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Form factors of the nucleon have been extracted from experiment with high precision. However,
lattice calculations have failed so far to reproduce the observed dependence of form factors on
the momentum transfer. We have embarked on a program to thoroughly investigate systematic
effects in lattice calculation of the required three-pointcorrelation functions. Here we focus on
the possible contamination from higher excited states and present a method which is designed to
suppress them. Its effectiveness is tested for several baryonic matrix elements, different lattice
sizes and pion masses.
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1. Introduction

The calculation of mesonic and baryonic matrix elements from lattice QCD has made good
progress in the last few years. Simulations with fully dynamical quarks have reached the physical
pion mass at large lattice sizes ofL > 5 fm. For many mesonic matrix elements the overall uncer-
tainties are of a few percent and no discrepancies between experiments and theory can be detected.
Baryonic matrix elements have not yet reached this accuracy. For instance the axial charge or the
electric form factor are not compatible with the experimental data, even for the largest volumes and
the smallest pion masses [1].
In this study we will focus on the electro-magnetic and axialform factors of the nucleon. The
matrix element of the vector current can be expressed by the Dirac- and Pauli form factorsF1(q2)

andF2(q2) in the following way:

〈

N(p′,s′)
∣

∣Vµ
∣

∣N(p,s)
〉

= ū(p′,s′)

{

γµF1(q
2)+ i

σµνqν

2mN
F2(q

2)

}

u(p,s), (1.1)

where|N(p,s)〉 is the nucleon ground state with momentump and spins, andu(p,s) is a Dirac
spinor with massmN. The momentum transfer is given byq = p− p′ andσµν = [γµ ,γν ]/2. The
matrix element of the axial current can be expressed in termsof the axial form factorGA(q2) and
the induced-pseudoscalar form factorGP(q2):

〈

N(p′,s′)
∣

∣Aµ
∣

∣N(p,s)
〉

= ū(p′,s′)

{

γµγ5GA(q
2)+ γ5

qµ

2mN
GP(q

2)

}

u(p,s). (1.2)

We will neglectGP(q2) here completely and focus on the electro-magnetic form factors and the
axial form factor at zero momentum transfer, which corresponds to the axial chargegA.
The observed discrepancy between the experimental and lattice data may be due to systematic
effects. These can be lattice artifacts, finite volume effects, large pion masses and contaminations
from excited states. We will focus on the excited state contributions here but plan to address the
other effects later due to our lattice setup of various lattice sizes, lattices spacings and pion masses.
Our ensembles for computing matrix elements were generatedas part of the "Coordinated Lattice
Simulations" (CLS) initiative [2]. For our measurements weuse fully dynamicalO(a)-improved,
two flavor Wilson fermions where our solver is Schwarz preconditioned and deflation accelerated
[3]. Here we will present data for one lattice spacing of 0.069 fm and two lattice sizes of 64×323

and 96×483. The pion masses vary between 300 and 900 MeV [4, 5].

2. The standard plateau method

The two-point function in Euclidean space time for a nucleonis defined as [6]:

C2(~p, t) = ∑
~x

e−i~p~xΓP
µν

〈

Jν(t,~x)J̄µ(0)
〉 t→∞
−−→

Z2
B

2Ep
e−Ept Tr

[

ΓP (−ip/+m)
]

. (2.1)

We use the interpolating fieldJγ = εabc(uaCγ5db)uc
γ to create a nucleon whereC represents the

charge conjugation matrix, greek letters Dirac indices andlatin letters color indices. The energy
Ep of a nucleon with momentump is related to its mass via the dispersion relationE2 = m2+ p2.
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The factorZB is the coupling strength of the baryon-state with the vacuum. For the polarization
matrix ΓP we use1

4(1+ γ0)(1− iγ3γ5) which projects the nucleon to positive parity and polarizesit
in thez-direction. To optimize the overlap of the nucleon correlation function with the ground state
Jacobi-smearing [7] with HYP-smeared links in the spatial Laplacian [8] is used.
The computation of the three-point functions is more involved than for the two-point functions
due to the necessity of computing extended propagators. Forthe vector and the axial vector form
factors the following two diagrams contribute:

Σd(~y,0;ts,~p
′) = ∑

~x

ei~x~p′ ⊗ u

u

d

0 !x, ts

!y, t

, (2.2)

Σu(~y,0;ts,~p
′) = ∑

~x

ei~x~p′ ⊗ d

u

u

0 !x, ts

!y, t

. (2.3)

The quark propagators are contracted at a fixed sink timeslice ts and the outgoing momentum~p′ is
induced via a Fourier transformation. The initial momentumis always set to zero so the momentum
transfer carried by the photon isq = −p′. This object is then used as a source for a new set of
inversions to create a so called extended propagator [9].
The three-point function can be constructed from the extended propagators as

C3(~q, t, ts) = ∑
~y

Tr
[

ΓP (Σu(0,~y)±Σd(0,~y))O(y)S(y,0)
]

ei~q~y, (2.4)

where the plus sign corresponds to the isoscalar form factorand the minus sign to the isovector
form factor. Here we focus on isovector form factors where nodisconnected contributions arise.
The usual quark propagatorS(y,0) closes the Feynman diagrams of eq. 2.2 and 2.3 and the operator
O is inserted at timeslicet.
At the hadronic level and for large Euclidean time the correlation function can be written as

C3(~q, t, ts) = ∑
s,s′

e−mNte−Ep′(ts−t)Z2
B

√

mN

Ep
Tr

[

ΓPu(p′,s′)
〈

N(p′,s′) |O|N(0,s)
〉

ū(0,s)
]

, (2.5)

where the matrix element〈N(p′,s′) |O|N(0,s)〉 can be expanded in terms of the form factors as
shown in eq. 1.1 and 1.2. We use in our simulations the local currentsVµ(x) = Ψ(x)γµ Ψ(x),
Aµ(x) = Ψ(x)γ5γµΨ(x) whereΨ(x) is au- or d-quark spinor. The local currents need to be renor-
malised and in the case of the electro-magnetic form factorsthis can be done by requiringGE(0)= 1
which imposes charge conservation. For the axial current weuse the non pertubatively computed
renormalisation constantZA from [10].
Matrix elements computed withO(a)-improved Wilson fermions are not automaticallyO(a)-
improved. An improvement term has to be added to the axial current, but we are interested in
the axial charge only which is extracted from a spatial component at zero momentum of the axial
current and so the forward matrix element of the improvementterm vanishes. Here we neglect the
improvement term for the vector current but it will be included in a later stage of our analysis.
The standard way to extract form factors from Euclidean correlation functions like eq. 2.5 is to use
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ratios between two- and three-point functions. Our particular choice is [11]:

R(~q, t, ts) =
C3(~q, t, ts)

C2(~0, ts)

√

C2(~q, ts− t)C2(~0, t)C2(~0, ts)

C2(~0, ts− t)C2(~q, t)C2(~q, ts)
. (2.6)

This ratio cancels the exponential factors and gives usually long plateaux with small errors. With
our choice of the polarization matrix we get access to the following quantities:

ZV ·Re
[

R(~q, t, ts)γ0

]

=

√

m+Eq

2Eq

{

F1(q
2)−

~p′2

2m(m+E~p′)
F2(q

2)

}

, (2.7)

ZV ·Re
[

R(~q, t, ts)γi

]

i=1,2 = εi j p j

√

1
2Eq(Eq+m)

{

F1(q
2)+F2(q

2)
}

, (2.8)

ZA · Im
[

R(~q, t, ts)γ5γ3

]

=

√

m+Eq

2Eq

{

GA(q
2)−

2q2
3

m
Gp(q

2)

}

~q→0
−−→ gA. (2.9)

The masses and energies in the pre-factors of the bare ratioscan be determined from the two-point
function of the nucleon. In principle the form factors can also be extracted from other components
of the ratio but these turned out to be too noisy within the standard approach.
The plateau method should give the ground state value of the matrix elements, but higher state con-
tributions can lead to wrong plateau values. In the left panel of fig. 1 we show the connected part of
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Figure 1: Examples for the standard method forV0 andgA

the zero component of the isoscalar vector form factor for three different source/sink combinations
on a 64×323 lattice with a pion mass ofmπ = 550 MeV. The black points are from a point source,
the purple ones from a Jacobi-smeared source and the red onesfrom a smeared source/sink com-
bination. All three graphs give reasonable plateaux yet they are not compatible within statistical
errors.
In the right panel the ratio for the axial charge for three different sink positionsts and a Jacobi-
smeared source on a 64× 323 lattice with a pion mass ofmπ = 415 MeV is shown. The ratio
should be independent of the position of the sink but it is obviously not. Finally we cannot con-
clude that the real plateau value is obtained even for the largest sink timeslicets = 15.

3. The summation method

We will now argue that the large dependence of the ratios onts and different smearing levels
is mainly induced by higher order corrections and propose a method to reduce them. The ratio for
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an arbitrary operator can be written as:

R(~q, t, ts) = RG+O
(

e−∆t
)

+O

(

e−∆′(ts−t)
)

. (3.1)

It can be expressed in terms of the value of the ground stateRG and the exponentially suppressed
excited state contributions. The energy gaps∆ and∆′ can be different for different quantum num-
bers at source and sink. Assuming these gaps come from a two-pion state these contributions are
large for small pion masses and smallts.
To deal with these effects an alternative method can be used known as the summation method [12].
The basic idea is to sum the ratio int up tots. Doing so results in

ts
∑

t=0
R(~q, t, ts) = RG · ts+c(∆,∆′)+O

(

tse−∆ts
)

+O

(

tse−∆′ts
)

, (3.2)

where again only the first excited state is taken into account. The ground state can be extracted
from the slope of a linear function ints. Also here an exponantially suppressed higher order cor-
rection survives but in contrast to the standard method it isonly ts-dependent and so much smaller.
Fig. 2 illustrates how well the summation method works. We plot the zero component of the con-
nected part of the isoscalar vector current for four different momentum transfers. The behavior is

 10

 20

 30

 40

 50

 60

 70

 80

 6  8  10  12  14  16  18  20  22

su
m

m
ed

 r
at

io
 f

o
r 

V
0

ts/a

q
2
=0 GeV

2

q
2
=0.30 GeV

2

q
2
=0.59 GeV

2

q
2
=0.87 GeV

2

Figure 2: The summation method forV0 and different momenta

linear as expected and no deviation from the linearity can bedetected. This means that even for the
smallestts the excited state contributions are depleted.
In order to compare the summation method directly with the standard method we show in fig. 3
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Figure 3: Examples for the standard method and the summation method for V0 andgA
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the graphs of fig. 1 again, but now including the values from the summation method. In the left
panel the purple line represents the summation method usinga correlation function with a smeared
source. The thick line in the middle corresponds to the mean value and the thinner outer lines show
the statistical error. The summation method depletes the higher state contribution in both cases at
the expense of a larger statistical error. In the right panelthe ambiguity ints is completely resolved
by using the summation method (purple lines) and the trend seems to end there.

4. Results

Our results for the axial charge and the vector form factors are preliminary. As mentioned
before the improvement term for the vector current is not implemented yet and the scale is not set
to its final value so the momenta and pion masses may change. All values were extracted with
the summation method. In fig. 4 we show our results for the Dirac and the Pauli form factors.
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Figure 4: Preliminary results for the Dirac and the Pauli form factorsextracted with the summation method.

While our values for the Pauli form factor for the largest lattice with the smallest pion mass is in
good agreement with the experimental curve the Dirac form factor shows a different slope. So the
excited state contributions seem not to be the only effect which causes the discrepancy between
lattice results and experiment.
In fig. 5 we show our data for the axial charge for different lattice sizes and pion masses. Data from
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Figure 5: Preliminary results for the axial charge extracted with thesummation method.

the RBC/UKQCD collaboration [13] are shown for comparison.In contrast to other collaborations
we do not see a downward trend for small pion masses. The impact of the summation method is
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larger for small pion masses because the energy gaps∆ and∆′ decrease and the influence of excited
state contributions increases.

5. Summary and outlook

We showed that the control of excited states is crucial and although plateaux of baryonic ma-
trix elements extracted with the standard method may look reasonable this method is insufficient to
ensure the absence of excited state contributions. Smearing appears not to be enough to suppress
these contributions so we introduced an alternative method, the summation method. It is promis-
ing to help with excited state contributions but more inversions are needed and the statistical error
grows compared to the standard method. To minimize these drawbacks this method will be opti-
mized and tuned.
To be able to extrapolate the matrix elements to the physicalpoint simulations with smaller pion
masses and different lattice spacings(β = 5.2,5.5) are being analysed. In the analysis of the vector
form factors theO(a) improvement terms will be included, and finally we are also interested in the
full axial form factorGA(q2) and the induced pseudo scalar form factorGP(q2).
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