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Abstract

We study the four-dimensional Yang-Mills theory in the presence of a three-dimensional
membrane of fermions by lattice Monte Carlo simulations. We analyze the phase
structure of this theory at finite temperature. Below the phase transition tem-
perature of the pure Yang-Mills theory, we obtain an unconventional phase with
spatially-nonuniform vacuum. In this phase, the expectation value of the Polyakov
loop is finite on the membrane, and it exponentially decays to zero outside the
membrane.
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1 Introduction

As a theoretical interest in the gauge field theory, we can consider the theory
which contains the gauge field and the matter field in different dimensions.
Such a theory often shows characteristic properties [1,2,3,4]. In condensed mat-
ter physics, it has been realized in trapped electron systems, such as graphene
[5]. Recently, graphene is investigated in lattice gauge theory [6,7,8,9]. In the
gauge/string duality, this kind of setup has been frequently used in terms of
D-brane [10].

Motivated by these works, we consider the Yang-Mills theory coupled with
fermions. We depict our theoretical setup schematically in Fig. 1. The Yang-
Mills field lives in the (3+1)-dimensional space-time, while the fermion field
lives only on the (2+1)-dimensional hyperplane at z = 0. The existence of
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Fig. 1. The schematic figure of the (3+1)-dimensional gauge theory with (2+1)-di-
mensional fermions. The fermions are localized at z = 0.

this fermion membrane breaks the Lorentz invariance and the translational
invariance in the z-direction. From the viewpoint of the gauge field, the fermion
field is localized in the low-dimensional subsystem. From the viewpoint of the
fermion field, the background gauge field has one extra dimension.

This theory is renormalizable. Counter terms are introduced for the gauge field
in four dimension and for the fermion field in three dimension at z = 0. There
is no additional ultraviolet divergence, unlike two-dimensional fermions in the
four-dimensional Yang-Mills theory [2,4]. This theory is classically conformal
when the fermions are massless. There is no dimensional parameter except for
the bare fermion mass, unlike the three-dimensional Yang-Mills theory. The
dynamics is uniquely determined through dimensional transmutation.

In this Letter, we study this system by means of lattice Monte Carlo simula-
tions. We focus on how the fermion membrane affects the vacuum structure
at finite temperature. In the finite-temperature formalism, the t-direction is
compactified in the Euclidean metric with a periodic boundary condition for
the gauge field and with an antiperiodic boundary condition for the fermion
field.

2 Formalism

This system is formulated by the standard technique of lattice gauge theory.
For the gauge part of the lattice action, we used the Wilson gauge action

SG = β
∑

x,µ,ν

[

1−
1

Nc

ReTrUµν(x)
]

, (1)
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where Uµν(x) is the plaquette variable, i.e., the minimal gauge invariant loop.
The lattice spacing a is determined by the dimensionless parameter β =
2Nc/g

2. Because this system is equivalent to the pure gauge theory in large z,
we can set the same physical scale as in the pure gauge theory. For the fermion
part, we used the three-dimensional staggered fermion,

SF =
1

2
a2

∑

x,i

ηi(x)
[

χ̄(x)Ui(x)χ(x+ î)

−χ̄(x)U †
i (x− î)χ(x− î)

]

+ a3m
∑

x

χ̄(x)χ(x), (2)

where χ(x) is the spinorless staggered field and ηi(x) is the staggered phase
[11]. The summations are taken over the three-dimensional plane at z = 0. In
the continuum limit, this fermion action corresponds to the standard three-
dimensional form

∑

ψ̄(σiDi±m)ψ and the fermion field is the four-flavor two-
component spinor. The four flavors contain two positive-mass states of +m and
two negative-mass states of −m. This fermion field is equivalently rewritten as
the two-flavor four-component spinor under a 4×4 representation of the Dirac
matrices [11,12]. This four-component spinor construction preserves parity and
time-reversal invariances.

To generate the gauge configurations under the full lattice action SG + SF ,
we made use of the Hybrid Monte Carlo algorithm. The gauge configuration
with the lattice volume N3

s ×Nt includes the dynamical fermions on the three-
dimensional volume N2

s ×Nt. The parameters are set at Nc = 3 and β = 5.7,
and the corresponding lattice spacing is a ≃ 0.19 fm. The bare fermion mass
is set at ma = 0.2. To simulate several values of temperature, we changed the
temporal extent Nt with the fixed lattice spacing. The physical temperature
is given as T = 1/(Nta) with a−1 ≃ 1 GeV. The lattice sizes of the gauge
configurations are listed in Table 1.

3 Results

First, we measured the fermion condensate

Σ = −a2〈ψ̄ψ〉 (3)

at the z = 0 plane. We show the numerical data in Table 1 and Fig. 2.
Note that the fermion condensate is always finite because of the finite fermion
mass. The fermion condensate decreases as temperature increases, and its
derivative seems to be large in 125 MeV < T < 167 MeV. This suggests that
the remnant of spontaneous symmetry breaking contributes to the fermion
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Table 1
Numerical data of simulations. The temporal extent Nt, the spatial extent Ns, the
physical temperature T , the fermion condensate Σ and the Polyakov loop P are
listed. The statistical errors are shown in parentheses.

Nt Ns T [MeV] Σ P (z = 0) P (z = aNs/2)

16 16 63 0.734(12) 0.0017(22) -0.0011(28)
10 16 100 0.692(14) 0.0065(34) 0.0007(27)
8 16 125 0.596(13) 0.0252(31) -0.0051(30)
6 12 167 0.369(7) 0.1025(44) 0.0121(41)
6 16 167 0.378(8) 0.1128(46) -0.0030(33)
6 24 167 0.379(6) 0.0999(30) -0.0008(22)
4 16 250 0.228(1) 0.2966(38) 0.1538(43)

condensate in low temperature and it is restored in high temperature. The
broken symmetry is flavor symmetry, not chiral symmetry, because there is no
chiral symmetry in three dimension. In the massless and continuum limit, the
symmetry breaking pattern is considered to be U(Nf ) → U(Nf/2)×U(Nf/2),
as three-dimensional QCD [13,14].

Next, we calculated the expectation value of the Polyakov loop

P =

〈

1

Nc

Tr
∏

t

U0(~x, t)

〉

, (4)

which is a good indicator for confinement. Unlike the fermion condensate,
we can define the Polyakov loop not only on the fermion membrane (z = 0)
but also outside it (z 6= 0). We show the Polyakov loop value at z = 0
and z = aNs/2 in Table 1 and Fig. 2. In large z limit, this theory should
be equivalent to the pure Yang-Mills theory. The SU(3) pure gauge theory
has the first-order phase transition at Tc ≃ 250 MeV, e.g., βc ≃ 5.69 with
Nt = 4 [15] The data of z = aNs/2 is consistent with this expectation. On
the other hand, the Polyakov loop at z = 0 shows a different behavior. It is
finite even at T ≃ 125 MeV. As a result, we obtain an unconventional phase in
125 MeV ≤ T < 250 MeV. In this phase, the Polyakov loop value is nonzero
at z = 0, whereas it is almost zero in large z. This phase is interpreted as
confinement phase with partial deconfinement around the fermion membrane.

The existence of this phase is understood as follows. Apart from the mem-
brane, the system has the first-order phase transition of the pure Yang-Mills
theory at Tc ≃ 250 MeV. On the membrane, however, the theory includes the
dynamical fermions. This makes the coupling constant smaller and the transi-
tion temperature lower locally around the membrane. Therefore, the fermion
membrane induces partial deconfinement below the transition temperature of
the pure Yang-Mills theory.
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Fig. 2. The Polyakov loop P and the fermion condensate Σ with Ns = 16.
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Fig. 3. The volume dependence of the Polyakov loop P and the chiral condensate
Σ with Nt = 6.

In the present simulations, we cannot determine the temperature and the
order of the phase transition. These properties would depend on the fermion
mass and the flavor number. To validate the existence of this phase, we here
check the dependence on the spatial volume V = a3N3

s at fixed temperature.
In Fig. 3, we plot the fermion condensate and the Polyakov loop at T ≃ 167
MeV as a function of the inverse volume 1/V . All these are insensitive to the
volume. In particular, the Polyakov loop at z = 0 seems to remain finite in
the infinite volume limit 1/V → 0. Thus, at least, the calculation at T ≃ 167
MeV, i.e., Nt = 6, lies in this phase.

In this phase, the vacuum structure is spatially-nonuniform in the z-direction.
In Fig. 4, we show the Polyakov loop value as a function of z. Since the
distribution is symmetric about z = 0, we only show the region of 0 ≤ z ≤
aNs/2. The numerical data is well fitted by C exp(−z/z0) + P0. At T ≃ 167
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Fig. 4. The z-dependence of the Polyakov loop P with Ns = 16. The curves are the
best-fit functions of C exp(−z/z0) + P0.

MeV, i.e., Nt = 6, the Polyakov loop value is nonzero at z = 0 and decreases
exponentially in z > 0. The best-fit damping parameter is z0 ≃ 0.3 fm. Taking
into account the region of z ≤ 0, the thickness of the deconfinement layer is
roughly 1 fm.

As another observable, we consider the color averaged potential between static
color sources. The color averaged potential V (R) is extracted from the corre-
lation function of the Polyakov loop and the anti-Polyakov loop,

e−
V (R)

T =

〈

1

N2
c

[

Tr
∏

t1

U0(~x1, t1)
][

Tr
∏

t2

U †
0(~x2, t2)

]

〉

(5)

with R = |~x1−~x2|. In the case of Nc = 3, the color averaged potential includes
the color-singlet and color-octet components. In a deconfinement medium, the
potential is Debye screened as the color sources are separated. We measured
the color averaged potential from the Polyakov loop and the anti-Polyakov
loop at the same z plane. In Fig 5, we plot the resultant potential at T ≃
167 MeV as for several values of z. We also show the best-fit function of
−A exp(−MR)/R + V0. At z = 0, the potential is strongly screened and the
screening mass is M ≃ 1 GeV. As z increases, the screening mass decreases as
M → 0. In this phase, we can change the potential from the Debye screened
form to the Coulomb plus confining form by going away from the membrane,
without changing temperature.

In summary, we discussed the four-dimensional Yang-Mills system with a
three-dimensional fermion membrane, and found that the fermion membrane
induces a deconfinement layer, which is about 1 fm thick, in confinement
phase. If we introduce fermions with the larger flavor number, we would ob-
tain a conformal layer at zero temperature. In general, we can patch not only
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Fig. 5. The color averaged potential V (R) with Ns = 16 and Nt = 6. The curves
are the best-fit functions of −A exp(−MR)/R + V0.

a membrane but also various different vacuums in the same manner. This kind
of theoretical study is one possible approach for spatially-nonuniform vacuum
in lattice gauge theory.
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