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Quark Number fluctuations in QCD K. Splittorff

1. Introduction

First principle predictions for the QCD phase diagram wdadf great value as a benchmark
for the international experimental heavy ion program. limgple, we know precisely how to
proceed: start from the grand canonical partition fungtion

Z1iq = /dAdelz(DJruyoer) e S, (1.1)

and study the baryon number as a function of the chemicahpalgu, and temperature for quark
massesn (for notational simplicity we consider the two flavor thedmthese proceedings). As the
phase transitions occur in the non perturbative domainnaitsral to turn to lattice QCD. While

we know exactly how to include the chemical potential on #itde [1,[R], in practice, our studies
are limited by the fact that the fermion determinant at noma&lues of the chemical potential
becomes complex

de?(D + pyo+ m) = |det(D + uyp + m)|2e?°. (1.2)

This sign problemnvalidates the standard Monte Carlo method which is at énedf lattice QCD.
The sign problem is not only hard because the average of theepglactor is exponentially small
[B], it is also challenging because much of our intuition &tatistical systems leads to wrong
conclusions at non zem. Most prominently, a probabilistic argument leads one tactade that
the chiral condensate is continuous as a function of thekgueass aim = 0 for any non zero
value of u [f]]. Rather, as the solutiorf][5] of this Silver Blaze problashows, it is imperative
that we consider distribution functions that take complabugs. Only through extreme complex
oscillations of the eigenvalue density of the Dirac oparédt possible to understand how the
discontinuity of the chiral condensate remains non zertiénpresence of the chemical potential.
Here we will show [[p] that the extreme complex oscillatioalket place also in the chiral condensate
and the baryon number and that they are essential to get theztphysical results.

For simplicity we will here focus on the baryon number, whicta single gauge field config-
uration is given by

n= %Iogde(DJruyoer). (1.3)

Our goal is to determine the distributigd(n—n')) of the baryon number over the gauge fields. We
will show that this distribution takes complex values anat tine extreme oscillations are essential
to obtain the correct average baryon number

(n) = /drf 0 (5(n—r)). (1.4)

This direct insight into the sign problem also allow us toradd how complex Langevin works in
this case.

In order to understand better the distributigh(n— n’)) of the baryon number operator over
the gauge fields, let us first understand its first two moméiusthe first moment there is no source
of confusion: The average quark number is the first moment

11 d

- —Z = (n). 1.5
37, du 2 (n) (1.5)
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However, the second derivative with respectito

11 d2

1,/d
Zmd—ﬂz 1+1:<n2>+§<<_n>>7 (1-6)

du
is notthe second moment of the distributiod(n—n')). Rather, the average of the squarexafn
be written as

ii

2\ __

, 1.7)
Hu=Hd=H

VARE]

NI~

where we distinguished the chemical potentials for the taweofls and differentiated with respect
to each one before setting them equal.
When we express the traces in terms of the eigenvatuesf yo(D + m)

11 d 1

z — 1.8
2Zyy du T <Za<+u> (1.8)
11 o2 1 1
_——zzl+1: o - . T 1L 11\2
4Zy41 dp a<+ua+u 24 (@t )

<n2>:< A—lkua+u> <[sz+u}>

it becomes obvious thaf (1.6) imtthe average of a square and in particular ibig the second
moment of the distribution af over the gauge fields. The distributidd(n—n')) is nevertheless
of great interest since it gives direct insights in the sigrbem.

As a final point before we turn to the results, note that thelgnamber takes complex values

. Yo o
n(u) —<Tr7D+WO+m> = —n(—H). (1.9)

Hence, the distributioid(n—n')) is in the complexn plane

Pa(X,y) = (3 (x—Refn]) & (y—Im[n))), (1.10)

and the average baryon number is given by the integrékefiy) weighted by the distribution
Pa(Xy)dxdy.

2. Thedistribution of nfrom Chiral Perturbation Theory

Despite the fact that pions have zero baryon charge thdhbdistm of the baryon number
over the gauge fields is non trivial when computed within &Herturbation Theory. Certainly in
Chiral Perturbation Theory we have that

1 d 1 &
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Figure 1: Scatter plot of the spectrum of a Random Matrix Dirac operimtoy = my/2; left: the eigenval-
ues ofD + Uy + mright: the eigenvalues df yo(D + m) + u). In both cases the support of the spectrum
has reached the origin indicated by the red point. Beyorglghint, ie. fory > m;/2 the distribution of
the chiral condensate and the baryon has power law tailsinfdas phenomenon is expected to happen for
lattice QCD with Wilson fermions in the Aoki phasﬁ [8].)

but the average of the squarero non zero

2

(n?) = Go(k, o) #0, (2:2)
dpndpp p=ph=i
since the 1-loop free energy is
maT2 & Ko(™m) P — M2
Go(pz, Ho) =V —lp— ' —== cosh=—n). 2.3)

n=1

So(d(n—n')) must necessarily be non trivial in Chiral Perturbation Tigeo
In order to compute the full distributioR,(x,y) it is necessary to evaluate all moments

(ReinKim[ri}) (2.4)

in Chiral Perturbation Theory. The details are giver{]n [6 &nvolve an interesting combinatorial
use of the replica trick[J7]. For the computation it is es&@rnb specify whether the chemical
potential is larger or smaller tham,/2, since in the replicated generating functions additional
condensates appear at this scale. Also from the perspettilie eigenvalues of the Dirac operator
it is clear that the casg < m,;/2 must be very different from the one with> my/2, see figur¢]1.

We first discuss the distribution offor 4 < my;/2. To one-loop order in Chiral Perturbation
Theory the distribution factorize§ [6]

Pn(X, Y) = PRe{n] (X)le[n] (y)v (2.5)



Quark Number fluctuations in QCD K. Splittorff

0.4

T T T 1.5e+05

T T T
— Prgn® i — ReP, ;0]

le+05
0.3— —

50000

0.1— —
-50000;

Figure 2: The distribution of the baryon number over the gauge fieldhéngrand canonical ensemble.
For u < my/2 the distribution factorizes into the distribution of treal part (left figure) and the imaginary
part (right figure). The distribution of the imaginary paakés complex values, shown is the real part. Note
the difference in the scales on the vertical axis. The amgditof the distribution of the imaginary part of
grows exponentially with the volume.

where the two factors take simple Gaussian forms

1 iy 2 /(B Lyl
Prepn) (X) = Tt O Ut Xuo) (2.6)
T[(Xud+xud)
e ——C L) 27)

T(X}a — X5a)
Note in particular thaBy,(y) takes complex values. It is quite natural that the sign bl

manifest it self in the distribution of the imaginary partrogince

d d . d
n= logde{D + uy+ m) = —log|det(D + puyo+ m)|+|@6. (2.8)

du du

In the above expression for the distributionnofve have made use of the notation

d
W = —AGo(y, — 2.9
= o(H1, —H) - (2.9)
B d?
= AG ,
Xud = Gdm o(H, kz) o
| d?
= AGo(— 1, ,
Xud = Grdm o(— K1, H2) .
where the free energy difference is (note that+ x2, > 0 andx/y— x&, > 0)
maT2 & Ky(Tah —
NGo( s, o) =V Zl Z(nzT ) [cost{ul_l_uzn)—l] (2.10)
N—

Since all of the above quantities are extensive the amgliofd i (y) grows exponentially with
the volume, the width grows like/V, while the period of the oscillations are of ordé?. For a
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plot of the distribution see figuré 2. The extreme oscillaiof Py (y) are essential in order to
obtain zero expectation value of the quark number in ChiealuPbation Theory

(n) = / dxdy (X+ iy)Pa(X, ) 2.11)

= /dX XFEge[n](X)+|/dnym[n](y)
— v +ilvy =0

The detailed cancellation between the contribution froenrttal part and the imaginary part is only
possible if the phase of the fermion the determinant is attealfor properly. Similar cancellations

also take part for the higher moments of the baryon numbeedsw/for the moments of the chiral

condensate, sef [6] for details.

3. Complex Langevin

One use of the results for the distribution of the baryon nemibto illustrate how the complex
Langevin method can deal with sign problems in simple mod€learly the distribution of the
imaginary part of the baryon number over the gauge fieldsistiallenging part. Therefore, let us
ask if complex Langevin is able to do the simple one dimeradioriegral

[ 4vy R ). (3.0

that is, to measure the contribution to the average baryambeufrom the imaginary part of.
To this end we define the complex Langevin actionyfer Im[n| as

S= —10g[Pimm (Y)] = —(iy + )%/ (Xba — Xou)- (3.2)

The next step is to complexify Ifn] asy = a+ ib and write down the flow equations farandb

2
ani1 = %—8%+ﬁnn (3.3)
Xud — Xud

Pri1 = b e Xba = XGu
Note that the flow equations decouple. The equatioraferthat of a Gaussian for which complex
Langevin works perfectly. That df simply shiftsy by v, in the imaginary direction. Since there
is no noise in the imaginary direction, the complex Langemgthod effectively shifts the contour
of they-integral by a term of ordeV in the imaginary direction. After the shift, a simple intabr
over a Gaussian without oscillations is left and the complasgevin method has no problem in
evaluating this. Clearly the shift of the contour is the ordgsonable thing to do in this case, the
strength of the complex Langevin method is that it can malseshift automatically. A similar
example was worked out ifi][9] anfd ]10].

For u > my/2 the chemical potential enters the spectral suppoyb@ -+ m) and the distri-
bution of the baryon number develops power law t4is [6]. &ttheless, complex Langevin is also
able to deal with the sign problem for one dimensional QCT] { this region.
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4. Summary

The interplay between lattice QCD and analytical studieQGD is essential to understand
QCD at nonzero chemical potential. Due to the sign probldm, standard methods of lattice
QCD only have a limited range of applicability. In order tady dense strongly interacting matter
from first principles new numerical methods must be inverted put to use. To understand how
such methods can be designed it is essential to understanthbasign problem affects physical
observables such as the baryon number and the chiral catdens

Here we have derived the distribution of the baryon number tive gauge fields from Chiral
Perturbation Theory. We have shown that the distributidkk@gecomplex values and is strongly
oscillating. These oscillations were shown to be centrahtodetailed cancellations which take
place when forming the average baryon number. The disioisitalso give detailed information
on the overlap problem as will be discussed[id [12]. Here weshssed the distribution of the
baryon number to show how the complex Langevin method cahwi#ia sign problems. An
important point to take away from this is that the complex derin method works equally well
independent of the volume and hence independently of thagttn of the sign problem. Similarly,
in the well known caseg [1.3] where the complex Langevin mefads it does so independently of
the volume.

It is also possible to compute the distribution of the baryamberover the phase of the
fermion determinanwithin Chiral Perturbation theorny JlL4]. Also in this casestbomplex and
oscillating nature of the distribution is essential in artke obtain the correct physics at nonzero
chemical potential. That calculation also directly demiatss that all phases of the fermion deter-
minant are important.
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