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1. Introduction

Strange quarks provide a special perspective on nucleon structure due to their absence from
the valence content of the nucleon. As a result of this absence, effects of quark-antiquark pair
creation and annihilation can be studied in isolation. Correspondingly, considerable efforts to probe
strange quarks in the nucleon have been, and continue to be made on the experimental side. On the
one hand, electron scattering experiments have provided data on the strange electric and magnetic
form factors [1], as well as given some indication of the strange axial structure; the latter, on the
other hand, can also be studied in more detail in neutrino scattering experiments, with a combined
analysis having been presented in [2]. Considerably enhanced data are expected to emerge from
the upcoming neutrino experiments MicroBooNE and MINERνA.

On the side of lattice QCD, calculating strange contributions to nucleon structure counts
among the relatively hard problems, since these contributions are determined purely by discon-
nected diagrams, requiring propagator traces, cf. Fig. 1. On the other hand, among this hard class
of problems, strange matrix elements are still the easiest to access, since the quark being propa-
gated in the disconnected loop is heavy, and the associated propagator calculation is therefore less
expensive than for light quark loops. Thus, besides the physical relevance of such calculations,
they can also serve as initial test cases for exploring techniques to evaluate disconnected contribu-
tions to hadron physics more generally. A number of such investigations are being pursued by a
variety of groups [5 – 11]. The effort presented here focuseson the two most fundamental contribu-
tions of strange quarks to the properties of the nucleon, namely, their contributions to the nucleon
mass and the nucleon spin. The calculational scheme employed is one which has been developed
and optimized by the LHP Collaboration [12]. Domain-wall quark propagators are evaluated on
HYP-smeared MILC asqtad dynamical quark ensembles. While the use of domain wall fermions
implies considerable computational expense, it is expected to yield advantages in terms of mild
renormalization and chiral behavior.

2. Strange matrix elements

The strange contributions to nucleon mass and spin can be characterized by the matrix ele-
ments

fTs =
ms

mN
〈N|s̄s|N〉 and ∆s = 〈N, i|s̄γiγ5s|N, i〉 (2.1)

respectively, where|N, i〉 denotes a nucleon state with spin polarized in thei direction. These
matrix elements are obtained from corresponding lattice correlator ratios,

R[ Γnuc,Γobs ](τ ,T ) =

〈 [

Γnuc
αβ Σ~x Nβ (~x,T )N̄α(0,0)

]

·
[

−Γobs
γρ Σ~y sρ(~y,τ)s̄γ(~y,τ)

] 〉

〈

Γunpol
αβ Σ~x Nβ (~x,T )N̄α(0,0)

〉 (2.2)

whereN̄,N denote (smeared) nucleon sources and sinks, the sums over spatial position~x project
onto zero momentum nucleon states, the standard minus sign accompanying the quark loop has
already become explicit through the reordering of the strange quark fields, and theΓ matrices im-
plement nucleon polarization and operator insertion structure. Specifically, the unpolarized nucleon
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Figure 1: Disconnected contribution to nucleon matrix elements. Thenucleon propagates between a source
at t = 0 and a sink att = T ; the insertion ofΓ ≡ Γobs occurs at an intermediate timet = τ.

two-point function in the denominator of (2.2) is achieved usingΓunpol = (1+ γ4)/2; on the other
hand, the three-point function in the numerator results from evaluating the correlation between a
nucleon propagator and a strange quark loop, as also displayed diagrammatically in Fig. 1. To
obtain fTs , one calculates

ms

mN

(

R[ Γunpol ,1 ](τ ,T ) − [VEV]
)

≡ R{ fTs} −→ fTs (2.3)

in the limit T ≫ τ ≫ 0, where, as indicated, the vacuum expectation value of the quark loop,
[V EV ] = 〈−Σ~y sγ(~y,τ)s̄γ(~y,τ)〉 is subtracted; the matrix elements (2.1) are meant to characterize
the strange content of the nucleonrelative to the vacuum, which itself contains a strange scalar
condensate. The nucleon massmN can be extracted from the nucleon two-point function as a by-
product of the calculation. On the other hand, to obtain∆s, one calculates

−i ·2·R[ (−iγiγ5/2) Γunpol ,γiγ5 ](τ ,T ) ≡ R{∆s} −→ ∆s (2.4)

in the limit T ≫ τ ≫ 0. In this case, the corresponding vacuum expectation valuevanishes, but it
can nevertheless be calculationally advantageous to subtract this numerical zero in order to reduce
statistical fluctuations. Note that, in (2.4), an average has already been taken over the expectation
values obtained using nucleons polarized in the positive and the negativei-directions, respectively;
averaging the corresponding projectors(1∓ iγiγ5)/2 (with a relative minus sign) leads to the first
argument ofR in (2.4). In the numerical calculation, also the polarization axisi will be averaged
over the three spatial directions in order to further improve statistics, cf. the description further
below. The prefactor 2 in (2.4) is a normalization factor compensating for the fact that the un-
polarized nucleon two-point function is always used in the denominator of the ratio (2.2), even
when polarized nucleon states are used in the numerator. Finally, the prefactor(−i) incorporates
the Wick rotation back to Minkowski space; it compensates for the additional factori arising in
the γ5 matrix contained in the second argument ofR in (2.4) when casting the calculation on the
Euclidean lattice.

3. Lattice setup

Numerical work was carried out on two 2+1-flavor asqtad dynamical quark ensembles pro-
vided by the MILC collaboration, corresponding to the pion massesmπ = 356MeV andmπ =
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Figure 2: Setup of the lattice calculation. The nucleon source is located at lattice timet = 0. The operator
insertion timeτ is averaged overt = 3, . . . ,7; accordingly, stochastic sources are distributed over the bulk of
the lattice in this entire time range. The temporal positionT of the nucleon sink is variable.

495MeV. These ensembles contained 448 and 486 203×64 lattices, respectively, with lattice spac-
ing a = 0.124fm. The configurations were HYP-smeared for the purpose of this calculation. The
nucleon two-point functions and strange quark loops were evaluated using domain wall quarks. The
lattice setup employed is depicted in Fig. 2. To enhance statistics, the operator insertion timeτ in
(2.2) was averaged over five time slices,t = 3, . . . ,7 (wheret = 0 corresponds to the nucleon source
position). To implement this average, complexZ(2) stochastic sources, introduced to the evaluate
the strange quark loop propagator trace, were distributed over the bulk of the lattice within this en-
tire temporal range. Formπ = 356MeV, 1200 stochastic sources per configuration were used, for
mπ = 495MeV, 600 stochastic sources1. This rigid temporal setup, chosen to allow for maximal
statistics, does not permit a variation of the operator insertion time in order to test for a plateau; it
is motivated by previous extensive experience with connected diagrams in the same scheme [12],
which suggests that the nucleon ground state has been filtered out att = 3 to a sufficient degree as
to render the associated systematic uncertainty small compared to the statistical uncertainty of the
present calculation. On the other hand, a residual opportunity to test the dependence of the results
specifically on the operator-sink separation is given; below, results for the relevant correlator ratios
will be shown as a function of variable sink positionT , with the expectation that the asymptotic
behavior will be reached for sink positionsT ≥ 10.

Besides statistical uncertainties stemming from the stochastic evaluation of the quark loop, the
observables studied here exhibit substantial gauge fluctuations. To accumulate statistics sufficient
to overcome these fluctuations, it is necessary to evaluate multiple samples of the correlator ratios
of interest per given gauge configuration. Thus, for given source time slice, not one, but several
(eight in the case ofmπ = 356MeV, four in the case ofmπ = 495MeV) different samples were
obtained by varying the spatial source position. Furthermore, since the scheme depicted in Fig. 2
requires a much smaller temporal extent than available on the lattice employed, the entire scheme
was replicated three times on separate temporal regions of the lattice. Altogether, therefore, 24
correlator ratio samples were obtained per lattice gauge configuration in the case ofmπ = 356MeV,

1These high statistics in the stochastic sources mainly serve to improve the signal for∆s; the stochastic estimator
for the scalar matrix element, by contrast, converges rapidly and the statistical uncertainty infTs is dominated by gauge
fluctuations.
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Figure 3: Correlator ratioR{ fTs} as a function of sink timeT , for the two pion masses considered.
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Figure 4: Correlator ratioR{∆s} as a function of sink timeT , for the two pion masses considered.

and 12 in the case ofmπ = 495MeV. Finally, as already indicated in the previous section, ∆s was
averaged over three separate polarization axesi, corresponding to the coordinate axes.

4. Numerical results and conclusions

Figs. 3 and 4 display, as a function of sink timeT , the correlator ratiosR{ fTs} andR{∆s},
cf. (2.3) and (2.4), averaged in the fashion described in thepreceding section; for largeT , these
quantities yield the strange contributions to the nucleon mass and spin,fTs and∆s. Before reaching
the physically most relevant regionT ≥ τ (whereτ denotes the temporal location(s) of the operator
insertion), the ratios start out at vanishing values nearT = 0, then gather up magnitude as the
source-sink time interval includes an increasing portion of the stochastic source region contributing
to the quark loop. In the regionT ≥ τ , the correlator ratios are expected to level off to approachtheir
asymptotic value for large sink times. On the the other hand,in this region, statistical fluctuations
become appreciable, and there is therefore only a short timewindow in which one can hope to
observe this behavior.

In the case of∆s, cf. Fig. 4, this expectation is confirmed rather well. Quantitatively, the
estimates of∆s obtained either from the correlator ratio at sink timeT = 10 or from the average
over the correlator ratios at sink timesT = 10, . . . ,14 yield almost identical results,

At mπ = 356MeV : ∆s|T=10 =−0.030(9) ∆s|T=10...14 =−0.030(19) (4.1)

At mπ = 495MeV : ∆s|T=10 =−0.030(7) ∆s|T=10...14 =−0.031(11) (4.2)
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Figure 5: Pion mass dependence of the results forfTs and∆s. Filled circles represent measured data; open
circle in left-hand panel shows chiral extrapolation of thedata to the physical pion mass, cf. main text.

where the error estimate in the sink-time averaged case is the jackknife error extracted by per-
forming the sink time average configuration by configuration, i.e., the fact that correlator ratios at
different sink times are not independent is taken into account.

On the other hand, in the case offTs , the behavior of the correlator ratios as a function of sink
time is not as clear-cut. Atmπ = 356MeV, the correlator ratio forT > 10 considerably overshoots
the value atT = 10, whereas atmπ = 495MeV, the correlator ratio forT > 10 decreases again
compared to itsT = 10 value. Quantitatively, the comparison analogous to the one performed for
∆s above yields

At mπ = 356MeV : fTs |T=10 = 0.043(6) fTs |T=10...14 = 0.057(11) (4.3)

At mπ = 495MeV : fTs |T=10 = 0.046(4) fTs |T=10...14 = 0.037(5) (4.4)

The fact that the deviations from the expected plateau behavior occur in opposite directions for the
two pion masses may be an indication that they are caused by statistical fluctuations; also the error
estimates in (4.3),(4.4) are still compatible with this possibility. In view of the fact that correlator
ratios at different sink times are not independent of each other, the rather smooth behavior of the
correlator ratio in the case ofmπ = 495MeV does not necessarily contradict an explanation in terms
of statistical fluctuations. Currently, a doubling of the statistics for themπ = 495MeV case is being
pursued to further explore this issue.

Fig. 5 summarizes the results obtained as a function of pion mass, using the correlator ratios
at sink timeT = 10 to estimate the observables; for the case offTs , the above discussion of the un-
certainties involved in identifying an asymptotic value ofthe corresponding correlator ratio should
be kept in mind. ForfTs , also a tentative extrapolation to the physical pion mass isdisplayed;
since the strange scalar matrix element in the nucleon is related via the Feynman-Hellman theorem
to the derivative of the nucleon mass with respect to the strange quark mass, the chiral behavior
follows from differentiation of nucleon mass formulae obtained in chiral effective theory [7]. The
leading dependence is linear in the light quark mass, i.e., in m2

π ; this was used in the extrapolation
shown in the left-hand panel of Fig. 5. The extrapolated value is fTs = 0.041(12), corresponding to
ms〈N|s̄s|N〉= 39(12)MeV.

On the other hand, while no attempt at extrapolating∆s in the right-hand panel of Fig. 5 has
been made, no significant variation with pion mass is seen. Itshould be noted that the strange axial
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current entering the calculation of∆s requires renormalization, which has not been included in the
results presented here; however, for the lattice scheme used in this work, axial current renormal-
ization constants translating to theMS scheme at a scale of 2GeV are consistently very close to
1.1, over a wide range of quark masses [12]. It is therefore expected that the results for∆s only
acquire a mild 10% enhancement when translated to the standard MS scheme. Thus, no evidence
for unnaturally large strange quark contributions to nucleon spin is seen in the present calculation.

Of course, it should be noted that no attempt has been made at this point to quantify several
other sources of systematic uncertainty, such as the dependence on the lattice spacing, lattice size,
and, in particular, the fact that the strange quark mass in the gauge ensembles used lies appreciably
above the physical strange quark mass. Data on the strange quark mass dependence reported in
[7], translated to the present scheme, indicate that matrixelements such as〈N|s̄s|N〉 acquire a
correction amounting to about 15% (which infTs is (over)compensated by thems prefactor); it thus
appears reasonable to conjecture a 15% systematic error also for ∆s from this source, about half
the magnitude of the statistical uncertainty.
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