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Abstract

We consider a simple extension of the Standard Model Higgs inflation with one new
real scalar field which preserves unitarity up to the Planck scale. The new scalar field
(called sigma) completes in the ultraviolet the theory of Higgs inflation by linearizing
the Higgs kinetic term in the Einstein frame, just as the non-linear sigma model is
unitarized into its linear version. The unitarity cutoff of the effective theory, obtained
by integrating out the sigma field, varies with the background value of the Higgs field.
In our setup, both the Higgs field and the sigma field participate in the inflationary
dynamics, following the flat direction of the potential. We obtain the same slow-roll
parameters and spectral index as in the original Higgs inflation but we find that the
Hubble rate during inflation depends not only on the Higgs self-coupling, but also on
the unknown couplings of the sigma field.
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1 Introduction

Inflation is believed to be the phenomenon that determined the necessary initial conditions
for the cosmological evolution of our universe. Although there is mounting observational
evidence in favor of inflation, the nature of the inflaton is still a mystery and a compelling
link with an established particle theory is still missing. An interesting proposal that aims
at filling this gap between cosmology and particle physics is the idea that the Standard
Model Higgs boson could play the role of the inflaton [1] (see also ref. [2]- [6]). This
appears to be possible if a Higgs bilinear term is coupled to the scalar curvature with
an unusually large constant ξ of the order of 104. At first sight, this scenario suffers
from a potential problem. Because of the large coupling constant ξ, the theory violates
unitarity at the energy MP/ξ. This energy is comparable to the inflationary Hubble rate
and is parametrically smaller than the scale of the Higgs field during inflation, which is as
low as MP/

√
ξ. The violation of unitarity [7, 8] at the scale MP/ξ occurs in the theory

expanded around the vacuum in which the Higgs field takes a small value, of the order of
the electroweak scale. But, as emphasized in ref. [9] (see also ref. [10]), this result does not
necessarily spoil the self-consistency of the Higgs inflationary scenario. The energy cutoff,
dictated by unitarity arguments, is field dependent. While being equal to MP/ξ at small
field value, the energy cutoff grows as the Higgs background field is increased. Thus, the
region of the scalar potential relevant during the inflationary epoch could be within the
domain of calculability.

Nonetheless, there are reasons to be concerned with the unitarity issue of the theory.
First of all, the cutoff associated with the would-be Goldstone bosons in the Higgs doublet
is lower than the one read from the potential of the Higgs boson. In unitary gauge, the
problem becomes manifest in the gauge sector and it has been shown [9] that the cutoff
during inflation is given by MP/

√
ξ, which is parametrically close to the energy scales

involved during inflation. Moreover, if we assume that the Higgs theory is eventually
embedded into a more complete scheme that can be reliably extrapolated all the way up to
the Planck mass, we will necessarily find new particles or new dynamics appearing at the
scale MP/ξ. It is quite reasonable to expect that the new degrees of freedom with mass of
the order of MP/ξ will affect the Higgs potential at these scales and modify its form for
values of the Higgs field relevant for inflation, of the order of MP/

√
ξ. If this is the case,

any assessment about the viability of Higgs inflation will require knowledge of the physics
responsible for unitarization at the scale MP/ξ.

In this paper we will address the issue of unitarization of Higgs inflation. We will
present a simple extension of the model, with only one new scalar field, that allows to
raise the unitarity cutoff up to the Planck mass. The inflationary process, which can
then be reliably computed, occurs in a fashion analogous to the original Higgs model. The
procedure for unitarization that we follow is very similar to the one that is used to promote
the non-linear sigma model into its linear version. The new scalar field that we introduced,
called σ, plays the role of nearly linearizing the non-renormalizable Higgs interactions, as
explained in sect. 2.

The paper is organized as follows. First, we sketch the procedure for unitarizing Higgs
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inflation and provide a simple model that implements this scheme with one scalar field.
Then we discuss the dynamics of the σ field both in the vacuum and during the inflationary
regime. In sect. 3 we calculate the slow-roll parameters in our model and compare them
to the original Higgs inflation. To prove unitarity of our model in sect. 4 we consider the
gauge-Higgs interactions and the Yukawa couplings and study their impact. Finally, some
conclusions are drawn. There are two appendices dealing with the formalism for multi-field
inflation and the details of the calculation of the slow-roll parameters in our model.

2 The model

In this section, we first explain the procedure for unitarizing Higgs inflation with a new
real-scalar field. Then we consider a simple model realizing this scheme with general
renormalizable interactions and non-minimal couplings to gravity for the Higgs doublet
and the new scalar field. Next we discuss the vacuum structure and the inflationary
dynamics along the flat direction in our model.

2.1 The procedure for unitarizing Higgs inflation

The original model of Higgs inflation is based on the Jordan-frame Lagrangian [1]

LJ√−gJ
=

1

2

(

M2
P + 2ξ0H†H

)

R− |DµH|2 − λ
(

H†H− v2

2

)2

, (1)

where ξ0 is the non-minimal coupling of the Higgs doublet. The Einstein-frame Langrangian
is obtained after the Weyl rescaling gJµν = fgEµν with f = (1 + 2ξ0H†H/M2

P )
−1,

LE√−gE
=

1

2
M2

PR− |DµH|2
1 + 2ξ0H†H/M2

P

− 3ξ20
M2

P

∂µ(H†H)∂µ(H†H)

(1 + 2ξ0H†H/M2
P )

2
−

λ
(

H†H− v2

2

)2

(1 + 2ξ0H†H/M2
P )

2
. (2)

This form of the Lagrangian clearly exhibits the unitarity problem in Higgs inflation,
which originates from the first term in the second line of eq. (2). The non-renormalizable
dimension-6 operator involving four Higgs fields and two derivatives is suppressed by the
mass scale MP/ξ0, which plays the role of the energy cutoff at small field value.

A procedure for unitarization is suggested by the analogy between the Einstein-frame
kinetic term for the Higgs and the non-linear sigma model, which is more transparent in
the real representation with HT = 1√

2
(φ1, φ2, φ3, φ4),

Lkin = − 1

2(1 + ξ0~φ2/M2
P )

(

δij +
6ξ20φiφj/M

2
P

1 + ξ0~φ2/M2
P

)

∂µφi∂
µφj (3)

3



with ~φ2 ≡
∑

i φ
2
i . Just as a non-linear sigma model can be completed in the ultraviolet by

the presence of a sigma field, we introduce a real-scalar sigma field satisfying the constraint
σ2 = Λ2 + ~φ2, with Λ2 ≡M2

P/ξ0, and rewrite the Higgs kinetic term in the form

Lkin = −1

2

(Λ

σ

)2[

(∂µφi)
2 + 6ξ0(∂µσ)

2
]

− κ(x)F (σ2 − Λ2 − ~φ2). (4)

Here κ(x) is the Lagrange multiplier and F is an arbitrary function satisfying F (0) = 0.
The Higgs kinetic term does not yet correspond to a flat metric of the target space, but
rather it looks similar to the metric of Euclidean AdS5 space with AdS radius 1/Λ. However,
as suggested by the constraint for the sigma field, it is possible to complete the theory into
a linear sigma-model type, in which the sigma field vev is dynamically determined to be
(Λ2 + ~φ2)1/2 by the full potential. This effectively corresponds to replacing the Lagrange-
multiplier term by an appropriate scalar potential whose minimum lies at the field value
σ2 = Λ2 + ~φ2. Then, after the field redefinition σ = Λ exp[χ/(

√
6MP )], we find that the

canonically-normalized field χ has only Planck-suppressed non-renormalizable interactions.
This allows to raise the unitarity cutoff up to MP .

In ref. [11] it was claimed that Higgs inflation could be unitarized by introducing ad-
ditional non-renormalizable operators in the Jordan frame with their coefficients carefully
chosen to cancel exactly the dangerous interactions causing the loss of unitarity. We be-
lieve that a dynamical solution is necessary to solve the problem. In the next section we
will propose a simple model that implements our procedure for unitarization, completing
Higgs inflation in the ultraviolet.

2.2 Higgs inflation with the sigma field

Our model, which extends the original Higgs inflation by adding to the SM Higgs doublet
H a real scalar σ̄, is based on the Jordan-frame Lagrangian

LJ√−gJ
=

1

2

(

M̄2 + ξσ̄2 + 2ζH†H
)

R− 1

2
(∂µσ̄)

2 − |DµH|2

−1

4
κ
(

σ̄2 − Λ̄2 − 2αH†H
)2

− λ
(

H†H− v2

2

)2

. (5)

Here M̄ , Λ̄, and v are parameters with dimension of mass. We assume that the electroweak
scale v is much smaller than the other masses involved in the Lagrangian (v ≪ M̄, Λ̄).
This assumption, technically unnatural, is just an expression of the hierarchy problem,
which cannot be addressed in the SM using conventional symmetry arguments. Since
we are working in the context of the SM, we must accept this assumption without a
known justification. In eq. (5), the parameters ξ, ζ are the non-minimal couplings of the
sigma field and the Higgs doublet to the scalar curvature. As described later, inflation
requires a large coupling ξ, of the order of 104. On the other hand, we will take ζ of
order unity, in order to avoid the reappearance of the unitarity problem in the Higgs
sector. It is technically unnatural to set ζ = 0, because ζ can be generated by loop effects,
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but it is possible to keep it significantly smaller than ξ. We assume that this is the case.
Finally κ, α, λ are dimensionless coupling constants. The Lagrangian (5) contains the most
general renormalizable terms compatible with the Z2 symmetry under which σ̄ transforms
as σ̄ → −σ̄.

It is useful to choose the unitary gauge for the Higgs doublet, HT = 1√
2
(0, φ), and

introduce the field variable σ with the definition σ2 = σ̄2 +M2 with M2 ≡ M̄2/ξ. With
this transformation, the above Lagrangian can be rewritten in a form in which the role of
the Planck mass is expressed only in terms of fields,

LJ√−gJ
=

1

2
(ξσ2 + ζφ2)R − σ2

2(σ2 −M2)
(∂µσ)

2 − 1

2
(∂µφ)

2 − VJ (6)

where

VJ =
1

4
κ
(

σ2 − Λ2 − αφ2
)2

+
λ

4

(

φ2 − v2
)2

(7)

and Λ2 ≡ M2 + Λ̄2. Thus, the Planck mass is traded off for the non-canonical kinetic
term for the new sigma field in Jordan frame. Since the minimization of the potential
sets 〈σ〉 = Λ (up to negligible corrections of order v2), the field σ determines the effective
Planck mass. So, we need to choose

Λ =
MP√
ξ
. (8)

We can now rewrite the Lagrangian in the Einstein frame by performing aWeyl rescaling
of the metric, gJµν = fgEµν with f =M2

P/(ξσ
2 + ζφ2),

LE√−gE
=

1

2
M2

PR− M2
P

2(ξσ2 + ζφ2)

[(

σ2

σ2 −M2
+

6ξ2σ2

ξσ2 + ζφ2

)

(∂µσ)
2

+

(

1 +
6ζ2φ2

ξσ2 + ζφ2

)

(∂µφ)
2 +

3ξζ

2(ξσ2 + ζφ2)
∂µσ

2∂µφ
2

]

− VE (9)

VE =
M4

P

4(ξσ2 + ζφ2)2

[

κ
(

σ2 − Λ2 − αφ2
)2

+ λ(φ2 − v2)2
]

. (10)

Note that the field σ is such that σ2 > M2, because of its definition in terms of σ̄, and
thus the sign of the kinetic term for σ is well defined and no ghost-like instabilities exist.

In the limit ζ = 0 and M = 0 the Lagrangian in eq. (9) exhibits a form similar to the
one in eq. (4), suggested by the sigma-model discussion, apart from the coefficient of the
sigma-field kinetic term which is (1 + 6ξ) instead of 6ξ. In our case, the scalar potential
VE contains the term playing the role of the Langrange multiplier in setting the constraint
σ2 = Λ2 + αφ2. The limit M = 0 corresponds to the case of induced gravity [12]. In the
limit α = 0 the theory has strong similarities with the model proposed in ref. [13].
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2.3 Dynamics with the sigma field

Let us now study the structure of the theory in the Einstein frame. The vacuum of the
model lies at

〈φ〉2 = v2, 〈σ〉2 = Λ2 + αv2. (11)

For v ≪ Λ and for large ξ, the kinetic mixing between σ and φ in eq. (9) becomes negligible
and the fields χ =

√
6MP ln(σ/Λ) and φ are approximately canonically normalized. The

mass of χ can then be read off from the potential in eq. (10), with the result

mχ ≃
√

κ

3

MP

ξ
. (12)

As expected, the mass of the new degree of freedom described by the field σ turns out to be
of the order ofMP/ξ, the energy scale at which the original Higgs model violates unitarity.
Below the scale MP/ξ we can integrate out the field σ and obtain an effective theory,
which corresponds to the original Higgs inflation model. Up to some higher-dimensional
terms suppressed by MP/

√
ξ, the effective theory is described by the Lagrangian (2) with

ξ0 = αξ + ζ . Above the scale MP/ξ, the sigma field cures the unitarity breakdown of the
original Higgs inflation, as is easily understood by replacing σ in the Lagrangian of eq. (9)
with its expression in terms of the χ field, σ = Λ exp(χ/

√
6MP ). All the non-renormalizable

interactions are suppressed by the Planck mass.
Let us now consider the theory for large values of the Higgs background. For |σ|, |φ| ≫

Λ, the Einstein-frame potential (10) becomes approximately a function of only the ratio
between φ and σ. It is then convenient to rewrite the Lagrangian (9) in terms of the field
φ̃ = Λφ/σ and obtain

LE√−gE
=

1

2
M2

PR− 1

2(1 + ζφ̃2/M2
P )

{

[

Λ2σ2

σ2 −M2
+ (1 + 6ζ)φ̃2 + 6M2

P

](

∂µσ

σ

)2

+
1 + ζ(1 + 6ζ)φ̃2/M2

P

1 + ζφ̃2/M2
P

(∂µφ̃)
2 + (1 + 6ζ)

∂µσ

σ
∂µφ̃2

}

− VE. (13)

At the leading order, the potential for φ̃ is

VE ≃ Λ4

4(1 + ζφ̃2/M2
P )

2

[

(λ+ κα2)
( φ̃

Λ

)4

− 2κα
( φ̃

Λ

)2

+ κ
]

, (14)

whose minimum is at φ̃ ≃ √

κα
λ+κα2Λ for ζ

ξ
≪ 1. Once φ̃ is frozen at its minimum value, the

potential presents a flat direction along the field component orthogonal to φ̃. From eq. (13)
we find that, during inflation, the fields φ̃ and χ =

√
6MP ln(σ/Λ) are approximately

canonically normalized and their kinetic mixing is negligible. The scalar potential for χ is
obtained by keeping higher orders in Λ2 in eq. (10) and by freezing φ̃ into its minimum.
Ignoring terms proportional to ζ/ξ, we then find

VE ≃ Vinf

(

1− 2e
− 2χ

√

6MP

)

, Vinf ≡
Λ4

4

( λκ

λ+ κα2

)

. (15)
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The potential VE along the χ direction is exponentially flat, in perfect analogy with the
original Higgs inflation.

Note that the mass of the heavy mode φ̃ during inflation is equal to mφ̃ ≃
√
2κα Λ,

which is of the order of MP/
√
ξ. Therefore, the mass of the heavy mode, which is about

MP/ξ in the vacuum, is raised to MP/
√
ξ when the fields obtain large background values.

In the original Higgs inflation, although new dynamics has to appear at the mass scale
MP/ξ to cure the unitarity problem, during inflation the energy cutoff is higher, and is
equal to about MP /

√
ξ. Thus, our model gives an explicit realization of the mechanism

advocated in ref. [9]. In our model, the inclusion of the field σ allows for full control of the
theory up to the Planck scale.

3 Slow-roll inflation

As discussed in the previous section, our Higgs inflation model with the sigma field is
reduced to a single field inflation along the flat direction. In this section, we show that the
flat direction indeed drives inflation by explicitly computing the slow-roll parameters. In
Appendices A and B, we perform the calculation using the general formalism for multi-field
inflation and we show that, in our case, the single-field approximation is adequate. We
are interested in the case in which the non-minimal coupling of the Higgs doublet is much
smaller than the one of the sigma field.

The ε slow-roll parameter, see eq. (B.10), for |σ| ≫ Λ is given by

ε ≃ 4

3

(Λ

σ

)4

. (16)

The differential number of e-foldings, see eq. (A.11), is dN ≃ −∂σVE
2εVE

for ∂VE
∂φ̃

= 0 along the

flat direction, so the total number of e-foldings is given by

N ≃ −
∫ σf

σi

1

2εVE

∂VE
∂σ

dσ ≃ 3

4

(

σ2
i

Λ2
−
σ2
f

Λ2

)

. (17)

Here we take σ2
f = (2/

√
3)Λ2, corresponding to the field value at which ε = 1 and the

dynamics exit the slow-roll regime.
The η parameter is given by the minimum between the two expressions η1 and η2,

corresponding to the two independent field directions. For |σ| ≫ Λ, from eqs. (B.19) and
(B.20), we obtain

η1 ≃ −4

3

(Λ

σ

)2

, (18)

η2 ≃ 8ξα
(

1 +
κ

λ
α2

)

. (19)

Consequently, we find that the mass of the heavy field orthogonal to the flat direction
is m2

2 ≃ η2Vinf/M
2
P ≃ 2καΛ2, in agreement with the result in the previous section. On
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the other hand, the η parameter for inflaton is given by η = η1, so the inflaton mass is
m2

1 ≃ η1H
2. Combining eqs. (16), (17), and (18), we obtain the slow-roll parameters in

terms of the number of e-foldings as

ε ≃ 3

(2N +
√
3)2

, η ≃ − 2

2N +
√
3
. (20)

Since d ln k = dN for an approximately constant Hubble parameter during inflation,
using eq. (A.14) and ∂σε ≃ (∂σ lnVE)(−2ε+ η) we obtain the spectral index

ns ≃ 1 + 2η − 6ε ≃ 1− 2(4N + 9 + 2
√
3)

(2N +
√
3)2

. (21)

The combined WMAP 7-year data with Baryon Acoustic Oscillations and Type Ia super-
novae [14] show that the spectral index is ns = 0.963 ± 0.012 (68% CL). For N ≃ 60,
we obtain ε ≃ 2.0 × 10−4 and η ≃ −1.6 × 10−2, leading to the spectral index ns ≃ 0.966
and ratio of the tensor to scalar perturbations, r = 12.4 ε ≃ 2.4 × 10−3, both compatible
with observations. All these results for the slow-roll parameters, number of e-foldings, and
spectral index are identical to those of the original Higgs inflation.

The COBE normalization of the power spectrum constrains the inflation parameters

V 1/4

ε1/4
≃ 6.7× 1016 GeV. (22)

For the vacuum energy during inflation Vinf in eq. (15), the COBE normalization (22) leads
to

ξ

√

λ+ κα2

κλ
≃ 5× 104. (23)

This determines the scale Λ to be about 1016 GeV. This result suggests the interesting
possibility that the vev of the singlet field σ could be responsible for the scale of the
right-handed neutrino masses.

The constraint on the non-minimal coupling ξ of the sigma field depends on all the
dimensionless parameters of our model. On the other hand, in the original Higgs inflation,
the COBE normalization gives ξ0/

√
λ ≃ 5 × 104. Here ξ0 is the non-minimal coupling of

the Higgs doublet, which is related to the parameters of our model by ξ0 = αξ, considering
the effective theory with σ integrated out. Therefore the constraint on ξ coincides with
the one of the original Higgs inflation only when κα2 ≫ λ. In general, however, it depends
on the values of the various unknown coupling constants and cannot be simply related to
the observable Higgs quartic coupling.

There is another important difference between the Higgs inflation and our model. In our
case, at the end of inflation the field configuration will be at φ/σ ≃ √

κα
λ+κα2 as discussed

below eq. (14). Therefore the inflaton is a combination of the Higgs and sigma fields with
a mixing angle determined by the values of the various coupling constants. This mixing
angle suppresses the decay of the inflaton, because only the Higgs is directly coupled to
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the SM particles. Thus, the reheating temperature in our case is smaller than the one in
Higgs inflation, which is estimated to be about 1013 GeV [3].

Moreover, it has been observed in ref. [5] that, in Higgs inflation, the loop corrections to
the Higgs self-coupling are important for determining the spectral index with a precision
measurable by PLANCK. In our case, see eq. (9), the Higgs kinetic term is close to a
canonical form, independently of the background field values and so, it would be sufficient
to consider the SM running of the Higgs self-coupling. However, the dependence on the
running effect coming from the sigma field interactions prevents us from making a simple
testable prediction.

4 Gauge and fermion interactions

The analysis of the scalar potential performed in sect. 2.3 has shown that no unitarity
violation occurs below the Planck scale, independently of the background scalar field values.
However, the choice of the unitary gauge hides part of the problem. The interactions of the
would-be Goldstone bosons could introduce unitarity violations at a lower cutoff scale. This
is actually happening in the case of the original Higgs inflation [7,9]. In the unitary gauge,
the extra degrees of freedom contained in the Higgs doublet are gauged away by a local
gauge transformation and their information is encoded in the gauge-Higgs interactions.
It is therefore important to analyze also the gauge and Yukawa couplings of the Higgs
in order to check the absence of any unitarity violation. In this section, we consider the
power counting both in the true vacuum and in the inflationary background for gauge-Higgs
interactions as well as Yukawa couplings and compare it to the original Higgs inflation. We
again neglect contributions coming from the non-minimal coupling of the Higgs doublet
with respect to the σ coupling.

4.1 Field fluctuations around the vacuum

• Gauge interactions

The gauge kinetic terms are conformally invariant under the Weyl rescaling of the
metric. So, the Higgs interactions with two gauge bosons in unitary gauge are given
by

Lgauge√−gE
= −1

2
fg2φ2AµA

µ ≃ −1

2

(Λ

σ

)2

g2φ2AµA
µ. (24)

Expanding around the vacuum σ = Λ + χ/
√
6ξ and φ = v + h, the above gauge

interaction becomes

Lgauge√−gE
≃ −1

2

(

1− 2χ√
6MP

)

g2v2
(

1 +
h

v

)2

AµA
µ. (25)

Therefore, the Higgs-gauge interactions are identical to the SM and there is no uni-
tarity violation, while the coupling of the sigma field to the gauge sector is suppressed
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by the Planck scale. This result is a direct consequence of the fact that the physical
Higgs is not rescaled, contrary to the original Higgs inflation. In the original model,
because of the correction to the Higgs kinetic term in the Einstein frame, the gauge-
Higgs interactions are modified as compared to the SM: −1

2
g2v2(1+2ah

v
+ bh

2

v2
)AµA

µ

with a = 1 − 3v2

Λ2

HI

and b = 1 − 12v2

Λ2

HI

where ΛHI =
MP

ξ0
. So, the unitarity cutoff of the

original Higgs inflation must be identified with ΛHI .

• Fermion interactions

Let us consider the fermion kinetic terms in the Einstein frame

Lfermion√−gE
= f 3/2ψ̄iγµ∂µψ ≃

(Λ2

σ2

)3/2

ψ̄iγµ∂µψ . (26)

We can make the kinetic terms canonical by rescaling the fermions: ψ′ = ( Λ2

〈σ2〉)
3/4ψ.

The Yukawa couplings become

LYukawa√−gE
= f 2λψφ ψ̄RψL + h.c.

≃
(

Λ

σ

)2(
Λ2

〈σ2〉

)−3/2

λψφ ψ̄
′
Rψ

′
L + h.c. (27)

Then, applying the same expansions of the scalar fields around the vacuum as for
the gauge interactions, the Yukawa couplings become

LYukawa√−gE
≃

(

1− 4χ√
6MP

)

λψ(v + h)ψ̄′
Rψ

′
L + h.c. (28)

Again, the Yukawa couplings to the physical Higgs are the same as in the SM. On
the other hand, in the original Higgs inflation, there was a dimension-6 operator,
λψ

h3

Λ2

HI

ψ̄′
Rψ

′
L, which is suppressed by ΛHI .

4.2 Field fluctuations during inflation

During inflation, the fields reside at large values, |σ| ≫ Λ and φ2 ≃ κα
λ+κα2σ

2. We can
expand the scalar fields around the inflationary background as follows,

σ ≃ σ0

(

1 +
1√
6ξΛ

χ
)

, φ ≃ φ0 +
σ0
Λ
h (29)

where σ0, φ0 are the background field values during inflation and χ, h are perturbations
having canonical kinetic terms.

• Gauge interactions

From eq. (24), the gauge interactions become

Lgauge√−gE
≃ −1

2
g2V 2

(

1− 2χ√
6MP

)(

1 +
h

V

)2

AµA
µ (30)
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where V ≡ Λφ0/σ0. Thus, the Higgs-gauge interactions are of the standard form with
the Higgs vev being replaced by V , so there is no unitarity violation in the gauge
sector. Because of the large scalar values during inflation, the gauge boson mass is
increased and saturates at mA ≃ gV ≃ gΛ

√

κα
λ+κα2 . However, even during inflation,

there is no unitarity violation below the Planck scale as in the vacuum case. In the
original Higgs inflation, the gauge interactions are given by −1

2
g2V 2

HI(1+
h√
6MP

)2AµA
µ

with VHI =
MP√
ξ0
. Thus, due to the suppressed Higgs couplings, unitarity is broken at

VHI .

• Fermion interactions

From eq. (27), the Yukawa interactions become

LYukawa√−gE
≃

(

1− 4χ√
6MP

)

λψ(V + h)ψ̄′
Rψ

′
L + h.c. (31)

Thus, we find that the fermions have large masses but there is no unitarity violation
below the Planck scale. The Yukawa couplings during inflation are not suppressed
as compared to the SM ones, unlike the original Higgs inflation in which the Yukawa
interactions are given by λψVHI(1 +

h√
6MP

)ψ̄′
Rψ

′
L.

5 Conclusions

The idea that the Higgs boson could play the role of the inflaton is very intriguing. A scalar
theory with quartic interaction in the potential and large non-minimal coupling ξ to the
curvature can support inflation. However, the inflationary dynamics occurs at such large
values of the scalar field that the identification of the inflaton with the Higgs boson remains
suspicious, in view of the existence of the intermediate scale MP/ξ at which the theory
around its true vacuum violates unitarity. If we insist that the theory can be extended
up to the Planck mass, it is quite plausible that the necessary new physics occurring at
the scale MP/ξ will modify the Higgs potential in the regime relevant for inflation. Any
conclusion about the viability of Higgs inflation will then require knowledge of the new
dynamics that unitarizes the theory.

We have considered a simple model, with one additional scalar field σ, which cures
the unitarity violation at the intermediate scale and allows for an extrapolation of the
theory up to MP . The procedure we followed to construct the model is reminiscent of the
unitarization of the non-linear sigma model into its linear version.

In our model, the σ field has a mass of order MP/ξ and the effective theory below this
scale essentially corresponds to the original model of Higgs inflation [1], namely the SM
with a large non-minimal coupling between the Higgs and the curvature. The analysis of
our model in the regime above MP/ξ shows that the theory can support inflation in a way
completely analogous to the case of the original Higgs inflation. The predictions for the
slow-roll parameters and the spectral index are identical in both theories. It is interesting
that, in our model, the mass of the heavy mode increases with the field background. Being

11



equal toMP/ξ around the true vacuum, the mass of the new state is aboutMP/
√
ξ during

inflation, giving an explicit realization of the mechanism advocated in ref. [9], for which the
scale of unitarity violation is raised at large background field. In spite of the similarities
with the original Higgs inflation, the σ field plays a crucial role. Besides unitarizing the
theory, σ directly participates in the inflationary dynamics. Its role is also reflected in the
fact that the relation between ξ and the inflationary scale does not only depend on the
measurable Higgs quartic coupling, but also on unknown coupling constants determining
the σ interactions. The reheating temperature in our model can be smaller than in the
original Higgs inflation.
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Appendix A: Multiple-field inflation

We review here the general formulas for slow-roll parameters and spectral index in
inflation models with multiple scalars [15].

The Einstein-frame action with multi-scalars is

SE =
1

2

∫

d4x
√−gE

[

M2
PR−GIJ∂µϕ

I∂µϕJ − 2V (ϕ)
]

. (A.1)

Taking the metric ds2 = −dt2+a2(t)δijdxidxj , and time-dependent scalars ϕI , the Einstein
equation and the equation of motion of the scalars are

( ȧ

a

)2

=
1

6M2
P

(

GIJ ϕ̇
Iϕ̇J + 2V

)

, (A.2)

ä

a
= − 2

3M2
P

(GIJ ϕ̇
Iϕ̇J − V ), (A.3)

ϕ̈I + 3Hϕ̇I + ΓIJKϕ̇
J ϕ̇K +GIJV,J = 0. (A.4)

The ε slow-roll parameter for multi-field inflation is defined as

ε = − Ḣ

H2
=

1

2M2
PH

2
GIJϕ̇

Iϕ̇J . (A.5)

For ϕ̈I + ΓIJKϕ̇
J ϕ̇K ≪ GIJV,J , we can rewrite the above slow-roll parameter as

ε ≃ M2
P

2V 2
GIJV,IV,J . (A.6)
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The counterpart of the η slow-roll parameter in multi-field inflation is defined as η =
minaηa where ηa are eigenvalues of the matrix NI

J ,

NI
J =M2

P

GJKV;KI
V

(A.7)

where V;IJ ≡ ∂I∂JV − ΓKIJ∂KV .
The number of e-foldings is defined as

dN = Hdt = − 1

εH
dH = − 1

εH

∂H

∂ϕI
dϕI . (A.8)

From the Einstein equations, we obtain

Ḣ = − 1

2M2
P

GIJ ϕ̇
Iϕ̇J . (A.9)

Thus, since Ḣ = ∂H
∂ϕI ϕ̇

I , we get

∂H

∂ϕI
= − 1

2M2
P

GIJ ϕ̇
J . (A.10)

Then, for ϕ̈I + ΓIJKϕ̇
J ϕ̇K ≪ GIJV,J , we get 1

H
∂H
∂ϕI ≃ V,I

6H2M2

P

≃ V,I
2V

. Therefore, we obtain

the following approximate expression for N

N ≃ −
∫ ϕI

f

ϕI
i

V,I
2εV

dϕI . (A.11)

The power spectrum for the multi-field inflation is given by

P (k) =
V

75π2M2
P

GIJ ∂N

∂ϕI
∂N

∂ϕJ
. (A.12)

Using the approximate formula,

∂N

∂ϕI
= − 1

εH

∂H

∂ϕI
≃ − V,I

6M2
PH

2ε
, (A.13)

and eq. (A.6), we get the power spectrum as for the single-field inflation,

P (k) ≃ V

150π2M4
P ε
. (A.14)

Finally, the spectral index is

ns = 1 +
∂ lnP (k)

∂ ln k
. (A.15)
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Appendix B: Calculation of slow-roll parameters

We apply the general formulas for multi-field inflation to calculate the inflationary
observables in our model. We consider the case in which the non-minimal coupling of the
Higgs doublet ζ is much smaller than ξ.

Working in the Einstein frame, we first minimize the scalar potential with two fields.
For convenience in the following discussions, we enumerate the terms of the scalar potential
(10) with ζ = 0 as follows,

VE = V0

[

1 + a
(φ

σ

)4

− 2b
(φ

σ

)2

+ 2
m2
σ

σ2
+ 2m2

φ

φ2

σ4
+

c

σ4

]

. (B.1)

Compared to the scalar potential (10), we have chosen the parameters as V0 = 1
4
κΛ2,

a = α2 + λ
κ
, b = α, m2

φ = αΛ2 − λ
κ
v2, m2

σ = −Λ2 and c = Λ4 + λ
κ
v4. Then, at the minimum

of the total potential, we can determine the Planck scale with a nonzero σ vev and the
electroweak scale with a nonzero Higgs vev.

From eq. (B.1), for ∂VE
∂φ

= ∂VE
∂σ

= 0, we obtain the minimization conditions

σ2 =
a

b
φ2 +

m2
φ

b
, (B.2)

φ2 = − 1

m2
φ

(m2
σσ

2 + c). (B.3)

For m2
φ = m2

σ = c = 0, we find that there is a flat direction along σ2 = a
b
φ2.

For the Einstein-frame action (9), from the formula (A.6), we get the ε parameter for
the two-fleld inflation as

ε ≃ M2
P

2V 2
E

(σ

Λ

)2[ σ2 −M2

σ2 + 6ξ(σ2 −M2)

(∂VE
∂σ

)2

+
(∂VE
∂φ

)2]

. (B.4)

The contribution coming from the σ derivative is suppressed by a large non-minimal cou-
pling. So it is reasonable to take the inflaton direction to be along the line with ∂VE

∂φ
= 0,

which is equal to σ2 = a
b
φ2 +

m2

φ

b
. This inflaton direction corresponds to the flat direction

in the limit of vanishing dimensionful parameters. For the inflaton direction, we simplify
the potential and its derivatives,

VE =
V0
a

[

a− b2 +
2

σ2
(bm2

φ + am2
σ) +

1

σ4
(ac−m4

φ)
]

, (B.5)

∂VE
∂σ

=
4V0
aσ

[

− 1

σ2
(bm2

φ + am2
σ) +

1

σ4
(m4

φ − ac)
]

, (B.6)

∂2VE
∂φ2

=
8V0
aφ2

(

b−
m2
φ

σ2

)2

, (B.7)

∂2VE
∂σ2

=
8V0
aσ2

[

b2 +
3

2σ2
(bm2

φ + am2
σ) +

5

2σ4
(ac−m4

φ)
]

, (B.8)

∂2VE
∂σ∂φ

=
8V0
aφσ

(

− b2 + b
m2
φ

σ2

)

. (B.9)
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Then, from eq. (B.4), using eqs. (B.5) and (B.6), the ε parameter becomes

ε ≃ 4V 2
0

3a2V 2
Eσ

4

[

bm2
φ + am2

σ +
1

σ2
(ac−m4

φ)
]2

. (B.10)

In order to compute the η parameter for the scalar kinetic terms given in eq. (9), we
first consider the non-zero components of the Christoffel symbol

Γσφφ =
σ2 −M2

σ2 + 6ξ(σ2 −M2)

1

σ
, Γφφσ = −1

σ
= Γσσσ. (B.11)

Then, the matrix elements of NI
J in eq. (A.7) are

Nφ
φ =

M2
P

VE

(σ

Λ

)2(

∂2φVE − σ2 −M2

σ2 + 6ξ(σ2 −M2)

1

σ
∂σVE

)

, (B.12)

Nσ
σ =

M2
P

VE

(σ

Λ

)2 σ2 −M2

σ2 + 6ξ(σ2 −M2)

(

∂2σVE +
1

σ
∂σVE

)

, (B.13)

Nφ
σ =

M2
P

VE

(σ

Λ

)2 σ2 −M2

σ2 + 6ξ(σ2 −M2)

(

∂φ∂σVE +
1

σ
∂φVE

)

, (B.14)

Nσ
φ =

M2
P

VE

(σ

Λ

)2(

∂σ∂φVE +
1

σ
∂φVE

)

. (B.15)

For the inflaton direction with large non-minimal coupling satisfying 6ξ ≫ σ2

σ2−M2 , from
eqs. (B.12)-(B.15) we obtain

Nφ
φ ≃ ξσ2

VE
∂2φVE (B.16)

Nσ
σ ≃ σ2

6VE

(

∂2σVE +
1

σ
∂σVE

)

(B.17)

Nφ
σ ≃ σ2

6VE
∂σ∂φVE ,

Nσ
φ ≃ ξσ2

VE
∂σ∂φVE. (B.18)

Therefore, plugging eqs. (B.5)-(B.9) in the above, we obtain the eigenvalues η1, η2 of the
matrix NI

J as

η1 ≃ 4V0
3aσ2VE

(bm2
φ + am2

σ)
(

1−
m2
φ

bσ2

)2

, (B.19)

η2 ≃ 8ξV0
aVE

(

b−
m2
φ

σ2

)2(σ

φ

)2

. (B.20)
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