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Abstract. Recently, Delfino and Viti have examined the factorization of the three-

point density correlation function P3 at the percolation point in terms of the two-

point density correlation functions P2. According to conformal invariance, this

factorization is exact on the infinite plane, such that the ratio R(z1, z2, z3) =

P3(z1, z2, z3)/[P2(z1, z2)P2(z1, z3)P2(z2, z3)]1/2 is not only universal but also a

constant, independent of the zi, and in fact an operator product expansion (OPE)

coefficient. Delfino and Viti analytically calculate its value (1.022013 . . .) for

percolation, in agreement with the numerical value 1.022 found previously in a study

of R on the conformally equivalent cylinder. In this paper we confirm the factorization

on the plane numerically using periodic lattices (tori) of very large size, which locally

approximate a plane. We also investigate the general behavior of R on the torus, and

find a minimum value of R ≈ 1.0132 when the three points are maximally separated.

In addition, we present a simplified expression for R on the plane as a function of the

SLE parameter κ.
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1. Introduction

The study of correlations in percolation provides insight into the nature of the

percolation process. The well-known two-point density correlation function P2(z1, z2) as

a function of the locations of the points z1 and z2 behaves as

P2(z1, z2) ∼ |z1 − z2|2(D−d) (1)

for large |z1− z2|, on a d−dimensional percolating system at the critical point pc, where

D is the fractal dimension, which has the universal value 91/48 in two dimensions.

However, the coefficient to (1) depends upon the model of percolation and also vanishes

in the continuum limit where the lattice spacing goes to zero, and is thus non-universal.

In order to study higher-order correlations, the present authors considered the ratio

[1]

R(z1, z2, z3) :=
P3(z1, z2, z3)√

P2(z1, z2)P2(z1, z3)P2(z2, z3)
, (2)

where P3(z1, z2, z3) is the three-point density correlation function. With the ratio defined

this way (including the square root in the denominator), the lattice factors cancel out

and the quantity R(z1, z2, z3) converges to a universal function in the continuum limit.

It was shown in [1, 2] via conformal field theory that if z1 and z2 reside on the boundary

of a (compact) bounded or half-infinite system and z3 is on the boundary or inside it,

then, in the continuum limit, R is a constant independent of z1, z2, and z3 and equal to

C0 := 27/2π5/23−3/4Γ(1/3)−9/2 = 1.0299268 . . . . (3)

This behavior was termed factorization, i.e., the three-point function factors into a

product of square roots of two-point functions, multiplied by a constant. In [3], this

concept was generalized to the case where correlations between intervals on the boundary

of a rectangle and a single point z1 inside was studied. There, the factorization is not

exact, but depends upon the distance from the bounding intervals and the boundary

conditions (free or wired–a wired interval means that all sites are constrained to belong

to one cluster). Far from the bounding intervals, R once again approaches C0. Related

recent work includes Refs. [4, 5, 6, 7, 8, 9, 10, 11]

Recently, Delfino and Viti [12] have examined the factorization for three points on

an infinite plane for the general Potts model. Here the factorization is exact, following

simply from the general form of the three-point function with all three operators the

same [13]. However, it is not possible to find a general expression for R (the OPE

or operator product expansion coefficient) using methods specific to minimal CFTs

(conformal field theories), such as the result in [14]. In various models, difficulties may

occur for a variety of reasons: operators with non-integer Kac indices, coefficients that

vanish due to additional symmetries (i.e., in the Ising model, spin reversal symmetry

means that 〈σσσ〉 = 0 regardless of cluster properties), or multiple fields with a common

weight. By coupling the CFTs to Liouville gravity (LG), Al. Zamolodchikov obtained



Factorization of correlations in two-dimensional percolation on the plane and torus 3

OPE coefficient expressions [15] that resolve the issues of non-integer Kac indices (as

occurs, e.g., for percolation) and additional symmetries.

In [12] Delfino and Viti used the LG result to find R. The value they obtain is not

identical to the LG three-point coefficient, because the LG analysis assumes a unique

operator with each weight, but Delfino and Viti argue that the local selection rules of

the Potts disorder operator µαβ are implemented by two identical weight fields µ and µ̄.

They then suggest that the LG analysis might still apply to a symmetric combination

of these fields, which translates to an extra factor of
√

2 for the degenerate fields. This

gives R = 1.0220 . . . =: C1. In the Appendix, we show that the formula for C1 of Delfino

and Viti may be reduced to a single integral expression, and list numerical values for

percolation as well as for other examples of the Potts model with integer q values,

including both low density (FK cluster) and high density (spin cluster) phases. For

percolation we indeed find

C1 = 1.022013133 . . . (4)

The value C1 ≈ 1.022 was originally found numerically by the present authors when

studying correlations between the two ends of a cylinder and a point z1 in the interior [3].

When two ends of the cylinder are “wired,” we also found numerically that R approaches

C1 exponentially as exp(−2πx/L) where L is the dimension (circumference) of the end

of the cylinder and x is the distance from the nearest end to z1. The correspondence

between the cylindrical results and the planar problem follows from the fact that the

cylinder can be conformally mapped to the surface of a sphere, so that the cylinder

boundaries map onto two circles of equal radius. In the limit of the infinitely long

cylinder the radii of the image circles on the sphere shrink to zero; then the problem

becomes that of the correlation of three points, and the factorization is everywhere

exact, as the sphere is conformally equivalent to the plane.

In this paper, we consider the problem of measuring the three-point correlations on

the plane and on the torus. For open boundary conditions, it is not possible to simulate

a system large enough to effectively probe the infinite-plane behavior. By using a large

periodic system and taking advantage of its translational symmetry, we are able to

see the factorization over length scales large compared to the lattice spacing but small

compared to the size of the system. We also find interesting behavior of the correlations

on the torus itself when points are separated by distances on the order of the size of the

torus.

2. Simulation method and results

For most of our simulations, we consider bond percolation on square lattices of size

L×L at the critical point pc = 1/2. The number of samples ranged from O(105) for the

largest system, to over 109 for the smaller ones. We carried out simulations with both

open and periodic b.c.
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Figure 1. (Color online) R(z1, z2, z3) on a system with open b.c. of 128 × 128 sites,

as a function of z3, for z1 and z2 fixed and separated by ∆ = |z1 − z2| given by (a)

16, (b) 32, (c) 64, and (d) 128 [top to bottom]. At the boundaries, R is approximately

equal to (a) 1.0265, (b) 1.0285, (c) 1.0295, and (d) 1.030.

2.1. Open boundary conditions

First we consider open boundary conditions on the square, for relatively small L. We

take z1 and z2 fixed about the center of the lattice and separated by |z1 − z2| = ∆,

and determine R as a function of z3, where z3 can be anywhere on the plane. The

simulation technique here is to grow one critical cluster from z1, and add 1 to the value

of an array N13(z3) to every point z3 that the cluster wets. If the cluster reaches z2, then

all the wetted-site coordinates z3 of the cluster are also added to the arrays N23(z3) and
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Figure 2. (Color online) Contours of R of Fig. 1(a) (open b.c.) with ∆ = 16 and

L = 128. The first complete contour encircling both points z1 and z2 is for R = 1.023,

and R increases by 0.0005 in each contour going outward. When z3 goes to z1 or z2,

R→ 1.

Figure 3. (Color online) R(z1, z2, z3) for a system with periodic b.c. of 128×128 sites,

with the two points z1 and z2 separated by a distance ∆ = 16, as a function of the

third point z3. Near z1 and z2, R rises to a maximum value of about 1.0205, and drops

to a value of about 1.018 far from those points (at the edges in this representation of

the torus). Contours are shown in Fig. 4.

N123(z3), and to the counter N12 which tells if points 1 and 2 connect. If the cluster

does not reach z2, then a new cluster is grown from z2 and all of its sites z3 are added to

the array N23(z3). Finally, we normalize all these quantities by the number of runs to

get the probabilities, and calculate R(z1, z2, z3) according to (2). The results are shown

in Fig. 1 for four values of ∆ and L = 128.

In all cases there is a downward-pointing spike R → 1 around z1 and z2, as R = 1

is the exact value when two points coincide. Note the highly expanded scale in these

plots. When ∆ = 128 [Fig. 1(d)], the two points z1 and z2 are at the edge, and the

results of [1] apply, so R has the value C0 ≈ 1.0299 . . . of equation (3) at every point

in space except for the spikes. The size of the spikes (which decay as a power-law as
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Figure 4. (Color online) Contours of R for the periodic system (torus) of Fig. 3 with

∆ = 16 and L = 128. The first complete contour encircling both fixed points near the

center is at R = 1.020, and R decreases by 0.0005 in each contour going both inward

and outward from that contour.

Figure 5. Location of the fixed points z1 and z2, and the variable point z3 in the

horizontal and vertical directions, assuming (x0, y0) is centered at the origin.

the separation between z3 and z1 or z2 increases) is controlled by the discreteness of the

lattice, and can be understood theoretically [3].

As ∆ decreases, two things happen: the roughly constant value at the edge decreases

(values are given in the caption to Fig. 1) and also R varies markedly over the whole

lattice. While for z3 near the center R has value ≈ 1.022 predicted by [12] (see Fig. 2),

there is no extended region nearby where R is constant.

We have looked at larger lattices (up to L = 512) and find the size of the constant

region near the two fixed points increases somewhat, suggesting much larger lattices

are needed to observe the infinite-plane behavior. However, the poor statistics of this

type of simulation (only one data point for a given triangle z1, z2, z3 is found from

each sample) makes going to larger lattices impractical. To overcome this problem, we

consider lattices with periodic b.c. (tori).
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2.2. Periodic boundary conditions

With periodic boundary conditions, every point is equivalent by translational invariance,

so it is possible to get L2 data points on an L× L lattice for a given triangle of points

z1, z2 and z3, and results in much better statistics. However, the question of what effect

the toroidal geometry imposed by these boundary conditions has, and how to extract

the planar result that we are interested in remains. We expect that for a large enough

torus, the behavior for the three points separated by distances much less than L should

be the same as for a plane. However, because the density of correlations drops off very

slowly according to (1), the influence of the periodic b.c. should remain strong across

relatively large systems.

To contrast what happens with periodic vs. free b.c., we first consider a simulation

similar to that done for the open b.c. system above, in which z1 and z2 are fixed with

∆ = 16, and R is determined for all z3 (thus not making use of the translational

invariance). Here (see Figs. 3 and 4) we find an interesting result: R has a maximum

of about 1.02 near the center, but then for large distances drops to ≈ 1.018, which is

below the value that would be found on the cylinder or any surface transformed from

it. Presumably, this decrease is due to the effects of the periodic b.c. on P2 and P3.

For the rest of our simulations on periodic systems, we make use of the translational

invariance by populating the entire lattice, and looking at specific configurations of the

three points. We consider every possible location of the two fixed points z1 and z2
arranged vertically and separated by a distance ∆, and vary z3 both in the horizontal

direction (along the perpendicular to the centerline) and in the vertical direction, as

shown in Fig. 5. Specifically, for each point (x0, y0), we set z1 = (x0, y0 + ∆/2),

z2 = (x0, y0 −∆/2). To vary in the horizontal direction we considered z3 = (x0 + x, y0)

for a range in values of x, and for the vertical direction, we considered z3 = (x0, y0 + y)

for a range in values of y. In the vertical case, we consider both |y| < ∆/2, i.e., z3
between the two points, and |y| > ∆/2, outside the two points.

In these simulations, we create clusters on the entire lattice using the growth

algorithm, labeling each cluster with a different index, and then check the indices of

the three points in order to calculate R. If a pair i, j of the points belong to the

same cluster, then we increment an array N
(h)
ij (x) or N

(v)
ij (y) by 1. If all three points

belong to the same clusters, we increment N
(h)
123(x) or N

(v)
123(y) by 1. We considered

L = 128, 256, . . . 16384, the latter being the largest size that could easily be simulated

in our computer.

Fig. 6 shows the behavior of R in the horizontal direction for a series of systems

keeping ∆/L = 1/16 . . . 1/256 constant. From these results we see:

• For small ∆ (≤ 64), there is a decrease in R as x → 0, as the three points are

within the distances in which finite-size lattice effects are significiant.

• For large x/L (and all ∆/L), R decreases as x/L increases. However, the amount

of decrease becomes less as ∆/L decreases, and the curve of R vs. x/L becomes

nearly horizontal for the smallest ∆/L we consider (1/256).
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Figure 6. (Color online) R as a function of x/L on an L×L torus, with ∆/L = 1/16,

1/32, 1/64, 1/128, and 1/256 (top to bottom), where x is the distance from the center

in the horizontal direction for fixed ratios of ∆/L and various values of L as given in

the legends. Note the different vertical scales.
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Figure 7. (Color online) Values of R as a function of the scaled distance x/∆ to

the point z3 from the center of the pair of fixed points in the horizontal direction, for

values of ∆ given in the legend, on a system with L = 16384.

• As L increases (for a fixed value of ∆/L and not too small x/L), the curves of R as

a function of x/L approach a limiting form. In fact, except for small x/L, the effect

of increasing L is simply to move the curves vertically. This can be understood as

being due to finite-size effects on P2(z1, z2).

• In particular, in the case ∆/L = 1/256, for large L, R is nearly independent of L

and is close to the expected value R ≈ 1.022.

In Figs. 7 and 8 we show the behavior of R in both the horizontal and vertical

directions, for just the largest system L = 16384 and various ∆, plotted now as a

function of x/∆, so that each value of the abscissa corresponds to a similar triangle of

the three points. In general, these curves consider x at much lower values than in Fig.

6. Here we see the decrease for small x/∆ due to the finite-size lattice effects from the

points being too close together, and the leveling out to a constant value. The results for

larger x (not shown here) exhibit roughly the same constant values for large x, for both

the horizontal and vertical directions. In particular, the vertical and horizontal results

both approach the same value, 1.022. The results along the centerline between the two

points are shown in Fig. 9.

3. Point in equilateral triangle configurations on the torus

We also considered having the three points configured as an equilateral triangle. To do

this, we used a triangular lattice, in which the periodic b.c. were applied on an L × L
square-lattice representation with diagonal bonds, which has the effect of creating a

torus with a half-twisted boundary. Fig. 10 shows R as a function of the separation
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Figure 8. (Color online) Similar to Fig. 7, but in the vertical direction. Legend values

correspond to ∆.
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Figure 9. (Color online) Values of R along the centerline connecting the two fixed

points z1 and z2, for various ∆ (see legend) and L = 16384.

distance ∆ = 1, 2, 4, . . . L/2 for L = 8 . . . 16384. At ∆ = L/2, the three vertices of the

triangle are equally spaced around the torus such that each pair is connected by paths

of the same distance in two directions. Flattened out and repeated, the points form a

kagomé lattice. For this system, we find the following behavior:

• As ∆ → 0, R decreases towards 1 as expected, although the value even at ∆ = 1

(one lattice spacing apart) remains at ≈ 1.0125.

• For intermediate values of ∆ (of the order O(
√
L)), R approaches 1.022, providing
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Figure 10. (Color online) Values of R as a function of the side-length ∆ for an

equilateral triangle of points on an L × L twisted torus, with L given in the legend,

simulated on a triangular lattice at its bond percolation threshold pc = 2 sinπ/18. The

errors are generally smaller than the size of the symbols. Smoothed curves connecting

the data points are drawn for ease of viewing.

y	  =	  -‐0.6746x	  -‐	  3.2398	  

-‐11	  
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-‐9	  

-‐8	  

-‐7	  
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-‐4	  
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ln
	  (C

1	  -‐
	  R

m
ax
,L
)	  

ln	  L	  

Figure 11. Plot of ln(C1 − Rmax,L) vs. lnL for the maxima of the curves of Fig. 10

using the theoretical value of C1 ≈ 1.022013. The linear fit to the shaded points is

shown in the plot, with x representing lnL and y representing ln(C1 −Rmax,L).

further evidence for this value of R for points on an infinite plane. For L = 16384,

the value of R at the maximum is 1.02196, just 0.00005 below the theoretical value.

This maximum corresponds to an equilateral triangle with ∆ = 64. A plot of

ln(C1 − Rmax,L) vs. lnL yields a very good linear fit for L ≥ 64 (see Fig. 11)

implying Rmax,L = C1 − 0.0391L−0.674.

• As ∆→ L/2, R again decreases to a value of ≈ 1.0132, which is substantially less

than the maximum value 1.022 that is found when at least two of the points are

close together. For smaller L, R(∆ = L/2) converges to 1.01323 approximately as
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Figure 12. (Color online) The data of Fig. 10 for L = 16384, plotted as ln(C1 − R)

vs. ln ∆, using the theoretical value of C1 ≈ 1.022013. The equations give the linear

fits for the points ∆ = 2, 4, 8, and 16 (left) and ∆ = 512, 1024, and 2048 (right). In

the linear formulas, x represents ln ∆ and y represents ln(C1 −R).

L−1.5. For ∆ > L/2, R again increases due to the wraparound, so ∆ = L/2 is

evidently a minimum point for R.

To study the approach to C1 ≈ 1.022, in Fig. 12 we plot ln(C1 − R) vs. ln ∆ using the

theoretical value of C1. For small x we expect a power-law, and fitting the behavior in

the linear regime we find a slope of about −1.43. Note that in [3], we found numerically

for the cylinder that C behaves as exp(−2πx/L) where L is the circumference and x

the distance to the end. Transforming to the annulus this implies a decay of R with

two points separated by ∆ (and the third far away) as ∆−1. Here we find that when all

three points are separated by ∆, the decay behaves as ≈ ∆−1.43.

For large ∆, we again seem to find that R behaves as a power law, here decaying

with exponent ≈ 1.3. All the curves for large L show a similar behavior. We have no

explanation of why R drops to this lower value as ∆→ L/2.

While the curves in Fig. 10 appear to be nearly symmetric, this symmetry is in fact

an artifact of the particular system used (bond percolation). We also considered site

percolation on the triangular lattice, where pc = 1/2. For site percolation, Eq. (2) must

be modified by dividing by
√
pc to account for factors of pc in the probabilities P2 and

P3 so that they represent conditional probabilities that the sites are occupied, and this

insures that R → 1 when z1 = z2 = z3. For large ∆, the behavior is identical to that

of bond percolation as seen in Fig. 10, but for small ∆, the behavior is much different:

while R is exactly 1 at ∆ = 1 (nearest neighboring occupied sites always connect in

site percolation), at ∆ = 2 it jumps to ≈ 1.0243 and then drops monotonically as ∆

increases, leveling at R ≈ 1.022 in the intermediate range ∆ = O(
√
L).
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4. Conclusions

We have shown that the behavior of R on a plane can be effectively studied in simulations

on tori of very large size, by keeping the three points far enough apart to minimize

finite-size effects, but also keeping the separations of at least one pair of the points

much smaller than the system size L. We have confirmed the result of Delfino and Viti

[12] that R goes to the value 1.0220..., the same as found on a cylinder far from the

two endpoints [3]. We verified this value moving z3 in both the vertical and horizontal

directions. This can be seen in Figs. 7 and 8 for larger ∆ (≥ 64) and x/L or y/L greater

than 2. We also verified it for z3 along the centerline between z1 and z1 (when all three

points are well separated) as seen in Fig 9.

We found the interesting result that R ≈ 1.022 also when two of the points are

very close together (though far apart compared to the lattice spacing), and the third

anywhere on the torus. This behavior is consistent with conformal field theory, because

in this limit R only depends on the OPE coefficient, which is the same on the torus and

on the plane.

We also considered the three points in an equilateral triangle configuration, on an

effectively twisted torus. For intermediate separations, R goes to 1.022, but when the

three points are far apart, R drops to 1.0132, which is the lowest value of R that we

have found (other than for z1 → z2 where R → 1). We have verified this behavior on

the triangular lattice using both site and bond percolation.
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6. Appendix. Evaluation of C1

Here we give an expression for the constant C1, which takes the value C1 ≈ 1.022 for

percolation, that follows from the work of Delfino and Viti [12] and Zamolodchikov [15].

Specializing Zamolodchikov’s result for the three-point OPE coefficient, Eq. (49) of

Ref. [15] for α1 = α2 = α3 = 1/(4β)−β/2, where β =
√

4/κ, with κ the SLE parameter,

and including a multiplicative factor of
√

2, Delfino and Viti find

C1 =
ββ

−2−β2−1
√

2γ(β2)γ(β−2 − 1) Υβ

(
β
2
− 1

4β

)
Υβ

(
β
2

+ 1
4β

)3
Υβ(β) Υβ

(
1
2β

)3/2
Υβ

(
β − 1

2β

)3/2 (5)

where γ(x) := Γ(x)/Γ(1− x) and

Υβ(x) := exp
∫ ∞
0

dt

t


(
Q

2
− x

)2

e−t −
sinh2

[(
Q
2
− x

)
t
2

]
sinh βt

2
sinh t

2β

 (6)
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with Q := β + β−1. Using the following identities

Υβ(x) = Υ1/β(x) = Υβ(Q− x)

Υβ(x+ β) = β1−2βxγ(βx)Υβ(x)

Υβ (Q/2) = 1

Υβ(x+ 1/β) = β2x/β−1γ(x/β)Υβ(x) (7)

we can reduce (5) to a single integral expression

C1 = β1/2−β2

√√√√2γ(β2)γ(1
2

+ 1
4
β−2)2

γ(2− β−2)γ(1
2
β−2)3

exp(I1) (8)

where

I1 =
∫ ∞
0

dt

t

(1− 2β2)e−t − 1

2
−
−4 cosh t

4β
+ 3 cosh βt

2
+ cosh βt

2
cosh t

2β

2 sinh βt
2

sinh t
2β

 (9)

Table 1 shows C1 for various values of the Potts model parameter q, with

κ = 4π/[π − cos−1(
√
q/2)] in the low-density (FK-cluster) phase, and κ′ = 16/κ for

the high-density (spin cluster) phase. These values were found numerically using the

Mathematica function NIntegrate[], increasing the working precision to 25 digits and

higher to verify the 16 digits shown here. These values agree with those given in [12]

which were quoted to just four truncated digits past the decimal point. Note that for

β = 1 (κ = 4), the coefficient of (8) is undefined, but taking the limit β → 1, it converges

to
√

2 Γ(3/4)/Γ(1/4) = 0.477988 . . .. For β =
√

3/2 (κ = 8/3), we can rearrange (8)

using the Υβ identities to show that C1 =
√

2. This corresponds to Zamolodchikov’s

coefficient being exactly 1, which is natural because h1/2,0 = 0 for κ = 8/3 so that the

LG analysis does not distinguish between φ1/2,0 and the identity operator. Using this

exact result to test the accuracy of our integral expression, we indeed find C1 =
√

2 to

all digits of the working precision of the NIntegrate[] function.

q κ β C1

1 6
√

2/3 1.0220131331461556

2 16/3
√

3/4 1.0524474717449139

3 24/5
√

5/6 1.0923552364945137

4 4 1 1.1892071150027211

3 10/3
√

6/5 1.3107927060993472

2 3
√

4/3 1.3767325887917331

— 8/3
√

3/2
√

2

Table 1. Values of C1 for the q-state Potts model in the low-density (β < 1) and

high-density (β > 1) phases; q = 1 corresponds to percolation.
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