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The possibility of either explicit or spontaneous breakafid.orentz symmetry has received
considerable attention in recent years for a variety of ph@mological and theoretical reasons.
The idea of spontaneous breaking goes back to Bjorgen [1]prbposed that the photon be in-
terpreted as the Goldstone boson of such breaking; the sdaaewas naturally applied to the
graviton [2] soon afterwards. In fact, a Goldstone gravitdiers a rather attractive prospect for
a quantum theory of gravity that evades the familiar diffies| of quantizing the metric field of
General Relativity as an elementary field. This has beewedvin recent years, and modern ef-
fective field theory treatments of the resulting Goldstormlas and their low energy interactions
have been performed][3] f|[4]. Such analyses assume thabtzosgmmetry breaking occurs at
some high (unification or Planck) scale and proceed to exathimlow energy consequences. The
central question then is whether such breaking can take prean underlying theory which is
UV complete. It indeed appears to be very difficult to come ugh&n UV healthy model where
dynamical Lorentz breaking takes place at weak couplings ay be just as well since this is
naturally expected to be a strong-coupling dynamics phemom. Here we examine the question
in SJ(N) orU(N) lattice gauge theories in the strong coupling and l&tdienits. This, as it is well
known, is a model that gives a good qualitative depictionlidha basic non-perturbative features
of QCD-like theories. We apply techniques that have preshiobeen used to correctly predict
the formation of chiral symmetry breaking condensatesimlimit [B], [F], [§], generalizing such
methods to other composite operators. We employ naive asssrmions, which automatically
provide an anomaly-free, chirally invariant model, andstlawe well suited for our purposes since
the doubling problem is irrelevant here - in fact, as it tusng the more degrees of freedom (color
and flavor) the better. We often write formulas for generatehsiond but are actually interested
onlyind=4.

The lattice action with naive massless fermions is given by

S:%BtrUp‘i’ Z

b=(xm)

[BOOVHUL I (x+ ) = Px+ B)HUL W] - 1)
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We will be mainly concerned with expectations of the fognix)I"*(x), wherel* may stand
for any of the Clifford algebra elements, suchlfas= 1, [}, = y#, or 'k = iy®y#, or some other
choice. Operators involving nearest neighbors (deriea)iwvill also be considered below. It is
interesting to note that non-vanishing Lorentz-breakimgdensates may also violate some discrete
symmetries. Thus, for example, a non-vanishing vector ensalte will also violat€, whereas an
axial vector condensate will violae, but a tensor condensate, as[in (14) below, does not violate
either.

Since the operatap(x)I A (x) is a fermion bilinear its expectation is related to the femmi

2-point function (full propagato@z"z(x, y) = <w§(x)u7§(y)> in the limitx=:

<Lﬁ(x)I'ALp(x)> = —tr [G(x,X)] = —trp [G(x,x)[] (2)
with the second equality written explicitly in terms of thauge invariant quantit)é(x, X) =
treG(x,Xx). Here tr denotes trace over spinor and color (and flavorcesjiwhereas dr tr, de-
note traces over color and Dirac spinor indices, respdgtive
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To investigate such expectations we add to the action amnekteourceK” which couples
to Y(X)rAyY(x). One may more generally add a source &fK, x) of the formK = K1, where
1. denotes the unit matrix in color space akcan arbitrary (invertible) matrix in spinor space.
Coupling to a particular fermion bilinear then correspotais particular form oK; e.g. K =
kn,y*, wherek an arbitrary number angj, an arbitrary unit vector, couples a source of magnitude
k and directiomy, to gy .

We write the action[{1) in the presence of the external soonoee concisely in the form

S= Y BtUp+ Y B0 A5y (U)W(Y) 3)
g Xy
where
Hxy(U) =Myy(U) +Kxy (4)
with
1 R _
Myy(U) = > [VuUu(X) Oyxrit — VuUJ(X— [) @,xfﬁ] ) Kyy =Koy =K1l dy- (5)

Note thatk andM are matrices in spinor and color space as well as in lattioedimate space.

In the strong coupling limi3 — 0 the plaquette term irf](3) is dropped. The corrections due
to this term can be computed within the strong coupling eluskpansion, which, for sufficiently
small 3, converges. Hence they do not produce any qualitative ehanthe behavior obtained
below atf — 0. SettingB = 0 in @) then,G(x,x) is given by

1
f[DU]Detx# (V)
J[DU]Det1+KMU)] [[1+K M (U)K

= /TDU]Detil+ K-IM(U)] = O

G(x,X) — / [DU] Det# (U) 5 (U) ©6)

from which the expectation afi(x)I*((x) in the presence of the source is obtained frfim (2).

We evaluate[{7) in the hopping expansion. This amounts taredipg [}) treatingVl as the
interaction anK as defining the inverse ‘bare propagatd(’;)} =K 11 Oxy. The textbook ver-
sion of the expansion is the case when the source is a massitert{ = ml,. Note thatK is
purely local, wherea$! has only nearest-neighbor non-vanishing elemétys, ; = %VHU“(X)
andMy_j = %VHUJ(X— f1). In the absence of the plaquette term integration over thgeéeld
results into non-vanishing contributions only if at leagbtM factors with equal (mod\) number
of U andU ™'s occur on each bond.

The expansion of the#;}(U) is represented by all paths starting and ending, athereas
that of the Detz (U) by all closed pathg]7]. Consistent with the above constraineach bond
resulting from the -integrations the connected graphs giving the expectg@pnaturally fall into
two classes: ‘tree graphs’ and ‘loop graphs’. The tree ggaoimsist of paths starting and ending at
x and enclosing zero area (cf. graphs on the |.h.s. in Fig.&)n@¥e in passing the well-known fact
(see e.g.[]7]) concerning the hopping expansion that thera@restrictions on how many times a
bond is revisited in drawing all such possible connecteplyga

Now, the set of tree graphs are the leading contributidd.iboop graphs are down by powers
of 1/N relative to tree graphg][5]. Thus, the set of tree graphserhthpping expansion give the
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Figure1: Sum of: (a) 2-trunk; and (b) 3-trunk trees

Figure 2: The self-consistent equation for the sum of trees attaahsilex, i.e. G(x,X)

large N limit of the theory. The sum of all tree graphs attached & sithen constitute the full
propagatoiG(x,X) in this limit.

The lowest order contribution is just the bare propagtp$. Next consider trees extending
only to the nearest neighbor (nn) sites. The simplest seehttas only one ‘trunk’ extending to any
one of the nn-sites t&. But one also has nearest-neighbor trees wittunks, where each trunk
extends only to any one of the 2in sites. Starting from these nearest neighbor trees, treeflwof
trees attached to the poirttan now be grouped as followd [5]. One simply observes treafth
set of ‘1-trunk’ trees ax is obtained by attaching to every 1-trunk nn-treex atl possible trees at
the sitex+ [1. But the set of all trees attachedxat 1 comprise the full propagat@(x+ [1,x+ [1).
Similarly, the full set of ‘n-trunk’ trees ax is generated by attaching to every n-trunk nn-tree at
x all possible trees at each siter fij, i.e. the full propagato(x+ fIj,x+ f1;), for j =1,...,n.
Fig.1 represents this diagrammatically foe= 2 andn = 3. The set of all trees is now recovered
by summing over all full n-trunk trees including the zeratttler n = 0 (no bottom-trunk), i.e.
the bare propagator term. The resulting equation, depgtaphically in Fig.2, provides now a
self-consistent equation f@(x, x) in the largeN limit.

With constant (position-independent) souketranslation invariance implies th&(x,x) is
in fact x-independent. Using the explicit expressidi]s (5), and peospagator given bik 11, the
r.h.s. in this equation may be easily Lvaluated. One finds

G- |1+ 3 |5R ey |k ®

n=1 2
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The hopping expansion which, in the laydimit, gave [8) converges for sufficiently largg||.
The resumed expressidn (9), however, can be continued!fir & particular, one is interested in
possible solutions td](9) fd — 0.

@) was obtained by resummation of the (infinite) set of lrgdjraphs in the larghl limit.
An alternative approach is the direct construction of theexponding effective action defined
as the Legendre transforﬁ(G) of the free-energy w.r.t. the sourée Since here we deal with
composite, viz. bilinear fermion operators, this is theefiie action for composite operatofb [8].
It is in fact quite straightforward to apply the general eegsion for the effective action given in
[B] to the theory [[B) in the strong coupling limit. Variatiai the resulting effective actioﬁ(G)
again yields [(9), as expected. This is in fact a rather mdieieit and elegant way of arriving at
the result: onlyone 2-PI graph need be evaluated in the lakgBmit.

We also note in passing that still another approach is thgtqsed in[[6]. This approach,
however, is mathematically inherently ambiguous and carst tme exercised in applying it. If this
is done it gives the same qualitative results but in a muattleer and inefficient manner.

It is now easy to examine particular solutions [3f (9) thatgioked out by appropriate choice
of the sourceK. (We will not examine here the most general solution.) lrcales at larggK||
the solution reproduces, of course, the perturbative mgpexpansion solution. We are, however,
interested in the vanishing-source limit. In the case dfscurce, the solution 5= gs(K) 1,1,

and one findgs(0) = \/g . For the scalar condensate one thus gets

(F90) = —NS\E , (10)

whereS= trl; is the number of spinor components. This reproduces thét iaqf]). For vector
or axial vector sourc& = k(I" - n)1., the solution is of the fornG = g(k)(I - n)~11., wherel#
stands for eithef{, or I'. (Note that in either case one hés-n)~! = (I -n).) One now finds

ov(0) =i,/2/(d —2) whereagia(0) = /2/(d — 2). For the axial vector condensate one thus gets

(B00ivy w00 = NSy [ g (11)

In the vector case, however, the resulting expectation dgimary. Indeed, the solution turns com-
plex for small sourc&. This would seem to indicate that no vector condensate lactoems. But
this does not mean that other condensates induced in thengeesf a vector source do not survive
as the source is turned of. Consider the opergtor) y* o, Y(X), whereg,, = ii[y,(,yA]. This
condensate, which is of interest for LSB-induced gravigottes, is also induced in the presence
of a vector source. In this case in the vanishing-source bme gets

(#0900 w) = NSy [ [akm —ginil. 12

Other chiral or Lorentz symmetry-breaking condensateswg more complicated operators
such as lattice nearest-neighbor (continuum derivatiwaplings may also be induced. The (gauge
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Figure 3: Graph for the expectation after attaching full trees; tharslines denote the different directions
of theyY, y# factors in it.

invariant) operator
Ovu(X) = POV U ()P (x+ 1) = PRI (x— ) w(x— 1), (13)

in particular, is of special interest. In its continuum linti corresponds to the tensor operator
P(X)y’ du(x), for which a non-vanishing condensate is a natural stapoigt for a theory of the
graviton as a Goldstone bosdh [3]. In the presence of a vémtaxial vector) sourcq (L3) acquires
a non-zero expectation. The full expectation is obtaineattgching the full set of trees, i.e. full
propagatorss at the sitesx andx+ [1 giving the graph shown in Fig.3. This is easily evaluated and
in the limit of vanishing source yields

1
<ovu> - —mNs[znvnu — Guul - (14)

(L4) is a non-vanishing tensorial condensaté proportional togy,, i.e. anS0(4)-breaking
(Lorentz-breaking) condensate. (A tensorial condensaipagptional to the metric tensor is not
Lorentz-breaking.) Different patterns of breaking, partir complete, can be obtained by includ-
ing fermionsy' (x) of different flavori coupled to vector sources of different orientat'roﬁh If NF
flavors are presenf ([14) becomes

1 2 _ ..
<ow> :ENNFS[gVu—N—FZn'Vn'u] . (15)

The strongly coupled lattice model considered here praviddact an explicit realization of the
scenario envisioned if][3]. One may, for contrast, also icenghe effect of the scalar condensate
on (I3). Repeating the calculation with a scalar sourceanipy the vector source one now gets
that<Ow,> is proportional tagyy,. Thus, as expected, no Lorentz symmetry breaking is indurced
this case.

When internal (global) symmetry groups are present, adéunplossibility arises, i.e. conden-
sate formation that 'locks’ space-time and internal symmi@gt This possibility can be equally well
explored within our strong coupling lattice gauge models.

The most straightforward example is provided by taking tterhal symmetry to be a copy of
the (Euclidean) space-time symmetry, i.e. an inte8&Id) group with the fermions transforming
as Dirac spinors under it. Denoting the gamma matrices@otirthe internal space /', consider
the operatony(x)y" (iysy ) @(X) involving an internal vector and an external axial vectoonN
vanishing vev’s of such fermion bilinears can lead to logdietween the corresponding groups. To
compute such a vev we again first introduce appropriate ssulifferent fermion flavors can be
coupled to different sources. th= 4 take the number of flavors to be (a multiple of) four coupled
to corresponding sources along the elemeﬁ}sand n?i‘>, i=1,...,4, of an orthonormal tetrad set



Can Lorentz-breaking fermionic condensates formin large N strongly-coupled LGT? E. T. Tomboulis

in external and internal space, respectively. Proceedsrigefore, either by tree resummation, or,
more efficiently, by direct construction of the effectiveian, one now, in the limit of vanishing
sources, obtains the result

(FOV () w(X) ) = ~NS Y gy, = ~NS). (16)

(L8) represents complete locking of the internal and eatesymmetry, i.e. breaking to the diagonal
SO(4) subgroup of the original symmetry80(4) x SO(4); — SO(4)p. The condensate remains
invariant only under simultaneous equal internal and eslentations.

The obvious question arises: how can such locking work inkgliveki space? There appear
to be two possible choices. One choice is the standard Wigkioa where the external group
gets decompactified t80(3,1) whereas the internal group remains compact. The condensate
(L8) is now invariant only under simultaneo89(3) (spatial) rotations, i.eS0(3,1) x SO(4); —
SO(3)p. The second possibility is to define the passage to Minkogsiee to also involve a ‘Wick
rotation’ of the internal group decompactifying it. Fulicking then is preserved, i..e {16) remains
invariant undeiSO(3,1)p. The obvious difficulty now is that an internal non-compaaup, such
asS0(3,1), possesses only non-unitary finite-dimensional repragiens. This, of course, leads in
general to unitarity violation. The only way out is to take fiermions to transform under a unitary,
i.e. an infinite dimensional representation of the intenmad-compact group. For an internal group
the usual formalism applies whether one uses finite or iefitiinensional unitary representatidns.
The new feature implied by the use of an infinite dimensioapt@sentation is the infinite number
of components associated with the internal group indexs Ibltking mechanism may offer a novel
approach to a quantum gravity theory. At any rate, it wouléhberesting to work out the effective
field theory for it at low energies.
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IThus the problems of physical interpretation with respeqparticle spectrum and spin-statistics that plague the
use of infinite dimensional representations for external€htz) groups are not relevant in this context.



