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The Sphaleron Rate at the Electroweak Crossover
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The baryon number is violated in the Standard Model by non-perturbative sphaleron transitions.
At temperatures above the electroweak scale, the rate of thesphaleron transitions is unsuppressed
and has been accurately measured using effective theories on the lattice. At temperatures substan-
tially below the electroweak scale, the Higgs field expectation value is large and the sphaleron rate
is strongly suppressed. Here analytical estimates are sufficient. The sphaleron rate, however, has
not been calculated in the intermediate temperature range with physical Standard Model param-
eters. In this work we use an effective electroweak theory onthe lattice with multicanonical and
real-time simulation methods to calculate the sphaleron rate through the electroweak crossover
at Higgs masses of 115 GeV and 160 GeV. The results are significant e. g. for Leptogenesis
scenarios.
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1. Background

Electroweak theory couples the baryon (B) and the lepton (L)numbers to the Chern-Simons
number of the weak gauge field through the axial anomaly. At temperatures higher than the elec-
troweak phase transition, the rate of Chern-Simons number fluctuations – the sphaleron rate – has
a nonzero value, whereas at lower temperatures it is exponentially suppressed and, when the Higgs
field expectation valuev ≫ T , the rate is negligible. In electroweak baryogenesis scenarios [1] the
baryon number of the Universe is generated during the electroweak phase transition. However, this
scenario does not work in the Standard Model: it requires a strongly first order phase transition,
whereas the Standard Model has a smooth crossover [2]. Further, the CP violation in the Standard
Model is not sufficient to drive baryon number generation.

Nevertheless, the sphaleron rate during the electroweak crossover in the Standard Model is
relevant for some Leptogenesis scenarios: in these scenarios lepton asymmetry is converted into
baryon asymmetry through sphaleron transitions. If the lepton asymmetry is generated just before
or during the electroweak phase transition, how the sphaleron rate shuts off has an effect on the
generated baryon number. The sphaleron rate has been studied in the broken phase before, but
either with unphysical Higgs masses [3, 4, 5] or not very deeply in the broken phase [3].

In the electroweak theory, the gauge field vacua are labeled by the Chern-Simons number

nCS =

∫

d3x j0CS =−
g2

64π

∫

d3x ε i jkTr
(

AiFjk + i
g
3

AiA jAk

)

. (1.1)

The Chern-Simons currentjµ
CS is in turn related through the axial anomaly to the baryon- and

lepton-number currents

∂µ( jµ
B + jµ

L ) = ng

(

g2

16π2 εαβ µνAa
αβ Aa

µν

)

, (1.2)

by

∂µ jµ
B = ng ∂µ jµ

CS, (1.3)

where the U(1) part of the theory is omitted. Transitions between vacua are possible by surmount-
ing the potential barrier through sphaleron transitions. The sphaleron rate is strongly suppressed at
low temperatures, where the potential barrier is high. At temperatures above the EWPT, though,
transitions among vacua are made possible through thermal fluctuations because there is no longer
any potential barrier. Each transition changesnCS by one unit and therefore violates the baryon
number byng = 3

B(t f )−B(ti) = ng [nCS(t f )−nCS(ti)]

thus providing a source of Baryogenesis.
In previous works, the sphaleron rate has been studied at theenergy range of the electroweak

phase transition either in the symmetric phase with latticesimulations [6] and semiclassical meth-
ods [7], or in the broken phase with both perturbative calculations [8] and on the lattice [3, 9].

In this work we unify these two pictures and find the overall behavior of the sphaleron rate from
the symmetric phase to the broken one, passing through the electroweak crossover. Our results are
compared to analytical estimates both in the broken and symmetric phases [8].
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2. Theory on the lattice

The thermodynamics of the 4-dimensional electroweak theory is studied in 3 dimensions by
means of dimensional reduction [10], a perturbative technique that gives the correspondence be-
tween 4D and 3D parameters. The result is a SU(2) effective theory with the Higgs fieldφ and
gauge fieldAµ (Fi j)

L =
1
4

Fa
i jF

a
i j +(Diφ)†(Diφ)+m2

3φ†φ +λ3(φ†φ)2, (2.1)

and 3D effective parametersg2
3, λ3 andm2

3.
Bödeker showed [11] that at leading order in log(1/g) the time evolution of this effective SU(2)

Higgs model is governed by Langevin dynamics. The latter, though, is very slow on the lattice and
can be substituted by any other dissipative procedure, e. g.heat bath. One heat-bath sweep through
the lattice corresponds to the real-time step [4]

∆t =
a2 σel

4
, (2.2)

where

σ−1
el =

3

m2
D

γ , with γ =
Ng2T

4π

[

ln
mD

γ
+3.041

]

(2.3)

is the non-abelian color conductivity, which quantifies thecurrent response to infrared external
fields,N is the dimension of the SU(N) gauge group, andmD is the Debye mass, determining the
length scalelD ∼ 1/mD ∼ 1/gT . We made use of a 323 lattice, with βG ≡ 4

g2
3a

= 9, whereg3

is the 3D gauge coupling anda the lattice spacing. In real-time simulations, for each mass and
temperature pair, we computed 4 trajectories for every 1000initial configurations.

3. Methods
In the symmetric phase we make use of canonical MC simulations and approach the broken

phase. At very low temperatures, the rate is highly suppressed and canonical methods do not work
anymore. We need multicanonical methods, which calculate aweight function that compensates
the high potential barrier between the vacua, thus allowingtransitions. The exact value of the
sphaleron rate

Γ ≡ lim
t→∞

〈(nCS(t)−nCS(0))2〉

V t
(3.1)

is obtained, in the broken phase, through a method similar tothe one used in [3, 4].

a. First we fix the order parameter (n∗CS = 1/2 in our case) which separates one vacuum from the
neighbouring one.

b. We calculate the probability fornCS to be in the small intervaln∗CS ± ε/2. This can be achieved
only with multicanonical methods, as the probabilityPε of being on top of the barrier is
extremely small.

c. Then the probabilityPε is transformed into a flux by multiplying it with〈dnCS/dt〉/ε . This is
calculated by taking initial configurations in the intervalε , performing real-time simulations
and keeping track of thenCS value after some timedt.
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Figure 1: Left: The Chern-Simons number evolution below the criticaltemperature (mH = 115 GeV,
T = 142 GeV) in canonical and multicanonical simulations. The transition rate in this plot is not related
to the real time rate, but shows the efficiency of the probability distribution measurement. Right: A set of
heat-bath trajectories originating from the same configuration. Gluing together any two of these produces a
trajectory, which corresponds to a sphaleron transition ifthe two end-points are in different minima.

d. Finally, we calculate thedynamical prefactor

d = ∑
sample

δ
# crossings

(3.2)

which is a measure of the fraction of the crossings which leadto a permanent change innCS.
δ is 0 for configurations that return to the initial vacuum and 1if the initial and final vacuum
are different. The initial configurations are chosen to be inn∗CS ± ε/2 and the real-time
evolution is performed forward and backwards in time.

e. The sphaleron rate is then

Γ ≡
P(| nCS −n∗CS |< ε/2)

ε P(| nCS < n∗CS |)

〈

|
dnCS

dt
|

〉

×d. (3.3)

4. Results

Figure 1 (left) shows the efficiency of the multicanonical method at low temperatures. For the
Higgs mass of 115 GeV and the temperature of 142 GeV, we see that in the canonical simulation,
no transitions happen, while in the multicanonical run we have a random walk in the adjusted
potential, where we have compensated for the statistical suppression by the weight functionW .
This can also be seen in the probability distributions thesesimulations produce (Figure 2) for the
sameT = 142 GeV.

The multicanonical weight functionW thus permits sampling with constant probability, being
the conversion factor between multicanonical and physicalprobability

Pmuca ∝ exp[W ] Pcan. (4.1)
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Figure 2: The probability distributions of Chern-Simons number in the deep broken phase in canonical (left)
and multicanonical simulations (right).

Figure 1 (right) shows several real-time heat-bath trajectories from the same initial configura-
tion. Each trajectory crosses a different number of times the least-probable intervalε on the top of
the barrier, and ends either back into the initial vacuum or into the adjacent one.

In Figure 3 we show the Higgs field expectation value〈φ2〉 for both masses (115 GeV, left,
and 160 GeV, right) as a function of temperature. We notice a perfect match between the canonical
and multicanonical results and a smooth transition from thesymmetric to the broken phase.

The sphaleron rateΓ/T 4 is shown in Figure 4 formH = 115 GeV and 160 GeV, with the
theoretical curves obtained separately for the broken and symmetric phases, through perturbative
calculations in [8].
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Figure 3: The Higgs expectation value〈φ2〉 for Higgs masses of 115 GeV (left) and 160 GeV (right) as a
function of temperature. The high-temperature canonical and low-temperature multicanonical results match
beautifully in the transition region.
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Figure 4: The sphaleron rate for a Higgs mass of 115 GeV (above) and 160 GeV (below). The high-
temperature canonical and low-temperature multicanonical results again match very well in the transition
region. Also shown are previous high-temperature estimates (top, horizontal line) and perturbative calcula-
tions in the low-temperature phase (bottom, wide band) from[8].

5. Conclusion

We improved the previous estimates for the sphaleron rate and determined its behaviour from
the symmetric to the broken phase, through the electroweak crossover. Our results are in agreement
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with previous estimates in the symmetric phase. In the broken phase we notice that the slope of
our curve is the same as in the analytic one [8]. We however note a discrepancy of up to two orders
of magnitude in the size of the rate, although part of the shift in temperature may be explained in
terms of renormalization constants.

Even though the Standard Model has a too weak source of CP-violation in the quark sector,
Baryogenesis might still be viable through lepton number violating processes. The sphaleron rate
plays an important role in Leptogenesis, as the conversion of lepton to baryon number depends on
it, and it is therefore important to know its size rather accurately.
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