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The leading hadronic vacuum polarisation on the lattice

Michele Della Morte∗, Benjamin Jäger†, Andreas Jüttner∗∗ and Hartmut Wittig∗

∗Institut für Kernphysik and Helmholtz Institut Mainz, Johannes Gutenberg-Universität, 55099 Mainz, Germany
†Institut für Kernphysik, University of Mainz, Becher Weg 45, 55099 Mainz, Germany

∗∗CERN, Physics Department, TH Unit, CH-1211 Geneva 23, Switzerland

Abstract. After discussing the relevance of a first principles theory-prediction of the hadronic vacuum polarisation for
Standard Model tests, the theoretical challenges for its computation in lattice QCD are reviewed. New ideas that will
potentially improve the quality of lattice simulations will be introduced and the status of ongoing simulations will bepresented
briefly.
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INTRODUCTION

The quest to measure the anomalous magnetic moment
of the muon,aµ , experimentally with ever increasing pre-
cision has started at CERN [1] decades ago and was later
continued at BNL [2], yielding a precision of 0.5ppm [3].
In the Standard Model (SM)aµ receives contributions
most notably from QED but also from the Weak sec-
tor and from QCD. While the former two contributions
can be computed in (high order) perturbation theory, the
QCD contributions are non-perturbative and as such not
computable analytically in a model independent way. As
nicely summarised in [4], using unitarity and analytic-
ity, the leading QCD-contribution (cf. figure 1) is cur-
rently determined from the experimental measurement
of e+e−-annihilation or hadronicτ-decays. With these
experiment-based approaches one is able to predictaLHV

µ
with a precision below 1%. While the former process
seems to provide solid SM-predictions, a pure theory-
prediction still seems worth-while. In particular sinceaµ
is sensitive to contributions from physics beyond the SM.
In fact, the theory prediction currently differs from the
experimental measurement by 3.2σ [4]. While not yet
providing evidence for new physics, this tension is natu-
rally causing excitement.

Here we report on progress in predictingaLHV
µ in

lattice QCD. It will become clear that this type of
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FIGURE 1. The leading hadronic contributionaLHV
µ .

calculations is still in its infancy [5, 6, 7, 8]. To this
end the precise experimental prediction ofaLHV

µ will in
the near future remain a reference for assessing lattice
computations.

aLHV
µ ON THE LATTICE

The leading hadronic contribution is defined as

aLHV
µ =

(α
π

)2
∞
∫

0

dQ2K(Q2)
(

Π(Q2)−Π(0)
)

, (1)

where the functionK(Q2) parametrises the QED contri-
bution to the diagram in figure 1 [9]. Note that the in-
tegration is over space-like momentaQ2. The function
Π(Q2) is the vacuum polarisation amplitude,

Πµν(q) =
∫

d4xeiq(x−y)〈 jEM
µ (y) jEM

ν (x)〉
(2)

= (qµqν −q2gµν)Π(Q2) ,

where Q2 ≡ −q2. Simulations of lattice QCD always
have to keep track of a number of systematic effects,
most notably those stemming from the finite lattice-
spacing, the finite volume and unphysically heavy quark
masses. These effects have been studied deeply and a
large body of tools by now allows one to estimate or to
systematically control them at the level of precision re-
quired here. In this talk we present new ideas tailored
to control systematic uncertainties arising from the pres-
ence of quark-disconnected diagrams, from the limited
momentum resolution in finite volume field theory and
from the contribution of vector resonances.
Quark disconnected diagrams and vector resonances
The electro-magnetic currentjEM

µ (x) in eq. (2) con-
sists of a linear combination of flavour-diagonal quark-
bilinear currents ¯q(x)γµq(x), whereq= u,d,s. The Wick

http://arxiv.org/abs/1011.5793v1


contractions of eq. (2) therefore yield quark connected
contributions

〈Tr{Sq(x,y)γµ Sq(y,x)γν}〉 , (3)

and quark disconnected contributions

〈Tr{Sq(y,y)γµ}Tr{Sq(x,x)γν}〉 , (4)

where Sq(x,y) is the quark propagator for the quark
flavourq and the trace is over spin- and colour-indices.
In lattice simulations the latter contribution is often ne-
glected because of the huge overhead its computation
causes [10].

A new method for predicting correlation functions
consisting of quark-disconnected contributions was de-
veloped in [11]. By introducing valence quarks which are
degenerate with the dynamical flavours, each Wick con-
traction can be rewritten in terms of a single fermionic
correlation function defined in an unphysical theory. The
physical result is recovered by summing over the correla-
tion functions in the unphysical, partially quenched, the-
ory [12, 13, 14]. In particular, the above expectation val-
ues eq. (3) and (4) remain unchanged if one of the quarks
is replaced by a mass-degenerate partially quenched va-
lence quarkq′. This allows to express them in terms of
individual two-point functions, the Wick-contractions of
which yield either a connected or a disconnected two-
point function:

Cconn(y,x) ≡ 〈q̄(y)γµq′(y)q̄′(x)γν q(x)〉 ,
(5)

Cdisc(y,x)≡ 〈q̄′(y)γµq′(y)q̄(x)γν q(x)〉 .

Within partially quenched chiral perturbation theory [12,
13, 14, 15, 16], expressions for the connected and the
disconnected contributions to hadronic correlation func-
tions can be computed. The case of theNf = 2-theory
without and with a partially quenched strange quark as
well as theNf = 2+ 1-theory were studied in [11]. In
the Nf = 2-theory for example, the calculation at next-
to-leading order in the effective theory predicts that the
disconnected contribution reduces the connected contri-
bution by only 10%.

The analytical prediction of quark-disconnected di-
agrams is work in progress. In particular, vector res-
onances which are not dynamical degrees of freedom
in chiral perturbation theory turn out to be dominating
Π(Q2) [6, 7]. It will be interesting to study the impact of
vector resonances on the above predictions by including
these degrees of freedom into the chiral Lagrangian [17].
However, while the effective theory for pions and kaons
stands on solid grounds, this similar ansatz for vector
mesons is a model.
Momentum resolution
Today, typical lattices extend overL ≈ 3fm in the spatial
directions (typically twice that large in the temporal
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FIGURE 2. Shape of the integral kernel in eq. (1) assuming
vector dominance forΠ(Q2).

direction,T = 2L). Besides vanishing momentum, the
lowest hadron momentum therefore corresponds to the
lowest non-vanishing Fourier-mode, 2π/T ≈ 200MeV.
The plot in figure 2 shows the integral kernel of
eq. (1), which is peaked at around the muon mass,
mµ ≈ 106MeV. The lattice data therefore needs to be
extrapolated into this region. In order to computeΠ(Q2)
closer to the peak, the Mainz group [8] is applying
twisted boundary conditions to the valence quark fields,
q(x + Lî) = eiθi q(x), which allows one to tune the
offset of the Fourier Modes accessible in the lattice
computation [18, 19, 20, 21, 22, 23, 24]. Naively, the
twists applied to the quark-fields in the flavour-diagonal
currents in eq. (2) will cancel (see e.g. [20]). However,
the connected correlation function in eq. (5),Cconn.(y,x),
is composed of flavour-off-diagonal currents. Hence,
different twist-angles can be applied for the quark fields
q andq′, respectively [11]. This argument allows to ap-
ply partial twisting at least to the connected contribution
to aLHV

µ . The disconnected contribution can either be
predicted using chiral perturbation theory (cf. above) or
it can be computed for the usual Fourier momenta and
then be interpolated using the ansatz provided by chiral
perturbation theory. Figure 3 shows results forΠ(Q2)
by the Mainz group. Without twisting only the blue
data points are accessible, while with twisting the red
data points can be added. Besides providing data points
closer to the region where the integral eq. (1) receives
major contributions, the additional data points for larger
values of the momentum will help in stabilising fits: In
order to compute the result for the vacuum polarisation
tensor eq. (2) one first fits an ansatz for its momentum-
dependence to the data and then integrates it. The Mainz
group uses models for the vector resonance, polynomials
and Padé approximations as ansätze (cf. also ETM’s
study of parametrisations of vector resonances in [7]).
An estimate of the systematic uncertainties is obtained
from the spread of the respective fit-results. In our



0 0.5 1 1.5 2 2.5 3 3.5
0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

Q2/GeV2

Π
(Q

2 )

 

 

PRELIMINARY

periodic boundary conditions
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FIGURE 3. Results forΠ(Q2) with (red) and without (blue)
twisted boundary conditions.
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FIGURE 4. Comparison of results foraLHV
µ as a function of

the pion mass squared: Sources: our results (blue diamonds)
are preliminary, MILC [6] (where we have chosen as the error
bar the maximum spread between results from differentq2-
parametrisations) and ETMC [7]. Note that the plotted results
are for different values of the lattice cut-off and also of the
lattice volume.

analysis the additional data points which we obtained
by using partially twisted boundary conditions helped to
reduce this spread significantly.

STATUS

Figure 4 shows results for the vacuum polarisation by
ETM [7], MILC [6] and by the Mainz group. Note that
Mainz is the only group using twisted boundary condi-
tions while ETM is the only collaboration trying to com-
pute the disconnected contribution directly. For compar-
ison we quote the value obtained from the analysis of
e+e−-annihilation,aLHV

µ = 690(5)× 10−10 [4]. Clearly
the lattice data tend towards this value as the quark mass
is reduced, but the extrapolation to the physical point is
model-dependent and will only be dispensable once the
simulation is carried out for physical quark masses.

In this talk we present the status of lattice compu-
tations of aLHV

µ . While significant progress has been
made recently systematic uncertainties are still not under
sufficient control. Clearly, simulations at the physical
point would be very desirable in order to be independent
of model-based extrapolations of lattice data.
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