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Towards the continuum limit of the lattice Landau gauge
gluon propagator
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Abstract. The infrared behaviour of the lattice Landau gauge gluon propagator is discussed, combining results from
simulations with different volumes and lattice spacings. In particular, the Cucchieri-Mendes bounds are computed andtheir
implications for D(0) discussed.
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INTRODUCTION AND MOTIVATION

The link between the deep infrared behaviour of the
gluon and ghost propagators and confinement, has mo-
tivated a great effort on computing these quantities on
the lattice. Besides checking gluon confinement criteria,
another important goal is to compare recent solutions
of the Dyson-Schwinger equations with lattice results.
In particular, the scaling solution [1] predicts a vanish-
ing gluon propagator and a divergent ghost propagator
at zero momentum. This solution complies with Gribov-
Zwanziger [2] and Kugo-Ojima [3] confinement criteria.
On the other hand, the decoupling solution [4] claims that
a finite and non-vanishing zero momentum gluon propa-
gator and a tree level like ghost propagator. The value of
the zero momentum gluon propagator is connected with
a dynamical generated gluon mass.

In this paper we report on our current results for the
Cucchieri-Mendes bounds in SU(3) lattice gauge theory.

CUCCHIERI-MENDES BOUNDS

The Cucchieri-Mendes bounds [5] provide upper and
lower bounds for the zero momentum gluon propagator
of lattice Yang-Mills theories in terms of the average
value of the gluon field. In particular, they relate the
gluon propagator at zero momentumD(0) with

M(0) =
1

d (N2
c −1) ∑

µ,a

∣

∣Aa
µ(0)

∣

∣ , (1)

whered is the number of space-time dimensions, andNc
the number of colors. In the above equation,Aa

µ(0) is the
a color component of the gluon field at zero momentum,
defined by

Aa
µ(0) =

1
V ∑

x
Aa

µ(x) (2)

whereAa
µ(x) is thea color component of the gluon field

in the real space.D(0) is related withM(0) by

〈M(0)〉2 ≤
D(0)

V
≤ Nd

(

N2
c −1

)

〈M(0)2〉 . (3)

In the last equation〈 〉 means Monte Carlo average over
gauge configurations. For convenience we will use the
definition Ncd = Nd(N2

c − 1). The bounds in equation
(3) are a direct result of the Monte Carlo approach. The
interest on these bounds comes from allowing a scaling
analysis which can help understanding the finite volume
behaviour ofD(0): assuming that each of the terms in
inequality (3) scales with the volume according toA/Vα ,
the simplest possibility and the one considered in [5], an
α > 1 for 〈M(0)2〉 clearly indicates thatD(0)→ 0 as the
infinite volume is approached. In this sense, this scaling
analysis allows to investigate the behaviour ofD(0) in
the infinite volume limit.

For the SU(2) Yang-Mills theory [5], the results show
aD(0)= 0 for the two dimensional theory, but aD(0) 6=0
for three and four dimensional formulations.

RESULTS FOR SU(3) GAUGE THEORY

We have studied the Cucchieri-Mendes bounds within
SU(3) lattice gauge theory for three values of the gauge
coupling:β = 6.0 [6, 7],β = 5.7 [7], andβ = 6.2.

Scaling analysis for β = 6.0

In table 1 we present the lattice setup forβ = 6.0,
pointing out the differences to [6, 7].

Figure 1 shows the results for the bounds, together
with the fits to ω/Vα . Assuming this simple scaling
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FIGURE 1. Cucchieri-Mendes bounds forβ = 6.0.

TABLE 1. Lattice setup forβ = 6.0. The lattice spacing
is a= 0.1016(25)fm.

L4 164 204 244 284 324 484 644 804

L(fm) 1.63 2.03 2.44 2.84 3.25 4.88 6.50 8.13
# conf. 52 72 60∗ 56 126 104 120 50†

∗ new ensemble
† new statistics

behaviour, our results for the exponentα supportD(0) =
0 – see table 2. However, when one assumes a scaling
behaviour likeC/V +ωV−α , the results supportD(0) 6=
0 – see table 3. In this sense, a finite and non-vanishing
value forD(0) in the infinite volume is not excluded.

Concerning the fits toω/Vα , the reasons for the dif-
ferences in the values ofα reported here and in [5] – and
therefore on the behaviour ofD(0) in the infinite vol-
ume limit – are not clear. The simulations use different
gauge groups. Although there it is generally believed that
the SU(2) and SU(3) propagators are equivalent for mo-
menta above 1 GeV [8, 9], a recent direct comparison for
smaller momenta has shown a measurable difference in
the infrared region [10].

Moreover, the physical volumes used in [5] are much
larger – up to (27fm)4 – than the ones used here – up
to (8fm)4. However, the reader should be aware that in
the SU(2) case the lattice spacing used is about twice the
lattice spacing considered here.

TABLE 2. Fits toω/Vα using lattice data atβ =
6.0.

ω α χ2
ν

〈M(0)〉 9.53(36) 0.5255(26) 0.80
D(0)/V 149±10 1.0542(49) 0.63

Ncd〈M(0)2〉 2927±221 1.0504(54) 0.83

TABLE 3. Fits toC/V +ωV−α using lattice data atβ =
6.0.

ω/1000 α C/100 χ2
ν

〈M(0)〉2 0.23(24) 1.22(11) 0.337(50) 0.47
D(0)/V 0.27(23) 1.19(10) 0.49(11) 0.42

Ncd〈M(0)2〉 7.1±7.3 1.22(11) 11.0±1.7 0.55

LATTICE SPACING EFFECTS IN THE
GLUON PROPAGATOR

In order to disentangle possible lattice effects due to
the use of a different lattice spacing, we carried out
simulations atβ = 5.7 andβ = 6.2. The lattice setup is
shown in tables 4 and 5 respectively.

TABLE 4. Lattice setup forβ = 5.7. The lattice
spacing isa= 0.1838(11)fm.

L4 84 104 144 184 264 364 444

L(fm) 1.47 1.84 2.57 3.31 4.78 6.62 8.09
# conf. 56 149 149 149 132 100 55∗

TABLE 5. Lattice setup forβ = 6.2. The lat-
tice spacing isa= 0.07261(85)fm.

L4 244 324 484 644 804

L(fm) 1.74 2.32 3.49 4.65 5.81
# conf. 51 56 87 99 15

Some differences have been seen between the gluon
propagator computed at different lattice spacings for sim-
ilar physical volumes. An example can be seen in figures
2 and 3, where the infraredβ = 6.2 data does not agree
with data fromβ = 5.7 and 6.0 simulations. These dif-
ferences deserve further investigations to clarify any pos-
sible effects due to finite lattice spacing.

Scaling analysis for β = 5.7 and β = 6.2

In what concerns the fits toω/Vα , the analysis of the
data coming from both sets still supports a vanishing
D(0) in the infinite volume limit – see tables 6 and 7.

Similarly to the case studied before, the lattice data is
also well described by the functional formC/V +ωV−α

– see tables 8 and 9. Although theβ = 5.7 case supports
D(0) 6= 0, for β = 6.2 the statistical errors do not allow
to take any conclusion. In fact, althoughC = 0 within
statistical errors, we also getα = 1. For this case, it is
worth an increase of statistics.
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FIGURE 2. Comparing the gluon propagator computed
using different lattice spacings at the same physical volume
V ∼ (4.8 f m)4.

TABLE 6. Fits to ωV−α using lattice data at
β = 5.7. In order to keepχ2

ν < 2, the 264 lattice
data has been excluded.

ω α χ2
ν

〈M(0)〉 4.63(12) 0.5244(23) 1.92
D(0)/V 32.8±1.6 1.0466(42) 1.14

Ncd〈M(0)2〉 696±37 1.0488(47) 1.72

CONCLUSIONS

We have studied the scaling behaviour of Cucchieri-
Mendes bounds using ensembles generated at several
lattice spacings. Fits of the data to a pure power law in the
volume strongly supportD(0) = 0, but the use of other
ansatze do not allow to take definitive conclusions.
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TABLE 7. Fits to ωV−α using lattice data at
β = 6.2. Data forM(0) does not include 484.

ω/100 α χ2
ν

〈M(0)〉 0.163(11) 0.5374(47) 0.08
D(0)/V 3.66(46) 1.0659(84) 0.47

Ncd〈M(0)2〉 8.4±1.2 1.0725(94) 0.13
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FIGURE 3. Comparing the gluon propagator computed
using different lattice spacings at the same physical volume
V ∼ (6.5 f m)4.

TABLE 8. Fits toC/V +ωV−α using lattice data atβ =
5.7. In order to keepχ2

ν < 2, the 264 lattice data has been
excluded.

ω/100 α C/100 χ2
ν

〈M(0)〉2 0.27(15) 1.186(90) 0.088(15) 1.80
D(0)/V 0.301(93) 1.122(90) 0.116(53) 1.28

Ncd〈M(0)2〉 8.2±4.2 1.172(91) 2.78(58) 1.69
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TABLE 9. Fits toC/V+ωV−α using lattice data atβ = 6.2.
Data forM(0) does not include 484.

ω/1000 α C/100 χ2
ν

〈M(0)〉2 0.34(66) 1.13(29) 0.4±1.2 0.13
D(0)/V 0.366(47) 1.07(29) 0.04±5.6 0.95

Ncd〈M(0)2〉 8.6±6.7 1.08(28) 4±85 0.25


