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ABSTRACT

Recently, Cai and Su [Phys. Rev. D 81, 103514 (2010)] argued that the sign of interaction Q
in the dark sector changed in the approximate redshift range of 0.45∼<z∼< 0.9, by using a model-
independent method to deal with the observational data. In fact, this result raises a remarkable
problem, since most of the familiar interactions cannot change their signs in the whole cosmic history.
Motivated by the work of Cai and Su, we have proposed a new type of interaction in a previous
work [arXiv:1008.4968]. The key ingredient is the deceleration parameter q in the interaction Q.
Therefore, the interaction Q can change its sign when our universe changes from deceleration (q > 0)
to acceleration (q < 0). In the present work, we consider the cosmological constraints on this type
of sign-changeable interactions, by using the latest observational data. We find that the constraints
on the model parameters are fairly tight. In particular, the key parameter β can be constrained to
a very narrow range.
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I. INTRODUCTION

In the dark energy cosmology [1], the well-known cosmological coincidence problem has an important
position. This problem is asking why are we living in an epoch in which the densities of dark energy and
matter are comparable? Since their densities scale differently with the expansion of our universe, there
should be some fine-tunings. To alleviate this coincidence problem, it is natural to consider the possible
interaction between dark energy and dark matter in the literature (see e.g. [2–12]). In fact, since the
nature of both dark energy and dark matter are still unknown, there is no physical argument to exclude
the possible interaction between them. On the contrary, some observational evidences of the interaction
in the dark sector have been found recently [13, 14]. In the literature, it is usual to assume that dark
energy and dark matter interact through a coupling term Q, according to

ρ̇m + 3Hρm = Q , (1)

ρ̇de + 3H(ρde + pde) = −Q , (2)

where ρm and ρde are densities of dark matter and dark energy (we assume that the baryon component
can be ignored); pde is the pressure of dark energy; H ≡ ȧ/a is the Hubble parameter; a = (1 + z)−1

is the scale factor (we have set a0 = 1; the subscript “0” indicates the present value of corresponding
quantity; z is the redshift); a dot denotes the derivative with respect to cosmic time t. Note that Eqs. (1)
and (2) preserve the total energy conservation equation ρ̇tot+3H(ρtot+ ptot) = 0, where ρtot = ρm+ ρde.
Since there is no natural guidance from fundamental physics on the interaction Q, one can only discuss
it to a phenomenological level.
The most familiar interactions extensively considered in the literature (see e.g. [2–12]) include Q =

3αHρm, Q = 3βHρtot, and Q = 3ηHρde. It is easy to see that these interactions are always positive or
negative and hence cannot give the possibility to change their signs. However, recently Cai and Su [15]
argued that the sign of interaction Q changed in the approximate redshift range of 0.45∼<z∼< 0.9, by using
a model-independent method to deal with the observational data. In fact, this result raises a remarkable
problem. Motivated by the work of Cai and Su, we have proposed a new type of interaction in a previous
work [16], which is given by

Q = q(αρ̇+ 3βHρ) , (3)

where α and β are both dimensionless constants; the energy density ρ could be ρm, ρtot and ρde for
examples; the deceleration parameter

q ≡ −
ä

aH2
= −1−

Ḣ

H2
. (4)

Obviously, this new type of interaction Q can change its sign when our universe changes from deceleration
(q > 0) to acceleration (q < 0). In fact, the deceleration parameter q in Q is the key ingredient of this
new interaction, which makes our proposal different from the previous ones considered in the literature.
Note that the term αρ̇ in Q is introduced from the dimensional point of view. One can remove this term
by simply setting α = 0, and then Q becomes Q = 3βqHρ.
In [16], we have investigated the cosmological evolution of quintessence and phantom with this new

type of sign-changeable interactions, and found some interesting results. In the present work, we would
like to consider the cosmological constraints on this new type of sign-changeable interactions, by using
the latest observational data. To be simple, in this work, we restrict ourselves to the decaying Λ model
(see e.g. [17] and references therein), namely, the role of dark energy is played by the decaying vacuum
energy. In this case, Eq. (2) becomes

ρ̇Λ = −Q . (5)

The Friedmann and Raychaudhuri equations are given by

H2 =
κ2

3
ρtot =

κ2

3
(ρΛ + ρm) , (6)

Ḣ = −
κ2

2
(ρtot + ptot) = −

κ2

2
ρm , (7)
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where κ2 ≡ 8πG. Notice that we consider a flat Friedmann-Robertson-Walker (FRW) universe throughout
this work. In Sec. II, we briefly introduce the latest observational data which will be used in this work.
In Sec. III, we consider the cosmological constraints on three particular sign-changeable interactions, i.e.,

Q = q(αρ̇m + 3βHρm) , (8)

Q = q(αρ̇tot + 3βHρtot) , (9)

Q = q(αρ̇Λ + 3βHρΛ) . (10)

Finally, some concluding remarks are given in Sec. IV.

II. OBSERVATIONAL DATA

In the present work, we will consider the latest cosmological observations, namely, the 557 Union2
Type Ia Supernovae (SNIa) dataset [18], the shift parameter R from the Wilkinson Microwave Anisotropy
Probe 7-year (WMAP7) data [19], and the distance parameter A of the measurement of the baryon
acoustic oscillation (BAO) peak in the distribution of SDSS luminous red galaxies [20, 21].
The data points of the 557 Union2 SNIa compiled in [18] are given in terms of the distance modulus

µobs(zi). On the other hand, the theoretical distance modulus is defined as

µth(zi) ≡ 5 log10 DL(zi) + µ0 , (11)

where µ0 ≡ 42.38− 5 log10 h and h is the Hubble constant H0 in units of 100 km/s/Mpc, whereas

DL(z) = (1 + z)

∫ z

0

dz̃

E(z̃;p)
, (12)

in which E ≡ H/H0, and p denotes the model parameters. Correspondingly, the χ2 from the 557 Union2
SNIa is given by

χ2
µ(p) =

∑

i

[µobs(zi)− µth(zi)]
2

σ2(zi)
, (13)

where σ is the corresponding 1σ error. The parameter µ0 is a nuisance parameter but it is independent of
the data points. One can perform an uniform marginalization over µ0. However, there is an alternative
way. Following [22, 23], the minimization with respect to µ0 can be made by expanding the χ2

µ of Eq. (13)
with respect to µ0 as

χ2
µ(p) = Ã− 2µ0B̃ + µ2

0C̃ , (14)

where

Ã(p) =
∑

i

[µobs(zi)− µth(zi;µ0 = 0,p)]
2

σ2
µobs

(zi)
,

B̃(p) =
∑

i

µobs(zi)− µth(zi;µ0 = 0,p)

σ2
µobs

(zi)
, C̃ =

∑

i

1

σ2
µobs

(zi)
.

Eq. (14) has a minimum for µ0 = B̃/C̃ at

χ̃2
µ(p) = Ã(p)−

B̃(p)2

C̃
. (15)

Since χ2
µ,min = χ̃2

µ,min obviously, we can instead minimize χ̃2
µ which is independent of µ0.
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There are some other relevant observational data, such as the observations of cosmic microwave back-
ground (CMB) anisotropy [19] and large-scale structure (LSS) [20]. However, using the full data of CMB
and LSS to perform a global fitting consumes a large amount of computation time and power. As an
alternative, one can instead use the shift parameter R from the CMB, and the distance parameter A of
the measurement of the BAO peak in the distribution of SDSS luminous red galaxies. In the literature,
the shift parameter R and the distance parameter A have been used extensively. It is argued that they
are model-independent [24], while R and A contain the main information of the observations of CMB
and BAO, respectively.
As is well known, the shift parameter R of the CMB is defined by [24, 25]

R ≡ Ω
1/2
m0

∫ z∗

0

dz̃

E(z̃)
, (16)

where Ωm0 is the present fractional energy density of pressureless matter; the redshift of recombination
z∗ = 1091.3 which has been updated in the Wilkinson Microwave Anisotropy Probe 7-year (WMAP7)
data [19]. The shift parameter R relates the angular diameter distance to the last scattering surface, the
comoving size of the sound horizon at z∗ and the angular scale of the first acoustic peak in CMB power
spectrum of temperature fluctuations [24, 25]. The value of R has been updated to 1.725± 0.018 from
the WMAP7 data [19]. On the other hand, the distance parameter A of the measurement of the BAO
peak in the distribution of SDSS luminous red galaxies is given by [20]

A ≡ Ω
1/2
m0E(zb)

−1/3

[

1

zb

∫ zb

0

dz̃

E(z̃)

]2/3

, (17)

where zb = 0.35. In [21], the value of A has been determined to be 0.469 (ns/0.98)
−0.35± 0.017. Here the

scalar spectral index ns is taken to be 0.963, which has been updated from the WMAP7 data [19]. So,
the total χ2 is given by

χ2 = χ̃2
µ + χ2

CMB + χ2
BAO , (18)

where χ̃2
µ is given in Eq. (15), χ2

CMB = (R − Robs)
2/σ2

R and χ2
BAO = (A − Aobs)

2/σ2
A. The best-fit

model parameters are determined by minimizing the total χ2. As in [26, 27], the 68.3% confidence
level is determined by ∆χ2 ≡ χ2 − χ2

min ≤ 1.0, 2.3 and 3.53 for np = 1, 2 and 3, respectively, where
np is the number of free model parameters. Similarly, the 95.4% confidence level is determined by
∆χ2 ≡ χ2 − χ2

min ≤ 4.0, 6.17 and 8.02 for np = 1, 2 and 3, respectively.

III. COSMOLOGICAL CONSTRAINTS ON THE SIGN-CHANGEABLE INTERACTIONS

A. The case of Q = q(αρ̇m + 3βHρm)

Firstly, we consider the case of Q = q(αρ̇m + 3βHρm) given in Eq. (8). Substituting it into Eq. (1),
one can find that

ρ̇m =
βq − 1

1− αq
· 3Hρm . (19)

Then, substituting into Eq. (8), we can finally obtain

Q =
β − α

1− αq
· 3qHρm . (20)

From Eq. (7), we have

ρm = −
2

κ2
Ḣ . (21)
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Substituting into Eq. (19), we find that

Ḧ =
βq − 1

1− αq
· 3HḢ , (22)

which is in fact a second-order differential equation for H(t). We can change the time t to scale factor a

with the help of the universal relation ḟ = Haf ′ for any function f (where a prime denotes the derivative
with respect to scale factor a), and recast Eq. (22) as

aH ′′ +
a

H
H ′ 2 +H ′ =

βq − 1

1− αq
· 3H ′ , (23)

which is a second-order differential equation for H(a). Note that the deceleration parameter

q = −1−
Ḣ

H2
= −1−

a

H
H ′ , (24)

is also a function ofH and H ′. Unfortunately, if α 6= 0, there is no analytical solution for the second-order
differential equation (23), because one will encounter a transcendental equation. Therefore, we consider
only the case of α = 0 in this work. In this case, the sign-changeable interaction reads

Q = 3βqHρm . (25)

By solving the second-order differential equation (23) with α = 0, we find that

H(a) = C12

[

3C11(1 + β)− (2 + 3β) a−3(1+β)
]1/(2+3β)

, (26)

where C11 and C12 are both integral constants, which can be determined in the following. From Eq. (21),
we find that the fractional energy density of dark matter is given by

Ωm ≡
κ2ρm
3H2

= −
2Ḣ

3H2
= −

2aH ′

3H
. (27)

Substituting Eq. (26) into Eq. (27), we have

Ωm =
2 (1 + β)

2 + 3β − 3C11 (1 + β) a3(1+β)
. (28)

Requiring Ωm(a = 1) = Ωm0, we obtain

C11 =
Ωm0(2 + 3β)− 2(1 + β)

3Ωm0(1 + β)
. (29)

On the other hand, requiring H(a = 1) = H0, from Eq. (26) we can find that

C12 = H0 [ 3C11(1 + β)− (2 + 3β) ]
−1/(2+3β)

. (30)

Substituting Eqs. (29) and (30) into Eq. (26), we finally obtain

E ≡
H

H0
=

{

1−
2 + 3β

2(1 + β)
Ωm0

[

1− (1 + z)3(1+β)
]

}1/(2+3β)

. (31)

There are two free model parameters, namely Ωm0 and β. Note that when β = 0, Eq. (31) reduces to

E(z) =
[

Ωm0(1 + z)3 + (1− Ωm0)
]1/2

, i.e., the one of ΛCDM model.

By minimizing the corresponding total χ2 in Eq. (18), we find the best-fit parameters Ωm0 = 0.2738
and β = −0.010, whereas χ2

min = 542.725. In Fig. 1, we present the corresponding 68.3% and 95.4%
confidence level contours in the Ωm0−β plane. Obviously, the current observational data slightly prefer a
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FIG. 1: The 68.3% and 95.4% confidence level contours in the Ωm0 − β plane for the case of Q = 3βqHρm. The

best-fit parameters are also indicated by a black solid point.

negative β. We are also interested to the fractional energy densities Ωm given in Eq. (28) and ΩΛ = 1−Ωm,
the deceleration parameter q given in Eq. (24), and the effective equation-of-state parameter (EoS)
weff ≡ ptot/ρtot = (2q − 1)/3. We present them as functions of redshift z with the best-fit model
parameters in Fig. 2. It is easy to find the transition redshift zt = 0.7489 where the universe changes
from deceleration (q > 0) to acceleration (q < 0). Since the best-fit β is negative, dark matter decays
into dark energy (Q < 0) when z > zt, and dark energy decays into dark matter (Q > 0) when z < zt.
The interaction Q crosses the non-interacting line (Q = 0) at zt.
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FIG. 2: Ωm, ΩΛ, q and weff as functions of redshift z with the best-fit parameters for the case of Q = 3βqHρm.
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B. The case of Q = q(αρ̇tot + 3βHρtot)

Secondly, we consider the case of Q = q(αρ̇tot + 3βHρtot) given in Eq. (9). From Eq. (6), it is easy to
find ρtot = 3H2/κ2. Substituting into Eq. (9), we can finally obtain

Q =
3qH3

κ2

(

2α
Ḣ

H2
+ 3β

)

. (32)

Substituting Eqs. (21) and (32) into Eq. (1), we have

Ḧ + 3HḢ (1 + αq) +
9

2
βqH3 = 0 . (33)

Similarly, we recast it as

aH ′′ +
a

H
H ′ 2 + (4 + 3αq)H ′ +

9βqH

2a
= 0 , (34)

which is a second-order differential equation for H(a). Note that the deceleration parameter q is also a
function of H and H ′ [cf. Eq. (24)]. Similar to the case of Q = q(αρ̇m + 3βHρm), we consider only the
case of α = 0 in this work. In this case, the sign-changeable interaction reads

Q = 3βqHρtot . (35)

By solving the second-order differential equation (34) with α = 0, we find that

H(a) = C22 · a
−3(2−3β+r1)/8 ·

(

a3r1/2 + C21

)1/2

, (36)

where C21, C22 are both integral constants, and

r1 ≡
√

4 + β (4 + 9β) . (37)

Substituting Eq. (36) into Eq. (27), we have

Ωm =
1

4

[

2− 3β +

(

2C21

a3r1/2 + C21
− 1

)

r1

]

. (38)

Requiring Ωm(a = 1) = Ωm0, we obtain

C21 = −1 +
2 r1

2− 3β − 4Ωm0 + r1
. (39)

On the other hand, requiring H(a = 1) = H0, from Eq. (36) we can find that

C22 = H0 (1 + C21)
−1/2 . (40)

From Eqs. (36) and (40), it is easy to obtain

E ≡
H

H0
= (1 + z)3(2−3β+r1)/8 ·

[

(1 + z)−3r1/2 + C21

1 + C21

]1/2

, (41)

where C21 and r1 have been given in Eqs. (39) and (37), respectively. There are two free model parameters,

namely Ωm0 and β. Note that when β = 0, Eq. (41) reduces to E(z) =
[

Ωm0(1 + z)3 + (1− Ωm0)
]1/2

,
i.e., the one of ΛCDM model.
Imposing the condition 0 ≤ Ωm ≤ 1 when a → 0, we have β ≥ 0 from Eq. (38). Under this condition,

by minimizing the corresponding total χ2 in Eq. (18), we find the best-fit parameters Ωm0 = 0.2701 and
β = 0.0, whereas χ2

min = 542.919. In Fig. 3, we present the corresponding 68.3% and 95.4% confidence
level contours in the Ωm0 − β plane. In Fig. 4, we also present the Ωm given in Eq. (38), ΩΛ = 1− Ωm,
q given in Eq. (24) and weff ≡ ptot/ρtot = (2q − 1)/3 as functions of redshift z with the best-fit model
parameters. The universe changes from deceleration (q > 0) to acceleration (q < 0) at the transition
redshift zt = 0.7549.



8

0.22 0.24 0.26 0.28 0.3 0.32
Wm0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Β

FIG. 3: The same as in Fig. 1, but for the case of Q = 3βqHρtot with the condition β ≥ 0.
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FIG. 4: The same as in Fig. 2, but for the case of Q = 3βqHρtot with the condition β ≥ 0.

However, the above best-fit model with β = 0 is in fact the ΛCDM model without interaction between
dark energy and dark matter. So, we would like to give up the condition β ≥ 0. This means that in the
early universe we have Ωm ≥ 1 and then ΩΛ ≤ 0, namely, ρΛ might be negative. Since the negative energy
density can arise in quantum field theory (see e.g. [28] for a good review), it is reasonable to consider
this possibility. Without the condition β ≥ 0, by minimizing the corresponding total χ2 in Eq. (18), we
find the best-fit parameters Ωm0 = 0.2764 and β = −0.0247, whereas χ2

min = 542.711. In Fig. 5, we
present the corresponding 68.3% and 95.4% confidence level contours in the Ωm0 − β plane. Obviously,
the current observational data slightly prefer a negative β. In Fig. 6, we also present the Ωm given in
Eq. (38), ΩΛ = 1−Ωm, q given in Eq. (24) and weff ≡ ptot/ρtot = (2q−1)/3 as functions of redshift z with
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FIG. 5: The same as in Fig. 1, but for the case of Q = 3βqHρtot without the condition β ≥ 0.

the best-fit model parameters. It is easy to find the transition redshift zt = 0.7688 where the universe
changes from deceleration (q > 0) to acceleration (q < 0). Since the best-fit β is negative, dark matter
decays into dark energy (Q < 0) when z > zt, and dark energy decays into dark matter (Q > 0) when
z < zt. The interaction Q crosses the non-interacting line (Q = 0) at zt.

C. The case of Q = q(αρ̇Λ + 3βHρΛ)

Finally, we consider the case of Q = q(αρ̇Λ + 3βHρΛ) given in Eq. (10). Substituting it into Eq. (5),
one can find that

ρ̇Λ = −
3βqHρΛ
1 + αq

. (42)

Then, substituting into Eq. (10), we can finally obtain

Q =
3βqHρΛ
1 + αq

. (43)

From Eqs. (6) and (7) [or equivalently Eq. (21)], we have

ρΛ =
3

κ2
H2 − ρm =

1

κ2

(

3H2 + 2Ḣ
)

. (44)

Substituting Eqs. (21), (43) and (44) into Eq. (1), we find that

Ḧ + 3HḢ

(

1 +
βq

1 + αq

)

+
9βqH3

2(1 + αq)
= 0 . (45)

Similarly, we recast it as

aH ′′ +
a

H
H ′ 2 +

(

4 +
3βq

1 + αq

)

H ′ +
9βqH

2a(1 + αq)
= 0 , (46)
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FIG. 6: The same as in Fig. 2, but for the case of Q = 3βqHρtot without the condition β ≥ 0.

which is a second-order differential equation for H(a). Note that the deceleration parameter q is also
a function of H and H ′ [cf. Eq. (24)]. Unfortunately, if α 6= 0, there is no analytical solution for the
second-order differential equation (46), because one will encounter a transcendental equation. Therefore,
we consider only the case of α = 0 in this work. In this case, the sign-changeable interaction reads

Q = 3βqHρΛ . (47)

By solving the second-order differential equation (46) with α = 0, we find that

H(a) = C32 · a
−3(2−5β+r2)/[4(2−3β)] ·

(

a3r2/2 + C31

)1/(2−3β)

, (48)

where C31, C32 are both integral constants, and

r2 ≡

√

(2− β)
2
= | 2− β | . (49)

Substituting Eq. (48) into Eq. (27), we have

Ωm =
1

2 (2− 3β)

[

2− 5β +

(

2C31

a3r2/2 + C31
− 1

)

r2

]

. (50)

Requiring Ωm(a = 1) = Ωm0, we obtain

C31 = −1 +
2 r2

2− 5β + r2 + 2Ωm0 (3β − 2)
. (51)

On the other hand, requiring H(a = 1) = H0, from Eq. (48) we get

C32 = H0 (1 + C31)
1/(3β−2)

. (52)

From Eqs. (48) and (52), it is easy to obtain

E ≡
H

H0
= (1 + z)3(2−5β+r2)/[4(2−3β)] ·

[

(1 + z)−3r2/2 + C31

1 + C31

]1/(2−3β)

, (53)
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FIG. 7: The same as in Fig. 1, but for the case of Q = 3βqHρΛ.

where C31 and r2 have been given in Eqs. (51) and (49), respectively. There are two free model parameters,

namely Ωm0 and β. Note that when β = 0, Eq. (53) reduces to E(z) =
[

Ωm0(1 + z)3 + (1− Ωm0)
]1/2

,
i.e., the one of ΛCDM model.
By minimizing the corresponding total χ2 in Eq. (18), we find the best-fit parameters Ωm0 = 0.2717

and β = 0.0136, whereas χ2
min = 542.778. In Fig. 7, we present the corresponding 68.3% and 95.4%

confidence level contours in the Ωm0 − β plane. Obviously, the current observational data slightly prefer
a positive β. In Fig. 8, we also present the Ωm given in Eq. (50), ΩΛ = 1 − Ωm, q given in Eq. (24)
and weff ≡ ptot/ρtot = (2q − 1)/3 as functions of redshift z with the best-fit model parameters. It is
easy to find the transition redshift zt = 0.7398 where the universe changes from deceleration (q > 0)
to acceleration (q < 0). Since the best-fit β is positive, dark energy decays into dark matter (Q > 0)
when z > zt, dark matter decays into dark energy (Q < 0) when z < zt. The interaction Q crosses the
non-interacting line (Q = 0) at zt.

IV. CONCLUDING REMARKS

Recently, Cai and Su [15] argued that the sign of interaction Q in the dark sector changed in the
approximate redshift range of 0.45∼<z∼< 0.9, by using a model-independent method to deal with the
observational data. In fact, this result raises a remarkable problem, since most of the familiar interactions
cannot change their signs in the whole cosmic history. Motivated by the work of Cai and Su, we have
proposed a new type of interaction in a previous work [16]. The key ingredient is the deceleration
parameter q in the interaction Q. Therefore, the interaction Q can change its sign when our universe
changes from deceleration (q > 0) to acceleration (q < 0). In the present work, we considered the
cosmological constraints on this new type of sign-changeable interactions, by using the latest observational
data. We found that the constraints on the model parameters are fairly tight. In particular, the key
parameter β has been constrained to a very narrow range.
Some remarks are in order. Firstly, we briefly consider the comparison of these models. For convenience,

we also consider the well-known ΛCDM model in addition. In fact, it corresponds to the decaying Λ model
with Q = 0. Fitting ΛCDM model to the observational data considered in the present work, it is easy to
find the corresponding best-fit parameter Ωm0 = 0.2701, whereas χ2

min = 542.919. Of course, we would
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FIG. 8: The same as in Fig. 2, but for the case of Q = 3βqHρΛ.

like to also consider the decaying Λ model with a traditional interaction Q = 3βHρm which cannot
change its sign in the whole cosmic history. The corresponding E(z) can be found in e.g. [12], namely

E(z) =

[

Ωm0

1− β
(1 + z)3(1−β) +

(

1−
Ωm0

1− β

)]1/2

. (54)

Fitting to the same observational data, we find the best-fit parameters Ωm0 = 0.2731 and β = −0.0021,
whereas χ2

min = 542.735. A conventional criterion for model comparison in the literature is χ2
min/dof ,

in which the degree of freedom dof = N − k, whereas N and k are the number of data points and the
number of free model parameters, respectively. We present the χ2

min/dof for all the 6 models in Table I.
On the other hand, there are other criterions for model comparison in the literature, such as Bayesian
Information Criterion (BIC) and Akaike Information Criterion (AIC). The BIC is defined by [29, 31]

BIC = −2 lnLmax + k lnN , (55)

where Lmax is the maximum likelihood. In the Gaussian cases, χ2
min = −2 lnLmax. So, the difference in

BIC between two models is given by ∆BIC = ∆χ2
min +∆k lnN . The AIC is defined by [30, 31]

AIC = −2 lnLmax + 2k . (56)

The difference in AIC between two models is given by ∆AIC = ∆χ2
min+2∆k. In Table I, we also present

the ∆BIC and ∆AIC of all the 6 models considered in this work. Notice that ΛCDM has been chosen
to be the fiducial model when we calculate ∆BIC and ∆AIC. From Table I, it is easy to see that the
rank of models is coincident in all the 3 criterions (χ2

min/dof , BIC and AIC). The ΛCDM model is still
the best one. However, it is well known that ΛCDM model is plagued with the cosmological constant
problem and the coincidence problem (see e.g. [1]). On the other hand, there are some observational
evidences for the interaction between dark energy and dark matter [13, 14], and the coincidence problem
can be alleviated in the interacting dark energy models. Therefore, it is still worthwhile to study the
interacting dark energy models. Although the model with traditional interaction which cannot change
its sign is very close to the other models with sign-changeable interactions, the latter are phenomenally
richer (see e.g. [16]). Therefore, we consider that the models with sign-changeable interactions deserve
further investigations.
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Model ΛCDM Q = 3βHρm Q = 3βqHρm Q = 3βqHρtot Q = 3βqHρtot Q = 3βqHρΛ

(Q = 0) with β ≥ 0 without β ≥ 0

Best fit Ωm0 = 0.2701 Ωm0 = 0.2731 Ωm0 = 0.2738 Ωm0 = 0.2701 Ωm0 = 0.2764 Ωm0 = 0.2717

β = −0.0021 β = −0.010 β = 0.0 β = −0.0247 β = 0.0136

χ2

min 542.919 542.735 542.725 542.919 542.711 542.778

k 1 2 2 2 2 2

χ2
min/dof 0.9730 0.9744 0.9744 0.9747 0.9743 0.9745

∆BIC 0 6.142 6.132 6.326 6.118 6.185

∆AIC 0 1.816 1.806 2.0 1.792 1.859

Rank 1 4 3 6 2 5

TABLE I: Summarizing all the 6 models considered in this work.

Secondly, we note that the case of Q = 3βqHρΛ is fairly different from the cases of Q = 3βqHρm and
Q = 3βqHρtot. Comparing Fig. 7 with Figs. 1, 3 and 5, it is easy to see that the direction of contours in
the Ωm0 − β plane is rightward for the case of Q = 3βqHρΛ, whereas the ones are leftward for the cases
of Q = 3βqHρm and Q = 3βqHρtot. From Table I, we find that the best-fit β is positive for the case of
Q = 3βqHρΛ, whereas the ones are negative (or zero) for the cases of Q = 3βqHρm and Q = 3βqHρtot.
This means that in the case of Q = 3βqHρΛ the interaction Q crosses the non-interacting line (Q = 0)
from above to below, whereas in the cases of Q = 3βqHρm and Q = 3βqHρtot the interaction Q crosses
the non-interacting line (Q = 0) from below to above. This is physically interesting, because Q > 0
means that the energy transfers from dark energy to dark matter, whereas Q < 0 means that the energy
transfers from dark matter to dark energy.
Finally, in this work the role of dark energy is only played by the decaying Λ (vacuum energy), whereas

the parameter α in the sign-changeable interactions are chosen to be zero. So, the constraints obtained
in this work cannot be directly used to the models different from the ones considered here. In fact, the
interacting dark energy models with sign-changeable interactions can be generalized. For instance, one
can choose the dark energy to be the one with a constant or variable EoS (including parameterized EoS,
or even the ones of quintessence, phantom, k-essence, Chaplygin gas, quintom, hessence, holographic or
agegraphic dark energy, and so on). Of course, if the computer is enough powerful, one can also let the
parameter α be free and then constrain the models numerically.

ACKNOWLEDGEMENTS

We are grateful to Professors Rong-Gen Cai and Shuang Nan Zhang for helpful discussions. We also
thank Minzi Feng, as well as Xiao-Peng Ma, for kind help and discussions. This work was supported
in part by NSFC under Grant No. 10905005, the Excellent Young Scholars Research Fund of Beijing
Institute of Technology, and the Fundamental Research Fund of Beijing Institute of Technology.

[1] E. J. Copeland, M. Sami and S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006) [hep-th/0603057];

J. Frieman, M. Turner and D. Huterer, Ann. Rev. Astron. Astrophys. 46, 385 (2008) [arXiv:0803.0982].

[2] E. J. Copeland, A. R. Liddle and D. Wands, Phys. Rev. D 57, 4686 (1998) [gr-qc/9711068].

[3] Z. K. Guo, R. G. Cai and Y. Z. Zhang, JCAP 0505, 002 (2005) [astro-ph/0412624];

Z. K. Guo, Y. S. Piao, X. M. Zhang and Y. Z. Zhang, Phys. Lett. B 608, 177 (2005) [astro-ph/0410654];

Z. K. Guo, N. Ohta and S. Tsujikawa, Phys. Rev. D 76, 023508 (2007) [astro-ph/0702015].

[4] L. Amendola, Phys. Rev. D 60, 043501 (1999) [astro-ph/9904120];

L. Amendola, Phys. Rev. D 62, 043511 (2000) [astro-ph/9908023];

http://arxiv.org/abs/hep-th/0603057
http://arxiv.org/abs/0803.0982
http://arxiv.org/abs/gr-qc/9711068
http://arxiv.org/abs/astro-ph/0412624
http://arxiv.org/abs/astro-ph/0410654
http://arxiv.org/abs/astro-ph/0702015
http://arxiv.org/abs/astro-ph/9904120
http://arxiv.org/abs/astro-ph/9908023


14

L. Amendola and C. Quercellini, Phys. Rev. D 68, 023514 (2003) [astro-ph/0303228];

L. Amendola and D. Tocchini-Valentini, Phys. Rev. D 64, 043509 (2001) [astro-ph/0011243];

L. Amendola and D. Tocchini-Valentini, Phys. Rev. D 66, 043528 (2002) [astro-ph/0111535];

L. Amendola et al., Astrophys. J. 583, L53 (2003) [astro-ph/0205097].

[5] T. Damour and A. M. Polyakov, Nucl. Phys. B 423, 532 (1994) [hep-th/9401069];

T. Damour and A. M. Polyakov, Gen. Rel. Grav. 26, 1171 (1994) [gr-qc/9411069];

C. Wetterich, Astron. Astrophys. 301, 321 (1995) [hep-th/9408025];

J. R. Ellis, S. Kalara, K. A. Olive and C. Wetterich, Phys. Lett. B 228, 264 (1989);

G. Huey, P. J. Steinhardt, B. A. Ovrut and D. Waldram, Phys. Lett. B 476, 379 (2000) [hep-th/0001112];

C. T. Hill and G. G. Ross, Nucl. Phys. B 311, 253 (1988);

G. W. Anderson and S. M. Carroll, astro-ph/9711288;

B. Gumjudpai, T. Naskar, M. Sami and S. Tsujikawa, JCAP 0506, 007 (2005) [hep-th/0502191].

[6] H. Wei and R. G. Cai, Phys. Rev. D 71, 043504 (2005) [hep-th/0412045];

H. Wei and R. G. Cai, Phys. Rev. D 72, 123507 (2005) [astro-ph/0509328];

H. Wei and S. N. Zhang, Phys. Rev. D 76, 063005 (2007) [arXiv:0705.4002];

H. Wei, N. N. Tang and S. N. Zhang, Phys. Rev. D 75, 043009 (2007) [astro-ph/0612746];

H. Wei and R. G. Cai, Phys. Rev. D 73, 083002 (2006) [astro-ph/0603052];

H. Wei and R. G. Cai, JCAP 0709, 015 (2007) [astro-ph/0607064];

H. Wei, arXiv:1002.4230 [gr-qc].

[7] W. Zimdahl and D. Pavon, Phys. Lett. B 521, 133 (2001) [astro-ph/0105479];

L. P. Chimento, A. S. Jakubi, D. Pavon and W. Zimdahl, Phys. Rev. D 67, 083513 (2003) [astro-ph/0303145].

[8] R. G. Cai and A. Wang, JCAP 0503, 002 (2005) [hep-th/0411025];

E. Majerotto, D. Sapone and L. Amendola, astro-ph/0410543.

[9] X. M. Chen, Y. G. Gong and E. N. Saridakis, JCAP 0904, 001 (2009) [arXiv:0812.1117].

[10] L. P. Chimento, Phys. Rev. D 81, 043525 (2010) [arXiv:0911.5687];

L. P. Chimento, M. Forte and G. M. Kremer, Gen. Rel. Grav. 41, 1125 (2009) [arXiv:0711.2646].

[11] J. H. He, B. Wang and Y. P. Jing, JCAP 0907, 030 (2009) [arXiv:0902.0660];

J. H. He, B. Wang and P. Zhang, Phys. Rev. D 80, 063530 (2009) [arXiv:0906.0677];

J. H. He, B. Wang, E. Abdalla and D. Pavon, arXiv:1001.0079 [gr-qc].

[12] H. Wei and S. N. Zhang, Phys. Lett. B 644, 7 (2007) [astro-ph/0609597].

[13] O. Bertolami, F. Gil Pedro and M. Le Delliou, Phys. Lett. B 654, 165 (2007) [astro-ph/0703462];

O. Bertolami, F. G. Pedro and M. Le Delliou, Gen. Rel. Grav. 41, 2839 (2009) [arXiv:0705.3118];

M. Le Delliou, O. Bertolami and F. Gil Pedro, AIP Conf. Proc. 957, 421 (2007) [arXiv:0709.2505];

O. Bertolami, F. G. Pedro and M. L. Delliou, arXiv:0801.0201 [astro-ph].

[14] E. Abdalla, L. R. Abramo, L. Sodre and B. Wang, Phys. Lett. B 673, 107 (2009) [arXiv:0710.1198];

E. Abdalla, L. R. Abramo and J. C. C. de Souza, Phys. Rev. D 82, 023508 (2010) [arXiv:0910.5236].

[15] R. G. Cai and Q. P. Su, Phys. Rev. D 81, 103514 (2010) [arXiv:0912.1943].

[16] H. Wei, arXiv:1008.4968 [gr-qc].

[17] P. Wang and X. H. Meng, Class. Quant. Grav. 22, 283 (2005) [astro-ph/0408495];

F. E. M. Costa and J. S. Alcaniz, Phys. Rev. D 81, 043506 (2010) [arXiv:0908.4251].

[18] R. Amanullah et al. [SCP Collaboration], Astrophys. J. 716, 712 (2010) [arXiv:1004.1711].

The numerical data of the full Union2 sample are available at http://supernova.lbl.gov/Union

[19] E. Komatsu et al. [WMAP Collaboration], arXiv:1001.4538 [astro-ph.CO].

[20] M. Tegmark et al. [SDSS Collaboration], Phys. Rev. D 69, 103501 (2004) [astro-ph/0310723];

M. Tegmark et al. [SDSS Collaboration], Astrophys. J. 606, 702 (2004) [astro-ph/0310725];

U. Seljak et al. [SDSS Collaboration], Phys. Rev. D 71, 103515 (2005) [astro-ph/0407372];

M. Tegmark et al. [SDSS Collaboration], Phys. Rev. D 74, 123507 (2006) [astro-ph/0608632].

[21] D. J. Eisenstein et al. [SDSS Collaboration], Astrophys. J. 633, 560 (2005) [astro-ph/0501171].

[22] S. Nesseris and L. Perivolaropoulos, Phys. Rev. D 72, 123519 (2005) [astro-ph/0511040];

L. Perivolaropoulos, Phys. Rev. D 71, 063503 (2005) [astro-ph/0412308].

[23] E. Di Pietro and J. F. Claeskens, Mon. Not. Roy. Astron. Soc. 341, 1299 (2003) [astro-ph/0207332].

[24] Y. Wang and P. Mukherjee, Astrophys. J. 650, 1 (2006) [astro-ph/0604051].

http://arxiv.org/abs/astro-ph/0303228
http://arxiv.org/abs/astro-ph/0011243
http://arxiv.org/abs/astro-ph/0111535
http://arxiv.org/abs/astro-ph/0205097
http://arxiv.org/abs/hep-th/9401069
http://arxiv.org/abs/gr-qc/9411069
http://arxiv.org/abs/hep-th/9408025
http://arxiv.org/abs/hep-th/0001112
http://arxiv.org/abs/astro-ph/9711288
http://arxiv.org/abs/hep-th/0502191
http://arxiv.org/abs/hep-th/0412045
http://arxiv.org/abs/astro-ph/0509328
http://arxiv.org/abs/0705.4002
http://arxiv.org/abs/astro-ph/0612746
http://arxiv.org/abs/astro-ph/0603052
http://arxiv.org/abs/astro-ph/0607064
http://arxiv.org/abs/1002.4230
http://arxiv.org/abs/astro-ph/0105479
http://arxiv.org/abs/astro-ph/0303145
http://arxiv.org/abs/hep-th/0411025
http://arxiv.org/abs/astro-ph/0410543
http://arxiv.org/abs/0812.1117
http://arxiv.org/abs/0911.5687
http://arxiv.org/abs/0711.2646
http://arxiv.org/abs/0902.0660
http://arxiv.org/abs/0906.0677
http://arxiv.org/abs/1001.0079
http://arxiv.org/abs/astro-ph/0609597
http://arxiv.org/abs/astro-ph/0703462
http://arxiv.org/abs/0705.3118
http://arxiv.org/abs/0709.2505
http://arxiv.org/abs/0801.0201
http://arxiv.org/abs/0710.1198
http://arxiv.org/abs/0910.5236
http://arxiv.org/abs/0912.1943
http://arxiv.org/abs/1008.4968
http://arxiv.org/abs/astro-ph/0408495
http://arxiv.org/abs/0908.4251
http://arxiv.org/abs/1004.1711
http://arxiv.org/abs/1001.4538
http://arxiv.org/abs/astro-ph/0310723
http://arxiv.org/abs/astro-ph/0310725
http://arxiv.org/abs/astro-ph/0407372
http://arxiv.org/abs/astro-ph/0608632
http://arxiv.org/abs/astro-ph/0501171
http://arxiv.org/abs/astro-ph/0511040
http://arxiv.org/abs/astro-ph/0412308
http://arxiv.org/abs/astro-ph/0207332
http://arxiv.org/abs/astro-ph/0604051


15

[25] J. R. Bond, G. Efstathiou and M. Tegmark, Mon. Not. Roy. Astron. Soc. 291, L33 (1997) [astro-ph/9702100].

[26] S. Nesseris and L. Perivolaropoulos, Phys. Rev. D 70, 043531 (2004) [astro-ph/0401556].

[27] H. Wei, Eur. Phys. J. C 60, 449 (2009) [arXiv:0809.0057];

H. Wei, Phys. Lett. B 691, 173 (2010) [arXiv:1004.0492].

[28] L. H. Ford, Int. J. Mod. Phys. A 25, 2355 (2010) [arXiv:0911.3597].

[29] G. Schwarz, Ann. Stat. 6, 461 (1978).

[30] H. Akaike, IEEE Trans. Automatic Control 19, 716 (1974).

[31] M. Li, X. D. Li and X. Zhang, Sci. China Phys. Mech. Astron. 53, 1631 (2010) [arXiv:0912.3988];

H. Wei, JCAP 1008, 020 (2010) [arXiv:1004.4951].

http://arxiv.org/abs/astro-ph/9702100
http://arxiv.org/abs/astro-ph/0401556
http://arxiv.org/abs/0809.0057
http://arxiv.org/abs/1004.0492
http://arxiv.org/abs/0911.3597
http://arxiv.org/abs/0912.3988
http://arxiv.org/abs/1004.4951

	I Introduction
	II Observational data
	III Cosmological constraints on the sign-changeable interactions
	A The case of Q=q(m+3Hm)
	B The case of Q=q(tot+3Htot)
	C The case of Q=q(+3H)

	IV Concluding remarks
	 ACKNOWLEDGEMENTS
	 References

