
ar
X

iv
:1

01
1.

57
24

v1
  [

he
p-

la
t]

  2
6 

N
ov

 2
01

0
ADP-10-25/T721

Roper Resonance in 2+1 Flavor QCD

M. Selim Mahbub,1, 2 Waseem Kamleh,1 Derek B. Leinweber,1 Peter J. Moran,1, 3 and Anthony G. Williams1

(CSSM Lattice Collaboration)
1Special Research Centre for the Subatomic Structure of Matter, Adelaide, South Australia 5005, Australia,

and Department of Physics, University of Adelaide, South Australia 5005, Australia.
2Department of Physics, Rajshahi University, Rajshahi 6205, Bangladesh.

3CSIRO Mathematics, Informatics and Statistics,

Private Bag 33, Clayton South, VIC 3169, Australia.

The low-lying even-parity states of the nucleon are explored in lattice QCD using the PACS-CS
collaboration 2+1-flavor dynamical-QCD gauge-field configurations made available through the In-
ternational Lattice Datagrid (ILDG). The established correlation-matrix approach is used, in which
various fermion source and sink smearings are utilized to provide an effective basis of interpolating
fields to span the space of low-lying energy eigenstates. Of particular interest is the nature of the

first excited state of the nucleon, the N 1

2

+
Roper resonance of P11 pion-nucleon scattering. The

Roper state of the present analysis approaches the physical mass, displaying significant chiral curva-
ture at the lightest quark mass. These full QCD results, providing the world’s first insight into the
nucleon mass spectrum in the light-quark regime, are significantly different from those of quenched
QCD and provide interesting insights into the dynamics of QCD.

PACS numbers: 11.15.Ha,12.38.Gc,12.38.-t

The first positive parity resonance of the nucleon, the

N 1
2

+
(1440) or Roper resonance, has been a subject of

extensive interest since its discovery in 1964 [1]. This P -
wave isospin-1/2 spin-1/2 (P11) pion-nucleon resonance
has held the curiosity and imagination of the nuclear
and particle physics community due to its surprisingly
low mass. For example, in constituent quark models the
lowest-lying odd-parity state occurs below the P11 state

[2, 3] whereas in Nature, the negative parity N 1
2

−
(1535)

S11 state is almost 100 MeV above the Roper resonance.

This phenomenon has led to wide speculation on the
possible exotic nature of the Roper resonance. For exam-
ple, the Roper resonance has been described as a hybrid
baryon state with explicitly excited gluon field configu-
rations [4, 5], as a breathing mode of the ground state [6]
or a state which can be described in terms of a five quark
(meson-baryon) state [7].

The elusive nature of this low-lying resonance is not
constrained to model calculations alone. There have been
several investigations of the low-lying nucleon spectrum
using the first-principles approach of lattice field theory.

The lattice approach to Quantum Chromodynamics
(QCD) provides a non-perturbative tool to explore the
properties of hadrons from the first principles of this fun-
damental quantum field theory. Numerical simulations of
QCD on a space-time lattice with the light up, down and
strange dynamical-quark masses similar to those of Na-
ture are now possible [8]. As such, some long-standing
problems in nuclear-particle physics are now being re-
solved. For example, the ground-state hadron spectrum
is now well understood [9].

However, gaining knowledge of the excited-state spec-
trum presents additional challenges. The Euclidean-time
correlation function provides access to a tower of energy

eigenstates in the form of a sum of decaying exponen-
tials with the masses of the states in the exponents. The
ground state mass, being the lowest energy state, has the
slowest decay rate, and is obtained through the analysis
of the large-time behaviour of this function. However, the
excited states appear in the the sub-leading exponentials.
Extracting excited state masses from these exponents is
intricate as the correlation functions decay quickly and
the signal to noise ratio deteriorates rapidly. In addi-
tion, the spectrum is composed of both single-particle
states and multiple-particle states interacting and mix-
ing in the finite physical volume of the lattice. Under-
standing the finite-volume dependence of these states and
linking them to the resonances of Nature is a long-term
program of the lattice QCD community.

In this letter we report the excited-state energy spec-
trum of the nucleon in the light quark-mass regime of
QCD for the first time. Of particular note is the identifi-
cation of a new low-lying state associated with the Roper
resonance of Nature.

Several attempts have been made in the past to find
the elusive low-lying Roper state in the lattice frame-
work [10–15, 15–22]. The results reported therein are as
much about the development of lattice techniques as they
are about the nucleon spectrum. Where the lattice tech-
niques are regarded as robust, a low-lying Roper state
has not been observed. The difficulties lie in finding ef-
fective methods to isolate the energy eigenstates of QCD
and in accessing the light quark mass regime of QCD.

The ‘Variational method’ [23, 24] is the state-of-the-
art approach for determining the excited state hadron
spectrum. It is based on the creation of a matrix of
correlation functions in which different superpositions of
excited state contributions are linearly combined to iso-
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late the energy eigenstates. A diversity of excited-state
superpositions is central to the success of this method.
Early implementations of this method using a variety

of standard spin-flavor interpolating fields of fixed source-
distribution size were not successful in isolating energy
eigenstates. Instead the putative eigenstates were super-
positions of energy-states [25] and the low-lying Roper
state was hidden by excited-state contaminations. A so-
lution to this problem was established in Refs. [26, 27]
where a low-lying Roper state was isolated. Key to this
approach, used herein, is the utilization of a diverse range
of fermion source and sink smearings in creating the ma-
trix of correlation functions. The diversity of smearings
leads to a wide variety of superpositions of excited-state
contributions, providing a suitable basis for constructing
linear combinations which isolate the eigenstates.
These effective techniques [25–28] were developed in

the quenched approximation and we bring them to the
dynamics of full QCD for the first time here. The low-
lying even-parity states of the nucleon are explored in
full QCD using 2+1-flavor dynamical-QCD gauge-field
configurations [8]. Whereas other recent full QCD anal-
yses [20–22] report a first positive parity excited state
that appears too high to be considered as the Roper res-
onance, we will illustrate how the low-lying Roper state of
the present analysis approaches the physical mass of Na-
ture, displaying significant chiral curvature at the lightest
quark mass (corresponding to a pion mass of 160 MeV,
only slightly above the physical value of 140 MeV). These
full QCD results, providing the world’s first insight into
the nucleon mass spectrum in the light-quark regime, are
significantly different from those of quenched QCD and
provide interesting insights into the dynamics of QCD.
In constructing our correlation matrix for the nucleon

spectrum, we consider the two-point correlation function
matrix with momentum ~p = 0

G±

ij(t) =
∑

~x

Trsp {Γ± 〈Ω|χi(x) χ̄j(0)|Ω〉}, (1)

=
∑

α

λα
i λ̄α

j e−mαt, (2)

where Dirac indices are implicit. Here, λα
i and λ̄α

j are the
couplings of the interpolators χi and χ̄j at the sink and
source respectively and α enumerates the energy eigen-
states with mass mα. Γ± = 1

2
(γ0± 1) projects the parity

of the eigenstates.
Since the only t dependence comes from the exponen-

tial term, one can seek a linear superposition of interpo-
lators, χ̄ju

α
j , such that

Gij(t0 +△t)uα
j = e−mα△t Gij(t0)u

α
j , (3)

for sufficiently large t0 and t0 + △t. Multiplying the
above equation by [Gij(t0)]

−1 from the left leads to an
eigenvalue equation

[(G(t0))
−1 G(t0 +△t)]ij u

α
j = cα uα

i , (4)

where cα = e−mα△t is the eigenvalue. Similar to Eq. (4),
one can also solve the left eigenvalue equation to recover
the vα eigenvector

vαi [G(t0 +△t) (G(t0))
−1]ij = cα vαj . (5)

The vectors uα
j and vαi diagonalize the correlation ma-

trix at time t0 and t0 + △t and provide the projected
correlator

vαi G±

ij(t)u
β
j ∝ δαβ . (6)

The parity projected, eigenstate projected correlator

Gα
± ≡ vαi G±

ij(t)u
α
j , (7)

is then analyzed using standard techniques to obtain the
masses of different states [14, 25, 29].
The PACS-CS 2 + 1 flavor dynamical-fermion config-

urations [8] made available through the ILDG are used
herein. These configurations use the non-perturbatively
O(a)-improved Wilson fermion action and the Iwasaki-
gauge action [30]. The lattice volume is 323 × 64, with
β = 1.90 providing a lattice spacing a = 0.0907 fm.
Five values of the (degenerate) up and down quark
masses are considered, with hopping parameter values
of κud = 0.13700, 0.13727, 0.13754, 0.13770 and 0.13781;
for the strange quark κs = 0.13640. We consider 350
configurations for the four heavier quarks, and 198 con-
figurations for the lightest quark. An ensemble of 750
samples for the lightest quark mass is created by using
multiple fermion sources on each configuration, spaced
to sample approximately independent regimes of each
configuration. Our error analysis is performed using a
second-order jackknife method, where the χ2/dof for pro-
jected correlator fits is obtained via a covariance matrix
analysis. Our fitting method is discussed in Refs. [25, 27].
The nucleon interpolator we use is the local scalar-

diquark interpolator, which provides good overlap with
the Roper state in quenched QCD [27]. In constructing
our correlation matrices, we consider an extensive sample
of different levels of gauge-invariant Gaussian smearing
[31] at the fermion source and sink, including 4, 9, 16,
25, 35, 50, 70, 100, 125, 200, 400, 800 and 1600 sweeps.
These levels of smearing correspond to rms radii in lattice
units (a ≃ 0.09 fm) of 1.20, 1.79, 2.37, 2.96, 3.50, 4.19,
4.95, 5.920, 6.63, 8.55, 12.67, 15.47 and 16.00.
Fig. 1 displays effective mass plots, m(t) =

ln{G+
ij(t)/G

+
ij(t + 1)} for smeared-source to point-sink

correlators. The variation in the superposition of excited
state contributions is revealed in the different approaches
of the effective mass to the ground state plateau where
the results converge. From these plots, it is clear that the
correlation matrix analysis for excited state contributions
will be most effective in the regime t = 17− 21.
To explore the low-lying eigenstates of the nucleon

spectrum, we construct several 4 × 4 correlation matri-
ces as described in Table I. These matrices provide ro-
bust results for the lowest three energy eigenstates, with
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FIG. 1: (Color online). Effective mass from smeared-source
to point-sink correlators for various levels of smearings at the
source for κud = 0.13770 (left) and κud = 0.13700 (right).

FIG. 2: (Color online). Masses from the projected correla-
tion functions as shown in Eq. 7, for each set of variational
parameters t0 (major axis) and △t (minor axis). This figure
corresponds to the lightest quark mass, κud = 0.13781, and
the 3rd basis of Table I.

the highest energy level accommodating the fourth eigen-
energy and any residual strength from higher states not
eliminated via Euclidean time evolution.
The masses from the projected correlation functions

obtained from the correlation matrix analysis are very
consistent over the variational parameters (t0,△t) as il-
lustrated in Fig. 2. Careful examination of Fig. 2 reveals
some systematic drift in the second excited state mass
at small △t for t0 = 17, 18. This emphasises the prefer-
ence for selecting larger values of (t0,△t) as discussed in
Refs. [26, 27, 29]. However, larger uncertainties are evi-
dent for t0 = 18, 19 with large △t due to the suppression
of excited states via Euclidean time evolution. We se-

TABLE I: Smearing levels used in constructing 4× 4 correla-
tion matrix bases.

Sweeps → 16 25 35 50 70 100 125 200 400 800
Basis No. ↓ Bases

1 16 - 35 - 70 100 - - - -
2 16 - 35 - 70 - 125 - - -
3 16 - 35 - - 100 - 200 - -
4 16 - 35 - - 100 - - 400 -
5 16 - - 50 - 100 125 - - -
6 16 - - 50 - 100 - 200 - -
7 16 - - 50 - - 125 - - 800
8 - 25 - 50 - 100 - 200 - -
9 - 25 - 50 - 100 - - 400 -
10 - - 35 - 70 - 125 - 400 -

lect t0=18, △t=2 as providing the best balance between
these systematic and statistical uncertainties. These vari-
ational parameters also provide a projected correlation
function having the most favorable χ2/dof in the effec-
tive mass fit.
The consistency of the extracted masses from all the

4×4 matrices considered in Table I is illustrated in Fig. 3.
In particular, the ground and Roper states are robust.
Both lower and higher smearing radii are beneficial for
spanning the space of states at all quark mass. However,
we avoid bases which include extreme smearing counts
(400 and 800) as these often provide ill-defined correla-
tion matrices. Hence, we select basis number 3 as the
focus of subsequent analysis.
In Fig. 4, masses of the low-lying positive-parity states

of the nucleon are presented with the scale set via the
Sommer parameter [32]. The most significant result of
this investigation is the manner in which the extracted
Roper state (filled triangles) approaches the physical
value. The significant curvature in the chiral regime in-
dicates the important role played by mesonic dressings
of the Roper. Remaining discrepancies can be attributed
to finite volume effects [33]. The strength of the pion-
induced self energy revealed here hints at strong mixings
of the Roper not only with the ground state nucleon but
also with other nearby positive parity states.
The other significant finding of this investigation is the

absence of the low-lying multi-particle scattering states
at light quark mass. This is most likely attributed to poor
overlap between these scattering states and the three-
quark interpolating fields used herein. Future calcula-
tions should investigate the use of five-quark operators to
ensure better overlap with these states. Indeed, complete
knowledge of the spectrum is required for a definitive de-
termination of the properties of the Roper resonance.
Fig. 5 provides a comparison of our results in full QCD

with earlier results in quenched QCD [26], where the ef-
fects of dynamical quark loops are not considered. While
the ground state of the nucleon in quenched (open sym-
bols) and full QCD (full symbols) are in reasonable agree-

FIG. 3: (Color online). Masses of the N 1

2

+
energy states for

various 4× 4 correlation matrix bases as given in Table I, for
κud = 0.13770, over 50 configurations.
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FIG. 4: (Color online). Masses of the low-lying positive-parity
states of the nucleon. Physical values are plotted at the far
left. Lattice results for the Roper (filled triangles) reveal sig-
nificant chiral curvature towards the physical mass.

FIG. 5: (Color online). A comparison of the low-lying
positive-parity spectrum of dynamical QCD (full symbols)
and quenched QCD results (open symbols) from Ref. [26].

ment, significant differences are observed for the Roper
in the light quark mass regime. Once again, this empha-
sizes the role of dynamical fermion loops in creating the
mesonic dressings of the Roper.
This investigation is the first to illustrate the manner

in which the Roper resonance of Nature manifests itself
in today’s best numerical simulations of QCD. The quark
mass dependence of the state revealed herein substanti-
ates the essential role of dynamical fermions and their
associated non-trivial light-mesonic dressings of baryons,
which give rise to significant chiral non-analytic curva-
ture in the Roper mass in the chiral regime.
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