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Properties of the approximate Yang–Mills ground-state
wave functional in 2+1 dimensions1
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Abstract. We review properties and lattice evidence in support of the recently proposed temporal-gauge Yang–Mills vacuum
wave functional in 2+1 dimensions.
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INTRODUCTION

Confinement is wired in the structure of the ground state
of the Yang–Mills (YM) theory. In the Schrödinger pic-
ture in a physical gauge, the information is carried by the
vacuum wave functional. One can approach the problem
from various angles:

1. Try to develop a systematic strong-coupling expan-
sion of the vacuum wave functional (VWF) [1].

2. Express the theory in cleverly selected variables and
look for the VWF in terms of these variables [2].

3. Make a variational Ansatz for the wave functional
in a certain gauge and find its parameters by minimizing
(e.g.) the expectation value of the YM Hamiltonian [3].

4. Guess an approximate form of the wave functional
and test its consequences [4, 5].

We follow the last avenue: we have proposed a guess
of a simple vacuum wave functional in the temporal
gauge [5], and will present here a few pieces of evidence
in favor of the claim that this simple form is not far
from the true vacuum wave functional of the Yang–Mills
theory.

In the hamiltonian formulation inD = 2+ 1 dimen-
sions and temporal gauge, the vacuum wave functional
satisfies the Schrödinger equation:
∫

d2x

(

− 1
2

δ 2

δAa
k(x)

2 + 1
4Ba(x)2

)

Ψ0[A] = E0Ψ0[A] (1)

together with the Gauss-law constraint:
(

δ ac∂k+gεabcAb
k

) δ
δAc

k
Ψ0[A] = 0. (2)
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and by the Slovak Grant Agency for Science, Project VEGA No.
2/0070/09, by ERDF OP R&D, Project CE QUTE ITMS 26240120009,
and via CE SAS QUTE (Š.O.)

At large distance scales one expects effectively:

Ψeff
0 [A]≈ exp

[

−µ
∫

d2x Ba(x)Ba(x)

]

. (3)

This form has the property ofdimensional reduc-
tion [6]: The computation of a spacelike loop in
2+1 dimensions reduces to the calculation of a Wilson
loop in Yang–Mills theory in 2 euclidean dimensions,
which is known to exhibit the area law. However, the
true VWF cannot be that simple, as it leads to incorrect
physical predictions at short and intermediate distances.

A GUESS AT AN APPROXIMATE VWF

The starting point for our guesswork [for SU(2) gauge
theory] has been the QED vacuum wave functional [7],
whose simplest generalization reads

Ψ0[A] = exp

[

− 1
2

∫

d2xd2y Ba(x)Vab(x,y;g)Bb(y)

]

,

(4)
whereVab is an adjoint operator which fulfills, for van-
ishing coupling,

lim
g→0

Vab(x,y;g) =

(

δ ab
√
−∇2

)

xy
. (5)

We choose

Vab(x,y;g) =

(

1
√

−D2−λ0+m2

)ab

xy

, (6)

whereDk[A;g] is the covariant derivative in the adjoint
representation,D2 = Dk ·Dk the adjoint covariant lapla-
cian, λ0 is the lowest eigenvalue of(−D2), andm is a
constant (mass) parameter proportional tog2 ∼ 1/β . The
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FIGURE 1. Cumulative data forωMC vs. p2 in physical
units, on lattices of extensionsL = 16,24,32,40,48, and eu-
clidean lattice couplingsβE = 6,9,12. The curve represents
ωGO(p) using the parameters ofm andg2 quoted in the text.

expression for the VWF is written in the continuum no-
tation, but assumed to be properly defined on a lattice.

In Ref. [5] we have provided a series of analytical
arguments in favor of the proposed form:

1. By construction,Ψ0[A] becomes the VWF of elec-
trodynamics in the free-field limit (g→ 0).

2. It is a good approximation to the true vacuum also
for strong fields constant in space, varying only in time.

3. The part of the VWF that depends on slowly varying
fieldsBslow takes on the dimensional-reduction form. The
fundamental string tension, at a givenβ , is then easily
computed asσF = 3m/4β .

4. If one takes the massm in the VWF as a free
variational parameter and computes (approximately) the
expectation value of the YM hamiltonian, one finds that
a non-zero (finite) value ofm is energetically preferred.

NUMERICAL EVIDENCE

To estimate how good or bad the proposed approximate
vacuum state is, we have also performed some numerical
tests. We compare a set of quantities computed in two
ensembles of lattice configurations:

1. “Recursion” lattices— independent 2-d lattice con-
figurations generated with the probability distribution
given by the proposed VWF, for a choice of its param-
etersm andβ = 4/g2. The recursion method was pro-
posed and described in detail in Ref. [5].

2. Monte Carlo lattices— 2-d slices of configurations
generated by MC simulations of the 3-d euclidean SU(2)
lattice gauge theory with the standard Wilson action with
couplingβE; from each configuration, only one (random)
slice at fixed euclidean time was taken.

To compare results for these two ensembles, one needs
a way of fixing parameters(m,β ) of the VWF that cor-
respond to the Wilson-action couplingβE of the MC en-
semble at a fixed lattice sizeL. The simplest way, used in
Refs. [5, 8], is to chooseβ = βE, and fixm at givenβE

andL to get the correct value of the fundamental string
tensionσF(βE,L). (This will be calledvariant Abelow.)
With this choice we computed the equal-time connected
B2–B2 correlator and determined the value of the mass
gap from a best fit to its exponential fall-off at large dis-
tances. The result for recursion lattices was compared to
the values of the 0+ glueball mass computed in simula-
tions of the 3-d YM theory by Meyer and Teper [9]. The
deviations were at the level of at most 6%.

Another possibility (variant B) is to find (m,β ) cor-
responding to a given(L,βE) by using numerically de-
termined values of the true VWF for some trial gauge-
field configurations (non-abelian constant fields, abelian
or non-abelian plane waves). The square of the VWF can
be computed numerically in simulations of the 3-d YM
theory by the method proposed long ago by Greensite
and Iwasaki [10]. Details of the method and results for
various types of configurations will be presented else-
where [11]. We will only use results for a set of abelian
plane waves with the longest wavelength at a given lat-
tice sizeL, λ = L, and varying amplitudes:

U ( j)
1 =

√

1−a j(n2)212+ ia j(n2)σ3, U ( j)
2 = 12,

a j(n2) =

√

α + γ j
L2 cos

2πn2

L
. (7)

The measured squared VWF at a givenβE can be
parametrized as|ΨMC[U ( j)]|2 ∝ exp(−RMC[U ( j)]) with:

RMC[U
( j)] = 2(α + γ j)ωMC(p)+ const (8)

with p2 = 2
(

1− cos2π
L

)

, while for our proposed wave
functional

RGO[U
( j)] = 2(α + γ j)ωGO(p)+ const, (9)

ωGO(p) =
1
g2

p2
√

p2+m2
. (10)

Values of(m,g) can be determined by the best fit of the
data forωMC(p) at a given(L,βE) by the function (10).
The quality of the fit is illustrated in Fig. 1, the parame-
ters of our wave functional in physical units come out to

TABLE 1. Parameters and lattice sizes.

variant A variant B
βE L a(βE,L) β m β m

6 24 0.577 6 0.515 4.734 0.445
9 32 0.367 9 0.313 7.434 0.283
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FIGURE 2. The Coulomb-gauge ghost propagator.

beg2
phys= 1.465,mphys= 0.771. In lattice units we then

use:
a(βE,L) =

√

σf(βE,L)/0.44 GeV, (11)

m(βE,L) = mphysa(βE,L), g2(βE,L) = g2
physa(βE,L).

The sets of parameters used in further tests are summa-
rized in Table 1.

For both recursion and Monte Carlo lattices, we con-
centrated on a subset of quantities in the Coulomb
gauge [8]. As argued by Gribov [12] and Zwanziger [13],
the low-lying spectrum of the Faddeev–Popov opera-
tor in Coulomb gauge probes properties of non-abelian
gauge fields crucial for the confinement mechanism.
The ghost propagator in Coulomb gauge and the color-
Coulomb potential are directly related to the inverse of
the Faddeev–Popov operator, and play a role in various
confinement scenarios. In particular, the color-Coulomb
potential represents an upper bound on the physical po-
tential between a static quark and antiquark [14].

Fig. 2 displays results for the ghost propagator in
Coulomb gauge atβ = 9 on 322 lattice. It was computed
(in coordinate space) in the usual way from the inverse of
the Faddeev–Popov operator (in the subspace orthogonal
to trivial constant zero modes due to lattice periodicity).
The agreement of the ghost propagator computed in both
sets of lattices is almost perfect, for both variants of the
choice of parameters of the approximate VWF.

The situation for the color-Coulomb potential is more
complicated. There exist rare “exceptional” configura-
tions with a very low (though still positive) lowest non-
trivial eigenvalue of the Faddeev–Popov operator. These
configurations were extremely difficult to gauge-fix to
the Coulomb gauge. If one evaluates the potential in each
single configuration, the exceptional ones possess a very
high absolute value of the potential at the origin,|V(0)|.
One can then classify configurations by their values of
|V(0)|, and evaluate average potentials from sets of con-
figurations satisfying a number of cuts|V(0)|< κ . Fig. 3
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FIGURE 3. The color-Coulomb potential forκ = 10.

shows results forκ = 10 (satisfied by about 80% lattices)
at β = 9 (322 lattice). The potentials agree quite well.
However, the agreement between recursion and Monte
Carlo lattices deteriorates with increasingκ . Still, the po-
tentials stay almost identical for recursion lattices with
both variant choices of VWF parameters.

In conclusion, the proposed vacuum wave functional
for the temporal-gauge SU(2) YM theory in 2+1 dimen-
sions, Eqs. (4, 6), is a fairly good approximation to the
true ground state of the theory. We have accumulated an-
alytical arguments and numerical results in its favor. The
agreement of Coulomb-gauge quantities in recursion and
Monte Carlo lattice ensembles is quite satisfactory for a
bulk of the probability distribution, but there seems to be
some disagreement in its tail.
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