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1. Introduction

Today most lattice QCD simulations are performed at unglay$ight dynamical quark masses.
Chiral perturbation theoryX(PT) [1,[2] has proved to be a very important tool for such satiahs.

By using XPT, one can extrapolate physical quantities to physicéht ligiark masses and get in-
formation on low energy constants (LECs) of the chiral tlgeoklthough three-flavoXPT has
been successfully used for simulations with 2+1 dynamicalrks, we are still interested in the
two-flavor XPT for the following reasons: 1) Usually the simulated ligitark masses are much
smaller than the simulated strange quark mass. We expe8tif®) expansion to serve as a better
approximation and to converge faster than the SU(3) one.it@)t¢- SU(2)XPT can give us di-
rection information about LECs in the two-flavor theory. 3) @&mparing results for SU(2) and
SU(3) fits, one can study the systematic errors from truonatof different versions ofPT.

In this work, we study the SU(¥PT for staggered fermions in the partially-quenched case,
and obtain relations between SU(2) and SU(3) LECs by comgdoirmulae for the pion mass and
decay constant from SU(2) and SU@PT. Then, we perform a systematic NNLO SU(2) chiral
analysis for recent MILC data in the light pseudoscalar@e&esults for the pion decay constant,
SU(2) LECs and chiral condensate in the two-flavor chiraltlane presented.

2. Rooted SU(2) staggered chiral perturbation theory

For lattice simulations based on the staggered fermiondtism, the correct effective theory
is rooted staggeredPT (rSXPT) [3,[4.[b.[B,[]7], in which taste-violating effects at finltdtice
spacings are incorporated systematically. Physical diemexpressed in §8PT become joint
expansions in botiny and a2, wherea is the lattice spacing. The three-flavorXiST has been
well established[[4] and successfully applied in analyzing lattice data. Here we concentrate
on the two-flavor case. Instead of the three-flavor chiraitlmy = my = mg = 0, we perform the
expansion around the two-flavor chiral limit, = my = 0, ms = mE™S wheremf™Sis the physical
strange quark mass.

The SU(2) r¥PT can be constructed by following the same procedure us&Li8) rSXPT [B1:
First, one writes down the Symanzik effective theory (SE¥r)dtaggered fermions. Second, one
maps the terms in the SET to operators in the chiral Lagrangyausing a spurion analysis. The
power counting rule depends on the specific version of staggermions being used. For asqtad
staggered fermions, we ugé [#,8P ~ 2Bm~ p? whered is a typical taste-splitting term.

At leading order ¢'(a2, p?, my)), the chiral Lagrangian for SU2PPT is
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whereX = exp(i®/f) and ¥ is the LO taste-violating potential. Their definitions caa found
in Ref. []. In Eq. [2]1), the replica method is used exgljcitve taken; copies of each valence
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quark andh; copies of each sea quark. At the end of the calculations, tv& se0 to account for
partial-quenching, and. = 1/4 for taking the fourth-root of the fermion determinant.

AtNLO, the SXPT chiral Lagrangian contains two parts: the continuum seatrorder (p*, p?
my, M%) and taste-violating terms at ordéi(p?a®, mya?,a*). In the partially-quenched case, the
NLO continuum SU(2) chiral Lagrangian reads:
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wherel?-9 are bare LECs in ordinary SU(PT, andp—p? are four new (bare) LECs in SU(2)
PQXPT. Operators associated Wiﬂﬁ are unphysical operators, in the sense that physical matrix
elements of these operators vanish in the limit where theneal quark masses are set equal to sea
quark masses. The specific form of the NLO taste-violatimgn$eare not relevant to this work, so
we do not list them here. For more details, please see Réf. [10

With the LO and NLO SU(2) 8PT Lagrangian, one can calculate the pion mass and pion
decay constant in the partially-quenched case. Throughdsitvork, we always assume that the
fourth-root procedure is legitimatg [, 8], and in pragticis done by setting, = 1/4 at the end
of the calculations. The results are

m2

(mxifmy):“(z){ 16n2f2 [sz ()
223! ZR31{ J D) + (VHA)+a(L'(’>+L'())}
’:2>(4|3+p1+4p2)(rm+md) ’:2>( 1 — 4p2)(mc+my) }, (2.3)
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Here,&,? and3,® are LO taste-violating parameters, afqg) andI:’(z) are linear combinations
of NLO taste-violating parameters. Definitions for mesorsses and residue functioRsand D
can be found in Ref[]J9]. All LECs in Eq$.(2.3) ar{d {2.4) are-dmop renormalized.

In the limit where the light valence quark masses, light aggrkjmasses and taste-splittings
are all small compared to the strange quark maes,, %, %, %, azj’;fs“) ~ £ < 1, we expect
that SU(2) theory to be generated from the SU(3) thefdry [His Tan be seen by expanding the
corresponding SU(3) formulaf] [4] forz/(my +m,) and f, in powers ofe. Indeed, one can check
that the expansion has the same pattern as the SU(2) fornkuatermore, one can relate SU(3)
and SU(2) LECs by comparing these two sets of formulae. ,Fiygstomparing LO meson masses

in various taste channels, we get the relations between &i®-taolating parameters

202 = a?ng, 225, = a2y, a28,? = a5, (2.5)

Then applying Eq.[(2]5) in the NLO formulae w#/(my + my) and f,;, and comparing coefficients
of termsm,, my, m anda’ separately, one obtains the following relatiofjs [9]:

1 Hms 1614
flg = f(1— oz HMslog 7 + =5 HMs), (2.6)
4ums
1 4mg -3 32(2L6 — L4)
p1 = 16Ls — =5(1+log “ms), 2.8)
1 SHMs 1 Hms
11 HMs
3= 8(2L6 —La)+ 4(2L8 —Ls) — 162 3—6(1+ log N2 ), (2.10)
_ 1 pms
la=8La+4Ls — 1 24(1+Iog ), (2.11)
1 ums 1 ms
[y =L Z8(1+1og 2 5=) — Zhau(1+log o8 P, (2.12)
i ~ 1 Ilms 1 ms
Lo =/~ Zi(2+10g 2 5=) 4 Sha(L+logE 2 E™), (2.13)
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wherelg,Ls,Lg andLg are renormalized SU(3) LECs, ahd andL’ are the NLO taste-violating
parameters in SU(3) #3T. Equations[(2.10) andl (2]11) are the same as the equititims full
QCD continuum casg][1]. Equations (2.8) ahd](2.9) relateutighysical LECs in the partially-
quenched two-flavor theory to the physical LECs in the tHiteeor theory. Equationg (2]12) and
(B.13) give us relations between taste-violating pararaétethe two-flavor and three-flavor theo-
ries.

3. SU(2) chiral analysisof the MILC data

Currently, we have gauge ensembles generated from 2+1 dgmlesimulations using asqtad
staggered fermions. Lattice spacings range frobd fin to Q045fm. The light pseudoscalar mass
and decay constant are measured with different combirstiérvalence and sea quark masses.
With these data, we perform a systematic NNLO SU(2) chirallyasis by using the NNLO for-
mulae form? and f,. Results of physical quantities are updated from the pusvianalysis in
Ref. [12].

The NNLO formulae fomz2/(my+m,) and f,; are obtained by combining the NLO formulae
Egs. (2.8) and[(24), possible analytic NNLO terms and thticoum NNLO chiral logarithms
provided by Bijnens and Lahdg ]13]. The root mean square (R&w8rage pion mass is used in
NNLO chiral logarithms. In order for the SU(2) formulae tophp we require both the valence
and sea light quark masses to be significantly smaller thasttange quark mass. In practice, we
used the following cutoff on our data setsy < 0.2ms, my + m, < 0.5mg, max(my, my) < 0.3ms.
Furthermore, in order for the continuum NNLO chiral logamits to be applicable, we also require
the taste-splittings between different pion states to geifitantly smaller than the kaon and pion
masses. The lattices that are at least close to satisfyasg tbonditions are fine & 0.09fm),
superfine & ~ 0.06fm) and ultrafined ~ 0.045fm) lattices. In practice, we used superfine and
ultrafine lattices for our central value fit, and we includéslt all three kinds of lattices to estimate
systematic errors. One difference from the previous fit & this time we used modified quark
massesn — M= m+a?/(2u) in NNLO analytic terms to make the NNLO LECs scale invariant
on the lattice, not just in the continuum.

4. Results

For the central fit, we used three superfine ensenilales am;) = {(0.0018 0.018), (0.0025
0.018), (0.00360.018} and one ultrafine ensemblam,ams) = (0.00280.014). There are a
total of 50 data points and 30 parameters with appropriatetcaints. This fit has g2 of 18 with
20 degrees of freedom, giving a confidence level<£0.6. The volume dependence at NLO has
been included in the fit formulae, and a small.3%) residual finite volume correctiolﬂl@, 8] is
applied at the end of the calculations.

In Fig.[d, we show the fit results for the light pseudoscalassrzad decay constant as functions
of the sum of the quark massg@s, +m,). The red solid curve represents the full NNLO results for
full QCD in the continuum case, where we have set the tadiitirgygs and taste-violating param-
eters to zero, extrapolated #o= 0 linearly in asa?, and set valence and sea quark masses equal.
The continuum results through NLO and LO are shown in blueraadenta curves respectively.

Finally, we find the physical values of the average up and dquark massn™by requir-
ing that 1T has its physical mass, and then find the decay constant por@isg to this point
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Figure 1: SU(2) chiral fits tof; (left) andm?/(mx+my) (right). Only points with the valence quark masses
equal (ny = my) are shown on the plots

in Fig. [L(@). With the scale; = 0.313323)fm determined by HPQCO 15], we obtaify; =
1302+ 1.4(*%2) MeV, where the first error is statistical and the second ésreystematic. This
agrees with the PDG 2010 valdfg = 1304+ 0.2MeV [[L8]. Alternatively, one can fix the scale
by using the SU(3) NNLO result of; [[L]. We then obtain

f,=1238+1.4(39) MeV B, = 2.91(5)(5)(14) MeV
l3=2.85+0.81(3%)) l,=3.98+0.32(3%})
= 3.19(4)(5)(16) MeV (U, = —[2815(3.4) (T29) (4.0)MeV]? (4.1)

The quark masses and chiral condensate are evaluated M3fszheme at 2 GeV. We used the
two-loop perturbative renormalization fact¢r][18] to de ttonversion. Errors from perturbative
calculations are listed as the third errors in these quesititAll the quantities agree with SU(3)
results [IJr] within errors.

5. Discussion and outlook

In this work, we studied SU(2) p@T in the partially-quenched case, and we performed a
systematic SU(2) chiral analysis for recent asqtad dathenight pseudoscalar sector. Results
for SU(2) LECs, decay constant and chiral condensate in hiraldimit are in good agreement
with results from an SU(3) analysig [17]. It can be seen that3U(2) theory within its applicable
region converges much faster than the SU(3) one. For the peinD.05 on the x-axis in Fig[] 1,
the ratio of the NNLO correction to the result through NLO % both for f; andm?2/(my+m,).

In contrast, the same ratio in SU(3) analysis is 3%ffpand 15% fom?,/(my +m), respectively,
although the large correction in the mass case is partlyakeltrof an anomalously small NLO
term.
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Since the simulated strange quark masses vary slightlydegtwifferent ensembles, parame-
ters in SU(2)XPT should also change with ensembles. In this work, we aisd to include this
effect by using the adjustment formulae in Rf. [9]. It tuma& that the fits are improved, but not
significantly. This part may still need further investigatj hence we do not include these results
in this work.

In the future, a next step is to include the kaon as a heaviclgam SU(2) XPT in order to
study physics involving the strange quagkg, the kaon mass and decay constant. This method
has been used in Ref:J19]. Another step is to extend the sisatydata obtained from simulations
with HISQ fermions, where taste-violating effects arelfiertreduced. This can be done using the
same approach as soon as the data are available.

We thank J. Bijnens for providing the FORTRAN code to caltailthe NNLO patrtially-
guenched chiral logarithms.
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