
trast, kaon contributions to the masses, axial chargespaghetic moments vanish at the kaon
threshold due to phase-space factors. For the case of radligaadrupole moments, the kaon
contributions become singular near threshold. Intergktira similar situation is observed ip J10],
namely the appearance of analogous singularities at timetipieshold is indicative of a breakdown
in the standard definition of moments and radii of resonances

4. |sovector Axial Chargesof Spin-1/2 Hyperons

Using phenomenological input and lattice data, we comphwadovector axial charges of
spin-half hyperons in the framework of two-flavor chiral fpebation theory for hyperons. Further,
we have compared our analytic expressions with the latésealts of hyperon axial charges ob-
tained in [I]L]. Comparing the isovector axial charges olatdjga ~ 1.2, gss ~ 0.8 andgz= ~ 0.2,
suggests better convergenceydfT with increasing strangeness quantum number. Our calonkati
verify this pattern of convergence for the axial chargesassheen seen in figure 3.

5. Conclusions

We use a two-flavor chiral perturbation theory for hyperamstudy the axial charges and
electromagnetic peroperties of hyperons. In particularinvestigate the importance of virtual
kaon thresholds on hyperons properties. For the case ofimgmgally known hyperon magnetic
moments, axial charge and electromagnetic charge radilew®nstrate that chiral corrections are
under reasonable control, in contrast to the behavior afetlodservables in the three-flavor chiral
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Figure3: Pion mass dependence of isovector axial charges. Startedamgsical inputs, while the points
are lattice QCD results taken frorE[ll], of which the valueha&t physical pion mass is obtained from an
empirical quark-mass extrapolation, and the lowest matssata used to estimate chiral limit couplings and
local contributions at NLO.

expansion. The results we obtained are ideal for perfortfiagpion mass extrapolation of lattice
QCD data obtained at the physical strange quark mass.
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