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direct insight into the delicate cancellations that take place in contributions to the total baryon

number.
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1. Introduction

First principle predictions for the QCD phase diagram wouldbe of great value as a benchmark
for the international experimental heavy ion program. In principle, we know precisely how to
proceed: start from the grand canonical partition function,

Z1+1 =

∫

dA det2(D+µγ0+m) e−SYM , (1.1)

and study the baryon number as a function of the chemical potential, µ , and temperature for quark
massesm (for notational simplicity we consider the two flavor theoryin these proceedings). As the
phase transitions occur in the non perturbative domain it isnatural to turn to lattice QCD. While
we know exactly how to include the chemical potential on the lattice [1, 2], in practice, our studies
are limited by the fact that the fermion determinant at nonzero values of the chemical potential
becomes complex

det2(D+µγ0+m) = |det(D+µγ0+m)|2e2iθ . (1.2)

Thissign probleminvalidates the standard Monte Carlo method which is at the hart of lattice QCD.
The sign problem is not only hard because the average of the phase factor is exponentially small
[3], it is also challenging because much of our intuition forstatistical systems leads to wrong
conclusions at non zeroµ . Most prominently, a probabilistic argument leads one to conclude that
the chiral condensate is continuous as a function of the quark mass atm= 0 for any non zero
value of µ [4]. Rather, as the solution [5] of this Silver Blaze problemshows, it is imperative
that we consider distribution functions that take complex values. Only through extreme complex
oscillations of the eigenvalue density of the Dirac operator is it possible to understand how the
discontinuity of the chiral condensate remains non zero in the presence of the chemical potential.
Here we will show [6] that the extreme complex oscillations take place also in the chiral condensate
and the baryon number and that they are essential to get the correct physical results.

For simplicity we will here focus on the baryon number, whichin a single gauge field config-
uration is given by

n ≡ d
dµ

logdet(D+µγ0+m). (1.3)

Our goal is to determine the distribution〈δ (n−n′)〉 of the baryon number over the gauge fields. We
will show that this distribution takes complex values and that the extreme oscillations are essential
to obtain the correct average baryon number

〈n〉=
∫

dn′ n′ 〈δ (n−n′)〉. (1.4)

This direct insight into the sign problem also allow us to address how complex Langevin works in
this case.

In order to understand better the distribution〈δ (n−n′)〉 of the baryon number operator over
the gauge fields, let us first understand its first two moments.For the first moment there is no source
of confusion: The average quark number is the first moment

1
2

1
Z1+1

d
dµ

Z1+1 = 〈n〉. (1.5)
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However, the second derivative with respect toµ

1
4

1
Z1+1

d2

dµ2 Z1+1 = 〈n2〉+ 1
2
〈
(

dn
dµ

)

〉, (1.6)

is not the second moment of the distribution〈δ (n−n′)〉. Rather, the average of the square ofn can
be written as

〈n2〉= 1
Z

d
dµu

d
dµd

Z1+1

∣

∣

∣

∣

µu=µd=µ
, (1.7)

where we distinguished the chemical potentials for the two flavors and differentiated with respect
to each one before setting them equal.

When we express the traces in terms of the eigenvalues,zk, of γ0(D+m)

1
2

1
Z1+1

d
dµ

Z1+1 =

〈

∑
k

1
zk+µ

〉

(1.8)

1
4

1
Z1+1

d2

dµ2 Z1+1 =

〈

∑
k,l

1
zk+µ

1
zl +µ

− 1
2 ∑

k

1
(zk+µ)2

〉

〈

n2〉 =

〈

∑
k,l

1
zk+µ

1
zl +µ

〉

=

〈

[

∑
k

1
zk+µ

]2
〉

,

it becomes obvious that (1.6) isnot the average of a square and in particular it isnot the second
moment of the distribution ofn over the gauge fields. The distribution〈δ (n−n′)〉 is nevertheless
of great interest since it gives direct insights in the sign problem.

As a final point before we turn to the results, note that the quark number takes complex values

n(µ)∗ =
(

Tr
γ0

D+µγ0+m

)∗
=−n(−µ). (1.9)

Hence, the distribution〈δ (n−n′)〉 is in the complexn plane

Pn(x,y) ≡ 〈δ (x−Re[n])δ (y− Im[n])〉 , (1.10)

and the average baryon number is given by the integral of(x+ iy) weighted by the distribution
Pn(x,y)dxdy.

2. The distribution of n from Chiral Perturbation Theory

Despite the fact that pions have zero baryon charge the distribution of the baryon number
over the gauge fields is non trivial when computed within Chiral Perturbation Theory. Certainly in
Chiral Perturbation Theory we have that

1
2

1
Z1+1

d
dµ

Z1+1 = 〈n〉= 0 and
1

Z1+1

d2

dµ2 Z1+1 = 0, (2.1)
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Figure 1: Scatter plot of the spectrum of a Random Matrix Dirac operator for µ = mπ/2; left: the eigenval-
ues ofD+ µγ0+m right: the eigenvalues ofi(γ0(D+m)+ µ). In both cases the support of the spectrum
has reached the origin indicated by the red point. Beyond this point, ie. forµ > mπ/2 the distribution of
the chiral condensate and the baryon has power law tails. (A similar phenomenon is expected to happen for
lattice QCD with Wilson fermions in the Aoki phase [8].)

but the average of the square ofn is non zero

〈n2〉= d2

dµ1dµ2
G0(µ1,µ2)

∣

∣

∣

∣

µ1=µ2=µ
6= 0, (2.2)

since the 1-loop free energy is

G0(µ1,µ2) =V
m2

πT2

π2

∞

∑
n=1

K2(
mπn
T )

n2 cosh(
µ1−µ2

T
n). (2.3)

So〈δ (n−n′)〉 must necessarily be non trivial in Chiral Perturbation Theory.
In order to compute the full distributionPn(x,y) it is necessary to evaluate all moments

〈Re[n]kIm[n] j〉 (2.4)

in Chiral Perturbation Theory. The details are given in [6] and involve an interesting combinatorial
use of the replica trick [7]. For the computation it is essential to specify whether the chemical
potential is larger or smaller thanmπ/2, since in the replicated generating functions additional
condensates appear at this scale. Also from the perspectiveof the eigenvalues of the Dirac operator
it is clear that the caseµ < mπ/2 must be very different from the one withµ > mπ/2, see figure 1.

We first discuss the distribution ofn for µ < mπ/2. To one-loop order in Chiral Perturbation
Theory the distribution factorizes [6]

Pn(x,y) = PRe[n](x)PIm[n](y), (2.5)
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Figure 2: The distribution of the baryon number over the gauge fields inthe grand canonical ensemble.
For µ < mπ/2 the distribution factorizes into the distribution of the real part (left figure) and the imaginary
part (right figure). The distribution of the imaginary part takes complex values, shown is the real part. Note
the difference in the scales on the vertical axis. The amplitude of the distribution of the imaginary part ofn
grows exponentially with the volume.

where the two factors take simple Gaussian forms

PRe[n](x) =
1

√

π(χB
ud+ χ I

ud)
e−(x−νI )

2/(χB
ud+χ I

ud) (2.6)

PIm[n](y) =
1

√

π(χ I
ud− χB

ud)
e−(y−iνI )

2/(χ I
ud−χB

ud). (2.7)

Note in particular thatPIm[n](y) takes complex values. It is quite natural that the sign problem
manifest it self in the distribution of the imaginary part ofn since

n ≡ d
dµ

logdet(D+µγ0+m) =
d

dµ
log|det(D+µγ0+m)|+ i

d
dµ

θ . (2.8)

In the above expression for the distribution ofn we have made use of the notation

νI ≡ d
dµ1

∆G0(µ1,−µ)
∣

∣

∣

∣

µ1=µ
(2.9)

χB
ud ≡ d2

dµ1dµ2
∆G0(µ1,µ2)

∣

∣

∣

∣

µ1=µ2=µ

χ I
ud ≡ d2

dµ1dµ2
∆G0(−µ1,µ2)

∣

∣

∣

∣

µ1=µ2=µ
,

where the free energy difference is (note thatχ I
ud+ χB

ud > 0 andχ I
ud− χB

ud > 0)

∆G0(µ1,µ2) =V
m2

πT2

π2

∞

∑
n=1

K2(
mπn
T )

n2

[

cosh(
µ1−µ2

T
n)−1

]

. (2.10)

Since all of the above quantities are extensive the amplitude of PIm[n](y) grows exponentially with
the volume, the width grows like

√
V, while the period of the oscillations are of orderV0. For a
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plot of the distribution see figure 2. The extreme oscillations ofPIm[n](y) are essential in order to
obtain zero expectation value of the quark number in Chiral Perturbation Theory

〈n〉 =
∫

dxdy(x+ iy)Pn(x,y) (2.11)

=
∫

dx xPRe[n](x)+ i
∫

dy yPIm[n](y)

= νI + iiνI = 0

The detailed cancellation between the contribution from the real part and the imaginary part is only
possible if the phase of the fermion the determinant is accounted for properly. Similar cancellations
also take part for the higher moments of the baryon number as well as for the moments of the chiral
condensate, see [6] for details.

3. Complex Langevin

One use of the results for the distribution of the baryon number is to illustrate how the complex
Langevin method can deal with sign problems in simple models. Clearly the distribution of the
imaginary part of the baryon number over the gauge fields is the challenging part. Therefore, let us
ask if complex Langevin is able to do the simple one dimensional integral

∫

dy y PIm[n](y), (3.1)

that is, to measure the contribution to the average baryon number from the imaginary part ofn.
To this end we define the complex Langevin action fory= Im[n] as

S=− log[PIm[n](y)] =−(iy+νI )
2/(χ I

ud− χB
ud). (3.2)

The next step is to complexify Im[n] asy= a+ ib and write down the flow equations fora andb

an+1 = an− ε
2an

χ I
ud− χB

ud

+
√

εηn (3.3)

bn+1 = bn− ε
2(bn−νI)

χ I
ud− χB

ud

.

Note that the flow equations decouple. The equation fora is that of a Gaussian for which complex
Langevin works perfectly. That ofb simply shiftsy by νI in the imaginary direction. Since there
is no noise in the imaginary direction, the complex Langevinmethod effectively shifts the contour
of they-integral by a term of orderV in the imaginary direction. After the shift, a simple integral
over a Gaussian without oscillations is left and the complexLangevin method has no problem in
evaluating this. Clearly the shift of the contour is the onlyreasonable thing to do in this case, the
strength of the complex Langevin method is that it can make this shift automatically. A similar
example was worked out in [9] and [10].

For µ > mπ/2 the chemical potential enters the spectral support ofγ0(D+m) and the distri-
bution of the baryon number develops power law tails [6]. Nevertheless, complex Langevin is also
able to deal with the sign problem for one dimensional QCD [11] in this region.
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4. Summary

The interplay between lattice QCD and analytical studies ofQCD is essential to understand
QCD at nonzero chemical potential. Due to the sign problem, the standard methods of lattice
QCD only have a limited range of applicability. In order to study dense strongly interacting matter
from first principles new numerical methods must be inventedand put to use. To understand how
such methods can be designed it is essential to understand how the sign problem affects physical
observables such as the baryon number and the chiral condensate.

Here we have derived the distribution of the baryon number over the gauge fields from Chiral
Perturbation Theory. We have shown that the distribution takes complex values and is strongly
oscillating. These oscillations were shown to be central tothe detailed cancellations which take
place when forming the average baryon number. The distributions also give detailed information
on the overlap problem as will be discussed in [12]. Here we have used the distribution of the
baryon number to show how the complex Langevin method can deal with sign problems. An
important point to take away from this is that the complex Langevin method works equally well
independent of the volume and hence independently of the strength of the sign problem. Similarly,
in the well known cases [13] where the complex Langevin method fails it does so independently of
the volume.

It is also possible to compute the distribution of the baryonnumberover the phase of the
fermion determinantwithin Chiral Perturbation theory [14]. Also in this case the complex and
oscillating nature of the distribution is essential in order to obtain the correct physics at nonzero
chemical potential. That calculation also directly demonstrates that all phases of the fermion deter-
minant are important.
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