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Chromoelectric flux tubes in QCD
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We analyze the distribution of the chromoelectric field generated by a static quark-antiquark pair
in the SU(3) vacuum and revisit previous results for SU(2). We find that the transverse profile
of the flux tube resembles the dual version of the Abrikosov vortex field distribution. We give an
estimate of the London penetration length of the chromoelectric field in the confined vacuum. We
also speculate on the value of the ratio between the penetration lengths for SU(2) and SU(3) gauge
theories.

PACS numbers: 11.15.Ha, 12.38.Aw

I. INTRODUCTION

Color confinement in Quantum Chromo-Dynamics
(QCD) is a long-distance behavior whose understanding
continues to be a challenge for theoretical physics [1, 2].
Lattice formulation of gauge theories allows us to investi-
gate the confinement phenomenon in a non-perturbative
framework. In particular, Monte Carlo simulations can
produce samples of vacuum configurations that can be
used to get insight into the non-perturbative sector of
QCD. Tube-like structures emerge by analyzing the chro-
moelectric field between static quarks [3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. Such tube-like
structures naturally lead to linear potential and conse-
quently to a “phenomenological” understanding of color
confinement.
An intriguing model was conjectured long time ago by

’t Hooft [20] and Mandelstam [21] to explain the for-
mation of chromoelectric flux tubes in QCD vacuum.
It relies on the hypothesis that QCD vacuum behaves
like a coherent state of color magnetic monopoles. This
amounts to say that the vacuum of QCD is a magnetic
(dual) superconductor [22]. According to this picture the
(dual) Meissner effect naturally accounts for the observed
color flux tubes. There are clear analogies with the usual
superconductivity where, as found by Abrikosov [23],
a tubelike structure arises as a solution of Ginzburg-
Landau equations. Nielsen and Olesen also found tube-
like or vortex solutions in their study of the Abelian Higgs
model [24]. In particular they showed that a vortex solu-
tion exists independently of the fact that vacuum behaves
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like a type I or type II superconductor.

Even if the dynamical formation of color magnetic
monopoles is not explained by the ’t Hooft construction,
lattice calculations [25, 26, 27, 28, 29, 30, 31, 32, 33] have
given numerical evidence in favor of their condensation
in the QCD vacuum. However, as observed in Ref. [34]
in connection with dual superconductivity picture, mag-
netic monopole condensation in the confinement mode
could be the consequence rather than the origin of the
confinement mechanism that actually could depend on
additional dynamical causes.

No matter whether monopole condensation and dual
superconductivity could give an exhaustive account of
color confinement, it is worth to analyze tubelike struc-
ture in the QCD vacuum using the “phenomenological”
frame of dual superconductivity picture. In previous
studies [12, 13, 14, 15, 16] of SU(2) confining vacuum
it was recognized the presence in lattice configurations
of color flux tubes made up by the chromoelectric fields
directed along the line joining a static quark-antiquark
pair. By adopting the language of the dual superconduc-
tivity, the transverse size of the chromoelectric flux tube
was interpreted as the London penetration length in the
Meissner effect. By measuring the penetration length
on lattice gauge configurations in the maximal Abelian
gauge and without gauge fixing, it was also shown that
the so-called London penetration length is a physical
gauge-invariant quantity. Moreover starting from the
simple definition of the string tension as the energy stored
into the flux tube per unit length, it was possible to com-
pute the string tension from the measured distribution of
the chromoelectric field. In this way an estimate of the
string tension was obtained in good agreement with the
results in the literature.

In the present work we investigate the formation of
chromoelectric flux tubes in the more physical case of
SU(3) gauge theory. The main aim is to compute the
size of the chromoelectric flux tube in QCD. The method
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and the numerical results are reported in Section II. In
Section III we discuss our results and present our conclu-
sions.

II. COLOR FIELDS ON THE LATTICE

W

UP

L

FIG. 1: The connected correlator (1) between the plaquette
Up and the Wilson loop. The subtraction appearing in the
definition of correlator is not explicitly drawn.

The field configurations produced by a static quark-
antiquark pair in SU(N) gauge theory can be explored [7,
8, 35, 36] by means of the following connected correlation
function:

ρW =

〈

tr
(

WLUPL
†
)〉

〈tr(W )〉 − 1

N

〈tr(UP )tr(W )〉
〈tr(W )〉 , (1)

where (see Fig. 1) UP = Uµν(x) is the plaquette in
the (µ, ν) plane connected to the Wilson loop W by a
Schwinger line L, N is the number of colors. The cor-
relation function defined in Eq. (1) measures the field
strength. Indeed in the naive continuum limit [8]:

ρW
a→0−→ a2g

[

〈Fµν〉qq̄ − 〈Fµν〉0
]

, (2)

where 〈 〉qq̄ denotes the average in the presence of a
static qq̄ pair and 〈 〉0 the average in the vacuum. Ac-
cording to Eq. (2) we define the color field strength tensor
as:

Fµν(x) =

√

β

2N
ρW (x) . (3)

By varying the distance and the orientation of the pla-
quette UP with respect to the Wilson loop W , one can
probe the color field distribution of the flux tube. In par-
ticular, the case of plaquette parallel to the Wilson loop
corresponds to the component of the chromoelectric field
longitudinal to the axis defined by the static quarks.

A. SU(2)

In previous studies [10, 12, 13, 14, 15, 16] the formation
of chromoelectric flux tubes was investigated in SU(2)

2.5 2.52 2.54 2.56 2.58 2.6 2.62

β
3

3.5

4

4.5

5

µ/
√σ

FIG. 2: Scaling of the inverse London penetration length with√
σ versus β in SU(2).

lattice gauge theory, both in the maximal Abelian gauge
and without gauge fixing.
The main result of that works was that the flux tube

is almost completely formed by the longitudinal chromo-
electric field, El, which is constant along the flux and
decreases rapidly in the transverse direction xt.
The formation of the chromoelectric flux tube was in-

terpreted as dual Meissner effect in the context of the
dual superconductor model of confinement. In this con-
text the transverse shape of the longitudinal chromo-
electric field El should resemble the dual version of the
Abrikosov vortex field distribution. Hence the proposal
was advanced [10, 12, 13, 14, 15, 16] to fit the transverse
shape of the longitudinal chromoelectric field according
to

El(xt) =
Φ

2π
µ2K0(µxt) , xt > 0 . (4)

Here, K0 is the modified Bessel function of order zero, Φ
is the external flux, and λ = 1/µ is the London penetra-
tion length. Equation (4) is valid if λ ≫ ξ, ξ being the co-
herence length (type-II superconductor), which measures
the coherence of the magnetic monopole condensate (the
dual version of the Cooper condensate).
Moreover, in Ref. [16] it was found that the inverse

penetration length µ exhibits approximate scaling with
the string tension σ, leading to µ/

√
σ = 4.04(18), based

on a numerical study on lattices 164, 204 and 244 with
poor statistics (20-100 configurations). Assuming

√
σ =

420 MeV, this amounts to have a penetration length λ =
0.118(5) fm, in good agreement with the results obtained
in Ref. [37] on a 324 lattice.
In this work, we first repeated the determination of

µ in SU(2) with a much larger statistics (details on the
numerical setup are postponed to the next subsection,
where the SU(3) case is considered). We confirm the
scaling of µ with the string tension σ (see Fig. 2) from
which we estimate:

µ/
√
σ = 4.21(16) . (5)

The result given in the above equation is based on a study
on a 204 lattice, with a statistics of 1000 configurations.
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B. SU(3)

The main motivation for repeating the study in SU(3)
is to verify the scaling of µ with the string tension and
to compare the resulting determination of µ/

√
σ with

SU(2). This result should provide us with important ref-
erence values, that any approach aiming at explaining
confinement should be able to accommodate.
We performed numerical simulations with the Wilson

action and periodic boundary conditions, using a the
Cabibbo-Marinari algorithm [38], combined with overre-
laxation on SU(2) subgroups. The summary of β values,
lattice size, Wilson loop size and statistics is given in Ta-
ble I. The lattice size L has been chosen such that the
combination L

√
σ & 4. The size of the Wilson loop en-

tering the definition of the operator given in Eq. (1) has
been fixed at L/2− 2a. In order to reduce the autocor-
relation time, measurements were taken after 10 updat-
ings. The error analysis was performed by the jackknife
method over bins at different blocking levels.

β lattice Wilson loop statistics

5.90 184 7× 7 5.k

6.00 204 8× 8 4.5k

6.05 224 9× 9 3.6k

6.10 244 10× 10 2.4k

TABLE I: Summary of the Monte Carlo simulations.

In order to reduce the quantum fluctuations we
adopted the controlled cooling algorithm. It is known [39]
that by cooling in a smooth way equilibrium configura-
tions, quantum fluctuations are reduced by a few order of
magnitude, while the string tension survives and shows
a plateau. We shall show below that the penetration
length behaves in a similar way. The details of the cool-
ing procedure are described in Ref. [16] for the case of
SU(2). Here we adapted the procedure to the case of
SU(3), by applying successively this algorithm to various
SU(2) subgroups. The control parameter δ was fixed at
the value 0.0354, as in Ref. [16].

0 1 2 3 4 5 6 7 8 9 10
xt

0

0.05

0.1

0.15

0.2

El

β=5.90 

cooling step = 10

FIG. 3: Longitudinal component of the chromoelectric field
versus the distance xt at β = 5.9 after 10 cooling steps.

A novelty with respect to the study of Ref. [16] is re-
lated with the construction of the lattice operator given

in Eq. (1). If the Wilson loop lies on the plane, say, 1-2,
then the Schwinger line can leave the plane 1-2 in the
direction, say, 3; before attaching the plaquette to the
Schwinger line, the latter can be prolongated further in
the direction 4, by one or two links. In this way, by vary-
ing the length of the Schwinger line in the direction 3,
one can obtain a large set of distances xt/a between the
center of the plaquette and the center of the Wilson loop,
both integer and non-integer. On each configuration we
averaged over all possible directions for the relative ori-
entation of the Wilson loop to the Schwinger line.
The general strategy underlying this work is the fol-

lowing:

1. for each β we generate an ensemble of thermalized
configurations and, correspondingly, ensembles of
“cooled” configurations after a number of cooling
steps ranging from 5 to 16;

2. for different values of the distance xt, the longitu-
dinal component of the chromoelectric field, aver-
aged over each cooled ensemble of configurations,
is then determined by means of the operator (1),
with the help of Eq. (3) (see, for example, Fig. 3,
which shows El(xt) averaged over the ensemble at
β = 5.90 after 10 cooling steps);

3. for each cooling step, data for El(xt) are fitted with
the function given in Eq. (4) and the parameters µ
and Φ are extracted;

4. a plateau is then searched in the plot for µ and Φ
versus the cooling step.

In Tables II and III we report the results of the fit at
the four β values considered in this work for one selected
cooling step. When the fit is done on all available data for
Ex(xt), above a certain xt,min, the χ

2/d.o.f. is very high,
thus reflecting the wiggling of data due to the inclusion
of non-integer distances xt/a. When the fit is restricted
to integer values of xt/a, the χ2/d.o.f. turns out to be
very reasonable. Remarkably, the resulting parameters
obtained with the two fitting procedures agree very well.

β cooling aµ χ2/d.o.f. xt,min/a data set

step

5.90 10 0.5577(12) 626. 6 all data

6.00 9 0.51015(92) 383. 6 all data

6.05 10 0.4730(13) 133. 7 all data

6.10 10 0.4357(20) 27. 7 all data

5.90 10 0.5557(40) 1.22 7 integer xt/a

6.00 9 0.5099(28) 2.56 9 integer xt/a

6.05 10 0.4735(39) 1.08 8 integer xt/a

6.10 10 0.4349(56) 0.25 8 integer xt/a

TABLE II: Summary of the fit values for aµ.
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β cooling Φ χ2/d.o.f. xt,min/a data set

step

5.90 10 12.784(57) 626. 6 all data

6.00 9 11.354(41) 383. 6 all data

6.05 10 14.40(19) 87. 8 all data

6.10 10 12.38(11) 27. 7 all data

5.90 10 13.52(25) 1.22 7 integer xt/a

6.00 9 12.04(16) 2.56 7 integer xt/a

6.05 10 14.08(30) 1.08 8 integer xt/a

6.10 10 12.90(38) 0.25 8 integer xt/a

TABLE III: Summary of the fit values for Φ.
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β=5.90
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all data
only integer distances
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FIG. 4: (Top) The inverse of the penetration length aµ at
β = 5.90 versus the cooling step. Data are obtained by fitting
the transverse profile of the longitudinal chromoelectric field
with the function (4); circles correspond to fit to all available
data of El(xt) starting from a certain xt,min, while squares
correspond to fit of El(xt) for integer values of xt/a.
(Bottom) The same for the amplitude of the longitudinal chro-
moelectric field Φ.

In Figs. 4, 5, 6, 7, we show the behavior of aµ and Φ
with the cooling step at the four β values considered. A
short plateau is always visible, except for the case of µ
at β = 5.90. We take as “plateau” value for µ the value
corresponding to the number of cooling steps given in the
second column of Table II.

Finally, we studied the scaling of the “plateau” values
of aµ with the string tension. For this purpose, we have
expressed these values of aµ in units of

√
σ, using the
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FIG. 5: The same as Fig. 4 at β = 6.
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FIG. 6: The same as Fig. 4 at β = 6.05.

parameterization

a
√
σ(g) = fSU(3)(g

2)[1 + 0.2731 â2(g) (6)

− 0.01545 â4(g) + 0.01975 â6(g)]/0.01364 ,

â(g) =
fSU(3)(g

2)

fSU(3)(g2(β = 6))
, β =

6

g2
, 5.6 ≤ β ≤ 6.5 ,
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β=6.10
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FIG. 7: The same as Fig. 4 at β = 6.10.

fSU(3)(g
2) =

(

b0g
2
)−b1/2b

2

0 exp

(

− 1

2b0g2

)

, (7)

b0 =
11

(4π)2
, b1 =

102

(4π)4
,

given in Ref. [40].

5.85 5.9 5.95 6 6.05 6.1 6.15
β

2.1

2.15

2.2

2.25

2.3

2.35

µ/
√σ

all data
only integer distances

FIG. 8: Scaling of the inverse London penetration length with√
σ versus β. Data have been slightly shifted on the horizontal

axis for the sake of readability.

Figure 8 suggests that the ratio µ/
√
σ displays a nice

plateau in β, as soon as β is larger than 6. The scaling of
µ is a natural consequence of the fact that the penetration
length is a physical quantity related to the size D of the
flux tube [10, 12]:

D ≃ 2

µ
. (8)

We get the following estimate for the penetration length

in SU(3) gauge theory,

µ√
σ

= 2.325(5) , (9)

which corresponds to

µ = 0.977(2)GeV. (10)

We observe that this value is in nice agreement with the
determinations of Ref. [41], obtained by using correla-
tors of plaquette and Wilson loops not connected by the
Schwinger line, thus leading to the (more noisy) squared
chromoelectric and chromomagnetic fields.
Before concluding this Section we note that the ra-

tio between the penetration lengths respectively given in
Eq. (5) for the SU(2) gauge theory and in Eq. (9) for the
SU(3) gauge theory is:

µSU(2)

µSU(3)
= 1.81(7) . (11)

This result recalls analogous behavior seen in a different
study of SU(2) and SU(3) vacuum in a constant external
chromomagnetic background field [42]. In Ref. [42] nu-
merical evidence that the deconfinement temperature for
SU(2) and SU(3) gauge systems in a constant Abelian
chromomagnetic field decreases when the strength of the
applied field increases was given. Moreover, as discussed
in Refs. [28, 42, 43], above a critical strength

√
gHc of

the chromomagnetic external background field the de-
confined phase extends to very low temperatures. It
was found [42] that the ratio between the critical field
strengths for SU(2) and SU(3) gauge theories is

√
gHc|SU(2)√
gHc|SU(3)

= 2.03(17) , (12)

in remarkable agreement with the ratio between the pen-
etration lengths for SU(2) and SU(3) (Eq. (11)). As
stressed in the Conclusions of Ref. [42], the peculiar
dependence of the deconfinement temperature on the
strength of the Abelian chromomagnetic field gH could
be naturally explained if the vacuum behaved as a disor-
dered chromomagnetic condensate which confines color
charges due both to the presence of a mass gap and the
absence of color long range order, such as in the Feynman
picture for Yang-Mills theory in (2+1) dimensions [44].
The circumstance that ratio between the SU(2) and

SU(3) penetration lengths agrees within errors with the
above discussed ratio of the critical chromomagnetic
fields, suggests us that the Feynman picture of the Yang-
Mills vacuum could be a useful guide to understand the
dynamics of color confinement.

III. CONCLUSIONS

In this paper we present a study of the chromoelectric
field distribution between a static quark-antiquark pair
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in the SU(3) vacuum, after revisiting some old results
for SU(2) gauge theory [16]. By means of the connected
correlator given in Eq. (1) we are able to compute the
chromoelectric field that fills the flux tube along the line
joining a quark-antiquark pair. The transverse behav-
ior of the longitudinal chromoelectric field can be fitted
according to the solution of the London equation for su-
perconductors (Eq. (4)) and gives us information on the
so-called penetration length (or inverse size of the flux
tube). We find that the ratio between the penetration
lengths respectively for SU(2) and SU(3) gauge theories
is 1.81(7) and agrees, within errors, with the ratio of

the corresponding critical chromomagnetic fields, which
as discussed at the end of previous Section could be un-
derstood within the Feynman picture of the Yang-Mills
vacuum.
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