
ar
X

iv
:1

01
1.

15
34

v1
  [

he
p-

la
t] 

 6
 N

ov
 2

01
0

Can Lorentz-breaking fermionic condensates form
in large N strongly-coupled Lattice Gauge Theories?
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The possibility of Lorentz symmetry breaking (LSB) has attracted considerable attention in re-

cent years for a variety of reasons, including the attractive prospect of the graviton as a Goldstone

boson. Though a number of effective field theory analyses of such phenomena have recently been

given it remains an open question whether they can take placein an underlying UV complete the-

ory. Here we consider the question of LSB in large N lattice gauge theories in the strong coupling

limit. We apply techniques that have previously been used tocorrectly predict the formation of

chiral symmetry breaking condensates in this limit. Generalizing such methods to other compos-

ite operators we find that certain LSB condensates can indeedform. In addition, the interesting

possibility arises of condensates that ’lock’ internal with external symmetries.
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The possibility of either explicit or spontaneous breakingof Lorentz symmetry has received
considerable attention in recent years for a variety of phenomenological and theoretical reasons.
The idea of spontaneous breaking goes back to Bjorken [1] whoproposed that the photon be in-
terpreted as the Goldstone boson of such breaking; the same idea was naturally applied to the
graviton [2] soon afterwards. In fact, a Goldstone gravitonoffers a rather attractive prospect for
a quantum theory of gravity that evades the familiar difficulties of quantizing the metric field of
General Relativity as an elementary field. This has been revived in recent years, and modern ef-
fective field theory treatments of the resulting Goldstone modes and their low energy interactions
have been performed [3] - [4]. Such analyses assume that Lorentz symmetry breaking occurs at
some high (unification or Planck) scale and proceed to examine the low energy consequences. The
central question then is whether such breaking can take place in an underlying theory which is
UV complete. It indeed appears to be very difficult to come up with an UV healthy model where
dynamical Lorentz breaking takes place at weak coupling. This may be just as well since this is
naturally expected to be a strong-coupling dynamics phenomenon. Here we examine the question
in SU(N) orU(N) lattice gauge theories in the strong coupling and largeN limits. This, as it is well
known, is a model that gives a good qualitative depiction of all the basic non-perturbative features
of QCD-like theories. We apply techniques that have previously been used to correctly predict
the formation of chiral symmetry breaking condensates in this limit [5], [6], [8], generalizing such
methods to other composite operators. We employ naive massless fermions, which automatically
provide an anomaly-free, chirally invariant model, and thus are well suited for our purposes since
the doubling problem is irrelevant here - in fact, as it turnsout, the more degrees of freedom (color
and flavor) the better. We often write formulas for general dimensiond but are actually interested
only in d = 4.

The lattice action with naive massless fermions is given by

S = ∑
p

β trUp + ∑
b=(x,µ)

1
2

[

ψ̄(x)γµUµ(x)ψ(x+ µ̂)− ψ̄(x+ µ̂)γµU†
µ(x)ψ(x)

]

. (1)

We will be mainly concerned with expectations of the form̄ψ(x)ΓAψ(x), whereΓA may stand
for any of the Clifford algebra elements, such asΓS = 1, Γµ

V = γµ , or Γµ
A = iγ5γµ , or some other

choice. Operators involving nearest neighbors (derivatives) will also be considered below. It is
interesting to note that non-vanishing Lorentz-breaking condensates may also violate some discrete
symmetries. Thus, for example, a non-vanishing vector condensate will also violateC, whereas an
axial vector condensate will violateP, but a tensor condensate, as in (14) below, does not violate
either.

Since the operator̄ψ(x)ΓAψ(x) is a fermion bilinear its expectation is related to the fermion

2-point function (full propagator)Ga,b
α ,β (x,y) =

〈

ψa
α(x)ψ̄b

β (y)
〉

in the limit x = y:

〈

ψ̄(x)ΓAψ(x)
〉

=−tr
[

G(x,x)ΓA]=−trD

[

Ḡ(x,x)ΓA] (2)

with the second equality written explicitly in terms of the gauge invariant quantityḠ(x,x) ≡
trCG(x,x). Here tr denotes trace over spinor and color (and flavor) indices, whereas trC, trD de-
note traces over color and Dirac spinor indices, respectively.
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To investigate such expectations we add to the action an external sourceKA which couples
to ψ̄(x)ΓAψ(x). One may more generally add a source forG(x,x) of the formK = K̄1C, where
1C denotes the unit matrix in color space and̄K an arbitrary (invertible) matrix in spinor space.
Coupling to a particular fermion bilinear then correspondsto a particular form ofK̄; e.g. K̄ =

knµγµ , wherek an arbitrary number andnµ an arbitrary unit vector, couples a source of magnitude
k and directionnµ to ψ̄γµψ .

We write the action (1) in the presence of the external sourcemore concisely in the form

S = ∑
p

β trUp +∑
x,y

ψ̄(x)Kx,y(U)ψ(y) , (3)

where
Kx,y(U) = Mx,y(U)+Kx,y (4)

with

Mx,y(U)≡
1
2

[

γµUµ(x)δy,x+µ̂ − γµU†
µ(x− µ̂)δy,x−µ̂

]

, Kx,y ≡ K δx,y = K̄ 1C δx,y . (5)

Note thatK andM are matrices in spinor and color space as well as in lattice coordinate space.
In the strong coupling limitβ → 0 the plaquette term in (3) is dropped. The corrections due

to this term can be computed within the strong coupling cluster expansion, which, for sufficiently
small β , converges. Hence they do not produce any qualitative change in the behavior obtained
below atβ → 0. Settingβ = 0 in (3) then,G(x,x) is given by

G(x,x) =
1

∫

[DU ]DetK (U)

∫

[DU ]DetK (U)K −1
x,x (U) (6)

=

∫

[DU ]Det[1+K−1M(U)]
[

[1+K−1M(U)]−1K−1
]

x,x
∫

[DU ]Det[1+K−1M(U)]
, (7)

from which the expectation of̄ψ(x)ΓAψ(x) in the presence of the source is obtained from (2).
We evaluate (7) in the hopping expansion. This amounts to expanding (7) treatingM as the

interaction andK as defining the inverse ‘bare propagator’:K−1
x,y = K̄−11C δx,y. The textbook ver-

sion of the expansion is the case when the source is a mass term, i.e. K̄ = m1D. Note thatK is
purely local, whereasM has only nearest-neighbor non-vanishing elementsMx,x+µ̂ = 1

2γµUµ(x)
andMx,x−µ̂ = 1

2γµU†
µ(x− µ̂). In the absence of the plaquette term integration over the gauge field

results into non-vanishing contributions only if at least two M factors with equal (modN) number
of U andU†’s occur on each bond.

The expansion of theK −1
x,x (U) is represented by all paths starting and ending atx, whereas

that of the DetK (U) by all closed paths [7]. Consistent with the above constraint on each bond
resulting from theU -integrations the connected graphs giving the expectation(7) naturally fall into
two classes: ‘tree graphs’ and ‘loop graphs’. The tree graphs consist of paths starting and ending at
x and enclosing zero area (cf. graphs on the l.h.s. in Fig.1). We note in passing the well-known fact
(see e.g. [7]) concerning the hopping expansion that there are no restrictions on how many times a
bond is revisited in drawing all such possible connected graphs.

Now, the set of tree graphs are the leading contribution inN. Loop graphs are down by powers
of 1/N relative to tree graphs [5]. Thus, the set of tree graphs in the hopping expansion give the
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Figure 1: Sum of: (a) 2-trunk; and (b) 3-trunk trees
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Figure 2: The self-consistent equation for the sum of trees attached to sitex, i.e. G(x,x)

large N limit of the theory. The sum of all tree graphs attached at site x then constitute the full
propagatorG(x,x) in this limit.

The lowest order contribution is just the bare propagatorK−1
x,x . Next consider trees extending

only to the nearest neighbor (nn) sites. The simplest such tree has only one ‘trunk’ extending to any
one of the nn-sites tox. But one also has nearest-neighbor trees withn trunks, where each trunk
extends only to any one of the 2d nn sites. Starting from these nearest neighbor trees, the full set of
trees attached to the pointx can now be grouped as follows [5]. One simply observes that the full
set of ‘1-trunk’ trees atx is obtained by attaching to every 1-trunk nn-tree atx all possible trees at
the sitex+ µ̂ . But the set of all trees attached atx+ µ̂ comprise the full propagatorG(x+ µ̂ ,x+ µ̂).
Similarly, the full set of ‘n-trunk’ trees atx is generated by attaching to every n-trunk nn-tree at
x all possible trees at each sitex+ µ̂ j, i.e. the full propagatorG(x+ µ̂ j,x+ µ̂ j), for j = 1, . . . ,n.
Fig.1 represents this diagrammatically forn = 2 andn = 3. The set of all trees is now recovered
by summing over all full n-trunk trees including the zeroth-order n = 0 (no bottom-trunk), i.e.
the bare propagator term. The resulting equation, depictedgraphically in Fig.2, provides now a
self-consistent equation forG(x,x) in the largeN limit.

With constant (position-independent) sourceK, translation invariance implies thatG(x,x) is
in fact x-independent. Using the explicit expressions (5), and barepropagator given bȳK−11C, the
r.h.s. in this equation may be easily evaluated. One finds

G =

[

1C +
∞

∑
n=1

[

(−1)
2

K̄−1γµGγµ

]n
]

K̄−1 (8)
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=

[

K̄1C +
1
2

γµGγµ

]−1

. (9)

The hopping expansion which, in the largeN limit, gave (8) converges for sufficiently large||K||.
The resumed expression (9), however, can be continued for all K. In particular, one is interested in
possible solutions to (9) forK → 0.

(9) was obtained by resummation of the (infinite) set of leading graphs in the largeN limit.
An alternative approach is the direct construction of the corresponding effective action defined
as the Legendre transform̂Γ(G) of the free-energy w.r.t. the sourceK. Since here we deal with
composite, viz. bilinear fermion operators, this is the effective action for composite operators [8].
It is in fact quite straightforward to apply the general expression for the effective action given in
[8] to the theory (3) in the strong coupling limit. Variationof the resulting effective action̂Γ(G)

again yields (9), as expected. This is in fact a rather more efficient and elegant way of arriving at
the result: onlyone 2-PI graph need be evaluated in the largeN limit.

We also note in passing that still another approach is that proposed in [6]. This approach,
however, is mathematically inherently ambiguous and care must be exercised in applying it. If this
is done it gives the same qualitative results but in a much lengthier and inefficient manner.

It is now easy to examine particular solutions of (9) that arepicked out by appropriate choice
of the sourceK. (We will not examine here the most general solution.) In allcases at large||K||

the solution reproduces, of course, the perturbative hopping expansion solution. We are, however,
interested in the vanishing-source limit. In the case of scalar source, the solution isG = gS(K)1D1C,

and one findsgS(0) =
√

2
d . For the scalar condensate one thus gets

〈

ψ̄(x)ψ(x)
〉

=−NS

√

2
d
, (10)

whereS = tr1D is the number of spinor components. This reproduces the result in [5]. For vector
or axial vector sourceK = k(Γ · n)1C, the solution is of the formG = g(k)(Γ · n)−11C, whereΓµ

stands for eitherΓµ
V or Γµ

A . (Note that in either case one has(Γ · n)−1 = (Γ · n).) One now finds
gV (0) = i

√

2/(d −2) whereasgA(0) =
√

2/(d −2). For the axial vector condensate one thus gets

〈

ψ̄(x) iγ5γµ ψ(x)
〉

=−NS

√

2
(d −2)

nµ . (11)

In the vector case, however, the resulting expectation is imaginary. Indeed, the solution turns com-
plex for small sourceK. This would seem to indicate that no vector condensate actually forms. But
this does not mean that other condensates induced in the presence of a vector source do not survive
as the source is turned of. Consider the operatorψ̄(x)γµ σκλ ψ(x), whereσκλ = i

2[γκ ,γλ ]. This
condensate, which is of interest for LSB-induced gravity theories, is also induced in the presence
of a vector source. In this case in the vanishing-source limit one gets

〈

ψ̄(x)γµ σκλ ψ(x)
〉

= NS

√

2
(d −2)

[gµ
κ nλ −gµ

λ nκ ] . (12)

Other chiral or Lorentz symmetry-breaking condensates involving more complicated operators
such as lattice nearest-neighbor (continuum derivative) couplings may also be induced. The (gauge
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〈ψ̄γνUµψ〉 =

1

Figure 3: Graph for the expectation after attaching full trees; the short lines denote the different directions
of theγν , γµ factors in it.

invariant) operator

Oν µ(x)≡ ψ̄(x)γνUµ(x)ψ(x+ µ̂)− ψ̄(x)γνU†
µ(x− µ̂)ψ(x− µ̂) , (13)

in particular, is of special interest. In its continuum limit it corresponds to the tensor operator
ψ̄(x)γν ∂µψ(x), for which a non-vanishing condensate is a natural startingpoint for a theory of the
graviton as a Goldstone boson [3]. In the presence of a vector(or axial vector) source (13) acquires
a non-zero expectation. The full expectation is obtained byattaching the full set of trees, i.e. full
propagatorsG at the sitesx andx+ µ̂ giving the graph shown in Fig.3. This is easily evaluated and
in the limit of vanishing source yields

〈

Oν µ

〉

=−
1

(d −2)
NS

[

2nν nµ −gν µ
]

. (14)

(14) is a non-vanishing tensorial condensatenot proportional togν µ , i.e. anSO(4)-breaking
(Lorentz-breaking) condensate. (A tensorial condensate proportional to the metric tensor is not
Lorentz-breaking.) Different patterns of breaking, partial or complete, can be obtained by includ-
ing fermionsψ i(x) of different flavori coupled to vector sources of different orientationnµ

i . If NF

flavors are present (14) becomes

〈

Oν µ

〉

=
1
2

NNFS

[

gν µ −
2

NF
∑

i

ni
ν ni

µ

]

. (15)

The strongly coupled lattice model considered here provides in fact an explicit realization of the
scenario envisioned in [3]. One may, for contrast, also consider the effect of the scalar condensate
on (13). Repeating the calculation with a scalar source replacing the vector source one now gets

that
〈

Oν µ

〉

is proportional togν µ . Thus, as expected, no Lorentz symmetry breaking is inducedin
this case.

When internal (global) symmetry groups are present, a further possibility arises, i.e. conden-
sate formation that ’locks’ space-time and internal symmetries. This possibility can be equally well
explored within our strong coupling lattice gauge models.

The most straightforward example is provided by taking the internal symmetry to be a copy of
the (Euclidean) space-time symmetry, i.e. an internalSO(d) group with the fermions transforming
as Dirac spinors under it. Denoting the gamma matrices acting on the internal space byγm, consider
the operatorψ̄(x)γn (iγ5γν)ψ(x) involving an internal vector and an external axial vector. Non-
vanishing vev’s of such fermion bilinears can lead to locking between the corresponding groups. To
compute such a vev we again first introduce appropriate sources. Different fermion flavors can be
coupled to different sources. Ind = 4 take the number of flavors to be (a multiple of) four coupled
to corresponding sources along the elementsnµ

(i) andnm
(i), i = 1, . . . ,4, of an orthonormal tetrad set
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in external and internal space, respectively. Proceeding as before, either by tree resummation, or,
more efficiently, by direct construction of the effective action, one now, in the limit of vanishing
sources, obtains the result

〈

ψ̄(x)γn (iγ5γν)ψ(x)
〉

=−NS2∑
i

nn
(i)n(i)ν =−NS2δ n

ν . (16)

(16) represents complete locking of the internal and external symmetry, i.e. breaking to the diagonal
SO(4) subgroup of the original symmetry:SO(4)× SO(4)I → SO(4)D. The condensate remains
invariant only under simultaneous equal internal and external rotations.

The obvious question arises: how can such locking work in Minkowski space? There appear
to be two possible choices. One choice is the standard Wick rotation where the external group
gets decompactified toSO(3,1) whereas the internal group remains compact. The condensate
(16) is now invariant only under simultaneousSO(3) (spatial) rotations, i.e.SO(3,1)×SO(4)I →

SO(3)D. The second possibility is to define the passage to Minkowskispace to also involve a ‘Wick
rotation’ of the internal group decompactifying it. Full locking then is preserved, i..e (16) remains
invariant underSO(3,1)D. The obvious difficulty now is that an internal non-compact group, such
asSO(3,1), possesses only non-unitary finite-dimensional representations. This, of course, leads in
general to unitarity violation. The only way out is to take the fermions to transform under a unitary,
i.e. an infinite dimensional representation of the internalnon-compact group. For an internal group
the usual formalism applies whether one uses finite or infinite dimensional unitary representations.1

The new feature implied by the use of an infinite dimensional representation is the infinite number
of components associated with the internal group index. This locking mechanism may offer a novel
approach to a quantum gravity theory. At any rate, it would beinteresting to work out the effective
field theory for it at low energies.

This research was partially supported by NSF-PHY-0852438.
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