
ar
X

iv
:1

01
1.

14
74

v2
  [

he
p-

th
]  

15
 N

ov
 2

01
0

Holographic description of largeN gauge theory

Sung-Sik Lee1,2

1Department of Physics& Astronomy, McMaster University,

1280 Main St. W., Hamilton ON L8S4M1, Canada

2Perimeter Institute for Theoretical Physics,

31 Caroline St. N., Waterloo ON N2L2Y5, Canada

(Dated: November 16, 2010)

Abstract

Based on the earlier work [S.-S. Lee, Nucl. Rev. B832, 567 (2010)], we derive a holographic dual for

theD-dimensionalU(N) lattice gauge theory from a first principle construction. The resulting theory is a

lattice field theory of closed loops, dubbed aslattice loop field theorywhich is defined on a lattice version of

the(D+1)-dimensional anti-de Sitter space. The lattice loop field theory is well defined non-perturbatively,

and it becomes weakly coupled and local in the largeN limit with a large ’t Hooft coupling.
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I. INTRODUCTION

Although there are many non-trivial evidences for the anti-de Sitter space/conformal field the-

ory (AdS/CFT) correspondence[1–3], a first principle derivation of the conjecture is not available

yet. Nonetheless the correspondence has been employed to a wide range of physical systems in-

cluding condensed matter systems[4–7], in a hope that certain features of strongly coupled quan-

tum field theory can be captured by holographic theories constructed based on phenomenological

reasoning. On the one hand, such approaches have produced interesting insights into strongly

coupled quantum many-body systems. On the other hand, thereexists a clear limitation because

it has not been possible to identify precise holographic dual for general quantum field theory that

one may want to understand.

Since the ’t Hooft’s observation that largeN gauge theory is related to a weakly interact-

ing string theory[8], it has been suggested that there existintrinsic connections between the two

theories[9]. The fundamental object that bridges between these two theories is Wilson loop which

becomes classical in the large N limit. The dual string theory that governs the classical equation

of motion of Wilson loop[10, 11] in the loop space is expectedto be defined on one higher di-

mensional space than the space on which the field theory is defined, and the additional dimension

corresponds to the energy scale in the renormalization group (RG) sense[9]. There have been

many works which made the connection between RG flow of general quantum field theory and

holographic theory more precise[12–20].

In this paper, we present a first principle construction of a holographic theory dual toU(N)

gauge theory based on the prescription[18] which has been applied to theO(N) vector model[21–

25]. We use the lattice regularization for the gauge theory.The derived holographic theory is a

lattice field theory of closed loop defined on a(D+1)-dimensional lattice which can be viewed as

a discrete AdS space. The holographic theory becomes classical in the largeN limit and locality

emerges when the ’t Hooft coupling is large. This construction provides a realization of an earlier

idea of reformulating large N gauge theory as a classical theory of gauge neutral fields[26, 27].
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II. FROM U(N) GAUGE THEORY TO LOOP FIELD THEORY

We start with theU(N) gauge theory defined on the D-dimensional Euclidean hypercubic lat-

tice,

Z[J ] =

∫

dUe−SJ [U ;J ] (1)

with the action,

S[U ;J ] = −
∞
∑

n=1

∑

{C1,..,Cn}

N2−nJ{C1,..,Cn}

n
∏

i=1

WCi
. (2)

HereWC is Wilson line defined on closed oriented loopC,

WC = tr

[

∏

<ij>∈C

Uij

]

, (3)

whereUij = U †
ji is U(N) matrix (holonomy) defined on nearest neighbor bond< i, j >, and

dU ≡ ∏

<i,j> dUij. In Eq. (3) and all products of holonomies hereafter, we assume that the product

is path-ordered along the orientation of the curve.
∑

{C1,..,Cn}
is the sum over unordered sets of

n closed loops.J{C1}, J{C1,C2}, ... are coupling constants associated with single-trace,double-

trace operators, and so on. For single trace coupling, we will also use the notationJC1 ≡ J{C1}

interchangeably. The factor ofN2−n has been singled out from each coupling. Roughly, the

inverse ofJ{C1,..,Cn} corresponds to the ’t Hooft coupling. Throughout the paper,we will focus

on the largeN limit with fixed J{C1,..,Cn}. In this limit, the action is manifestly proportional to

N2. To guarantee the reality of the action, we imposeJ{C̄1,C̄2,...} = J ∗
{C1,C2,...}

whereC̄i is the

inverse loop ofCi, namely the loop with the same trajectory but with the inverse orientation. If

one ignores all multi-trace deformations and loops larger than the unit plaquette, one restores the

standard lattice gauge theory[28]. Here we consider the most general gauge invariant action. We

assume that couplings associated with large loops or multi-trace couplings with loops which are

far from each other are exponentially small in the size of large loops or in the separation between

loops. If couplings satisfy this condition, we say the theory is local. We note that effective theories

obtained by integrating out short distance fluctuations generically contain non-local terms which

are exponentially small.

To set the stage for a real-space renormalization, we dividelinks in the lattice into two sets[29].

The first setX contains links that form a coarse grained lattice, that is, the hypercubic lattice with
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(a) (b)

FIG. 1: (a) Two-dimensional illustration of theD-dimensional hypercubic lattice. (b) Links in the hyper-

cubic lattice divided into two sets where solid links belongto the coarse grained latticeX which form a

hypercubic lattice with a larger lattice spacing and the dashed links belong toY = Xc.

C

C

C1

2

3

FIG. 2: Three types of loops; Wilson loops forC1, C2 andC3 are included inSX , SY andSXY , respec-

tively.

the lattice spacing twice larger than the original one. The second setY contains all other links.

This is illustrated in Fig. 1. The action can be divided as

S[U, Ũ ;J ] = SX [U ] + SY [Ũ ] + SXY [U, Ũ ], (4)

where holonomy on links inY are denoted with tilde :Uij → Ũij if < i, j >∈ Y . HereSX and

SY are the actions which contain Wilson loops only inX andY , respectively, andSXY includes

loops that span acrossX andY , as is shown in Fig. 2. Now the partition function is written as

Z[J ] =

∫

dUe−SX [U ]
〈

e−SXY [U,Ũ ]
〉

Y
, (5)

where〈O〉Y =
∫

dŨOe−SY [Ũ ].

We note thatSXY [U, Ũ ] consists of Wilson loops where parts of the loops are made of holonomy

in X and the remaining parts inY . For example, the loop in Fig. 3 (a) represents a term

N
∑

L1

JL1tr[HL1,1H̃L1,2 ] (6)
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FIG. 3: Examples of Wilson loops included ine−SXY . The solid line represents links inX and the dashed

line in Y .
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FIG. 4: Parts of two Wilson lines inSXY that cross at sitej. The solid (dashed) lines represent links inX

(Y ). This crossed Wilson lines can be reconnected inside the average of< ... >Y so that links inX (Y )

form a Wilson line by themselves (see the text).

in SXY , whereL1,1 andL1,2 are two segments of the closed loopL1 which belong to the sub-

latticesX andY respectively. Hereafter, we will use the notationLa =
∑

b La,b to represent that

La,b is theb-th segment of a closed loopLa, whereb increases along the orientation. Accordingly,

HLa,b
represents the holonomy along the curvesLa,b. We add tilde as̃HLa,b

to represent holonomies

along curves which are inY . For all diagrams in Fig. 3, we have

HLa,1 =
∏

<i,j>∈La,1

Uij , H̃La,2 =
∏

<i,j>∈La,2

Ũij . (7)

Since the actionSY [Ũ ] respects the gauge symmetry in latticeY , only those configurations where

there is no open end inY survive inside< ... >Y . Therefore,
〈

tr[HL1,1H̃L1,2 ]
〉

Y
for Fig. 3 (a)

vanishes. Segments inY may form closed loops by themselves as in Fig. 3 (b), in which case the

average does not vanish. Non-vanishing contributions can be written as a product of Wilson loops

using the formula [34],

〈

tr(AUi1jŨji2B̃)tr(C̃Ũi3jUji4D)
〉

Y
=

1

N

〈

tr(AUi1jUji4D)tr(C̃Ũi3jŨji2B̃)
〉

Y
. (8)
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This is illustrated in Fig. 4. We emphasize that this identity is valid only inside the average, but

not as an operator identity. Using this formula, we obtain

〈

tr[HL1,1H̃L1,2 ]
〉

Y
=

1

N

〈

tr[HL1,1 ]tr[H̃L1,2 ]
〉

Y

=
1

N

〈

WL1,1W̃L1,2

〉

Y
(9)

for Fig. 3 (b). Generally, only those diagrams where all opensegments in sub-latticeY form

closed loops do not vanish. For Fig. 3 (c) and (d), one obtains

〈

tr[HL1,1H̃L1,2 ]tr[HL2,1H̃L2,2 ]
〉

Y
=

1

N2

〈

WL1,1+L2,1W̃L1,2+L2,2

〉

Y
,

〈

tr[HL1,1H̃L1,2 ]tr[HL2,1H̃L2,2 ]tr[HL3,1H̃L3,2 ]
〉

Y
=

1

N3

〈

WL1,1+L2,1+L3,1W̃L1,2+L3,2+L2,2

〉

Y
.(10)

Note that if segments in sub-latticeY form loops, segments in sub-latticeX automatically form

loops. Therefore all non-vanishing terms in
〈

e−SXY [U,Ũ ]
〉

Y
can be expressed as a polynomial of

Wilson loops inX andY ,

〈

e−SXY [U,Ũ ]
〉

Y
=

〈

1 +

∞
∑

n=1

∞
∑

m=1

∑

{C1,..,Cn}∈X

∑

{C̃1,..,C̃m}∈Y

F{C1,..,Cn};{C̃1,..,C̃m}[J ]

n
∏

i=1

WCi

m
∏

k=1

WC̃k

〉

Y

,

(11)

whereF{C1,..,Cn};{C̃1,..,C̃m}[J ] depends only onJ , {C1, .., Cn} and{C̃1, .., C̃m}, but not onUij ,

Ũij [35]. This polynomial forWC andWC̃ can be exponentiated as

〈

e−SXY [U,Ũ ]
〉

Y
=

〈

e−S
′
[W,W̃ ]

〉

Y
, (12)

where

S
′

[W, W̃ ] = −
∞
∑

n=1

∞
∑

m=1

N2−(m+n)
∑

{C1,..,Cn}∈X

∑

{C̃1,..,C̃m}∈Y

h{C1,..,Cn};{C̃1,..,C̃m}[J ]
n
∏

i=1

WCi

m
∏

k=1

WC̃k
.

(13)

HereN2−(m+n)h{C1,..,Cn};{C̃1,..,C̃m}[J ] is the cumulant ofF{C1,..,Cn};{C̃1,..,C̃m}[J ]. SincelnZ ∼
O(N2), h{C1,..,Cn};{C̃1,..,C̃m}[J ] is O(1) in the large N limit [36]. h{C1,..,Cn};{C̃1,..,C̃m}[J ] can be

6



computed perturbatively inJ{C1,..,Cn} and1/N [37],

h{C1};{C̃1}
[J ] =

∑

L1

JL1δC1+C̃1,L1
+ J{C1,C̃1}

+
1

2

∑

L1,L2

JL1JL2δL1,1+L2,1,C1δL1,2+L2,2,C̃1

+
1

6

∑

L1,L2,L3

JL1JL2JL3δL1,1+L2,1+L3,1,C1δL1,2+L3,2+L2,2,C̃1

+O(J 4, 1/N), (14)

h{C1,C2};{C̃1}
[J ] =

∑

L1

JL1δL1,1,C1δL1,2+L1,4,C̃1
δL1,3,C2

+
∑

L1,L2

J{L1,L2}δL1,1,C̃1
δL1,2,C1δL2,C2

+J{C1,C2,C̃1}
+O(J 2, 1/N), (15)

h{C1};{C̃1,C̃2}
[J ] =

∑

L1

JL1δL1,1,C̃1
δL1,2+L1,4,C1δL1,3,C̃2

+
∑

L1,L2

J{L1,L2}δL1,1,C1δL1,2,C̃1
δL2,C̃2

+J{C1,C̃1,C̃2}
+O(J 2, 1/N), (16)

and so on. HereδC1,C2 is a Kronecker delta function in the space of loops. It is easyto understand

physical meaning of each term. The first term in Eq. (14) describes a loopL1 which has a self-

intersecting point as in Fig. 3 (b) decomposes into two loopsC1 andC̃1 which are inX andY ,

respectively. The second term describes a two-loop state where one is included inX and the other

in Y . The third and fourth terms describe the process where two and three loops join to form a

loopC1 in X and a loopC̃1 in Y as in Fig. 3 (c) and (d), respectively. The first term in Eq. (15)

describes a loopL1 decomposing into three loops, two of which (C1, C2) are inX and one (̃C1),

in Y through two self intersecting points. The remaining terms can be understood similarly.

We call those Wilson loops that contribute toh{C1,..,Cn};{C̃1,..,C̃m}[J ] ‘connected Wilson loops’.

There are two kinds of them. Connected Wilson loops of the first kind are those that touch each

other in space at crossing points where links inX andY meet. For example, the Wilson loopsC1

andC̃1 in the first term of Eq. (14) are connected at a crossing point as in Fig. 3 (b). The second

kind includes those Wilson loops that are physically separated but the separated loops originate

from multi-trace couplings, such as the second term in Eq. (14), whereC1 andC̃1 are in general

separated in space but they are ‘connected’ throughJC1,C̃1
.
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Now the partition function can be written as

Z[J ] =

∫

X

dU

∫

Y

dŨe−SY [Ũ ]+
∑∞

n=1

∑

{C1,..,Cn}∈X N2−n(J{C1,..,Cn}+f{C1,..,Cn}[W̃ ])
∏n

i=1 WCi , (17)

where

f{C1,..,Cn}[W̃ ] =
∞
∑

m=1

N−m
∑

{C̃1,..,C̃m}∈Y

h{C1,..,Cn};{C̃1,..,C̃m}[J ]
m
∏

k=1

WC̃k
. (18)

This theory can be viewed as a theory defined on the latticeX whose sourcesJ{C1,..,Cn} +

f{C1,..,Cn}[W̃ ] are dynamical, where fluctuations of the sources are provided by the dynamical

degrees of freedom defined onY . SinceWC̃k
∼ O(N), the dynamical sources become classical

in the largeN limit. Therefore it is useful to introduce collective fieldsfor the source fields. We

decomposẽW andW by introducing Hubbard Stratonovich fields[18],

Z[J ] =

∫

dUdŨdJdPe
−
(

SY [Ũ ]+S
′′
[J,P,W,W̃ ]

)

, (19)

wheredJdP ≡ ∏∞
n=1

∏

{C1,..,Cn}∈X
dJ{C1,..,Cn}dP{C1,..,Cn} and

S
′′

[J, P,W, W̃ ] = iN2
∞
∑

n=1

∑

{C1,..,Cn}∈X

P{C1,..,Cn}

(

J{C1,..,Cn} −J{C1,..,Cn} − f{C1,..,Cn}[W̃ ]
)

−
∞
∑

n=1

∑

{C1,..,Cn}∈X

N2−nJ{C1,..,Cn}

n
∏

i=1

WCi
. (20)

J{C1,..,Cn}’s are fluctuating sources for Wilson loops onX, andP{C1,..,Cn} = P ∗
{C̄1,...,C̄n}

is a com-

plex Lagrangian multiplier which imposes the constraintJ{C1,..,Cn} = J{C1,..,Cn} + f{C1,..,Cn}[W̃ ]

and its complex conjugate. With this normalization ofP{C1,..,Cn}, the equation of motion for

J{C1,..,Cn} implies i < P{C1,..,Cn} >= N−n 〈∏n

i=1WCi
〉 ∼ O(1). Physically,P{C1,..,Cn} describes

fluctuations of the Wilson loop operators. The dynamical action for P{C1,..,Cn} is generated once

Ũ is integrated over,

Z[J ] =

∫

dUdJdPe−(SD[J ,J,P ]+SX [U ;J ]), (21)

where

SD[J , J, P ] = iN2

∞
∑

n=1

∑

{C1,..,Cn}∈X

P{C1,..,Cn}(J{C1,..,Cn} − J{C1,..,Cn}) +G[J , P ],

G[J , P ] = − ln
〈

eiN
2
∑∞

n=1

∑

{C1,..,Cn}∈X P{C1,..,Cn}f{C1,..,Cn}[W̃ ]
〉

Y
,

SX [U ; J ] = −
∞
∑

n=1

∑

{C1,..,Cn}∈X

N2−nJ{C1,..,Cn}

n
∏

i=1

WCi
. (22)
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i    k
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X+Y X X’
i    j    k

T[C’]

FIG. 5: Procedure of coarse graining. First, the link variables inY are integrated out. Then, the remaining

latticeX is rescaled into a coarse grained latticeX
′

so that every two consecutive links inX without a

branch get merged into one inX
′
.

In order to repeat the coarse graining procedure, it is convenient to mapX into the same form

as the original lattice. For this, we merge every two links inX into one link in a new latticeX
′

as is shown in Fig. 5. Accordingly, two holonomies on merged links< i, j >,< j, k >∈ X are

combined to produce one holonomy asU
′

ik = UijUjk which is defined on the coarse grained lattice

labeled by< i, k >∈ X
′
. Since the Wilson loops onX depend only onU

′
, the partition function

becomes

Z[J ] =

∫

dU
′

dJ
′

dP
′

e
−
(

S
′

D
[J ,J,P ]+S

X
′ [U

′
;J ]

)

(23)

upto an unimportant multiplicative constant, where dJ
′
dP

′ ≡
∏∞

n=1

∏

{C
′
1,..,C

′
n}∈X

′ dJ{C
′
1,..,C

′
n}
dP{C

′
1,..,C

′
n}

and

S
′

D[J , J, P ] = iN2
∞
∑

n=1

∑

{C
′
1,..,C

′
n}∈X

′

P{C
′
1,..,C

′
n}
(J{C

′
1,..,C

′
n}

− J{T [C
′
1],..,T [C′

n]}
) +G

′

[J , P ], (24)

G
′

[J , P ] = − ln

〈

e
iN2

∑∞
n=1

∑

{C
′
1
,..,C

′
n}∈X

′ P
{C

′
1
,..,C

′
n}

f
{T [C

′
1
],..,T [C

′
n]}

[W̃ ]
〉

Y

, (25)

SX
′ [U

′

; J ] = −
∞
∑

n=1

∑

{C
′
1,..,C

′
n}∈X

′

N2−nJ{C
′
1,..,C

′
n}

n
∏

i=1

W
C

′
i
. (26)

HereC
′

i ’s are loops onX
′
. T represents a dilatation map which takes a loop inX

′
to the original

one before rescaling inX as is illustrated in Fig. 5. This is necessary becauseJ{C
′
1,..,C

′
n}

and

P{C
′
1,..,C

′
n}

are defined onX
′
whileJ{C1,..,Cn} andf{C1,..,Cn}[W̃ ] are defined onX ⊂ X + Y .

This is a theory defined on the coarse grained latticeX
′

with dynamical coupling fields
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C1 C2+ + ...~ ~ ~ ~

FIG. 6: First two leading order planar diagrams forG
′
[J , P ]. These loops are defined onY and each loop

is associated withr{C̃1,..,C̃m}.

J{C
′
1,..,C

′
n}

, P{C
′
1,..,C

′
n}

with the actionS
′

D. The second term in Eq. (24) is given by

G
′

[J , P ] = − ln

∫

dŨe−S
′

Y
[Ũ ], (27)

where

S
′

Y [Ũ ] = −
∞
∑

m=1

∑

{C̃1,..,C̃m}∈Y

N2−mr{C̃1,..,C̃m}

m
∏

i=1

WC̃i
(28)

with

r{C̃1,..,C̃m} = J{C̃1,..,C̃m} + i
∞
∑

n=1

∑

{C
′
1,..,C

′
n}∈X

′

P{C
′
1,..,C

′
n}
h{T [C

′
1],..,T [C′

n]};{C̃1,..,C̃m}[J ]. (29)

ThereforeG
′
[J , P ] is given by the effective potential for the gauge theory defined on the sub-

lattice Y with the set of couplings,r{C̃1,..,C̃m}. In the largeN limit, planar diagrams give the

leading contribution andG
′
[J , P ] is O(N2). For large ’t Hooft couplings (J << 1), it is natural

to computeG
′
[J , P ] as a power series ofr{C̃1,..,C̃m} in the real space[30],

G
′

[J , P ] = −N2





1

2

∑

C̃1,C̃2∈Y

rC̃1
rC̃2

δC̃1+C̃2,0
+

1

6

∑

C̃1,C̃2,C̃3∈Y

rC̃1
rC̃2

rC̃3
δC̃1+C̃2+C̃3,0

+ ...



 . (30)

This can be easily checked by using
∫

dŨij Ũij;αβŨji;γδ = 1
N
δα,δδβ,γ [

∫

dŨij]. Due to the

Kronecker delta function, the first term survives only whenC̃1 = ¯̃C2. Similarly, the sec-

ond term is nonzero only when the three oriented loops form a connected double-line graph

with no unpaired single line. These are illustrated in Fig. 6. General contributions to

G
′
[J , P ] are given by multiple oriented surfaces made of double lines, where each face

in double line graphs is associated withr{C̃1,..,C̃m}. For example,−N2
∏

k rC̃k
δ∑

k C̃k ,0
and

−N2rC̃1,C̃2

∏

k rC̃′
k

∏

l rC̃′′
l
δ
C̃1+

∑

k C̃
′
k
,0δC̃2+

∑

l C̃
′′
l
,0 are contributions from one surface and two sur-

faces, respectively. Note thatG
′
[J , P ] is non-linear inP{C1,..,Cn}, and fluctuations ofP{C1,..,Cn}

no longer impose a strict delta function forJ{C1,..,Cn} : they become dynamical fields.
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l=0

l=1

l=2

FIG. 7: The ‘lattice AdS’ space. The sequence ofD-dimensional coarse grained lattices form a(D + 1)-

dimensional space on which the lattice loop field theory is defined.

This completes one step of our RG procedure. If we repeatedlyapply this cycle to the theory

onX
′
, and then to the coarse grained lattice ofX

′
and so on, we can write the partition function

as a integration overJ (l)’s andP (l)’s[18],

Z[J ] =

∫ ∞
∏

l=1

[

dJ (l)dP (l)
]

e−SLLFT ,

SLLFT =
∞
∑

l=0

S
′

D[J
(l), J (l+1), P (l+1)], (31)

whereJ (l) andP (l) are Hubbard-Stratonovich fields introduced at thel-th step of coarse graining,

andJ (0) is fixed by the microscopic couplings,

J
(0)
{C1,..,Cn}

= J{C1,..,Cn}. (32)

Herel plays the role of a discrete coordinate for the new(D+1)-th dimension that corresponds to

the length scale in RG; fields at small (large)l describe UV (IR) physics. This(D+1)-dimensional

theory is a holographic theory for theD-dimensionalU(N) lattice gauge theory. We will call it

lattice loop field theory(LLFT).

Since it is difficult to write down the full theory in a compactform, let us try to understand

some general features of the theory from the first few leadingterms of the action in the strong

11



coupling expansion (J << 1). By plugging Eqs. (14)-(16) into Eqs. (29) and (30), one obtains,

SLLFT = N2
∞
∑

l=0



i
∞
∑

n=1

∑

{C1,..,Cn}

P
(l+1)
{C1,..,Cn}

(J
(l+1)
{C1,..,Cn}

− J
(l)
{T [C1],..,T [Cn]}

) +H[J (l), P (l+1)]



 ,

(33)

where the ‘Hamiltonian’H (the reason for this naming will become clear shortly) is given by

H[J, P ] = −
{

JC̃ + iPC1

(

JL1δL1,T [C1]+C̃ + J{T [C1],C̃} +
1

2
JL1JL2δL1,1+L2,1,T [C1]δL1,2+L2,2,C̃

)

+ iP{C1,C2}

(

JL1δL1,1,T [C1]δL1,2+L1,4,C̃
δL1,3,T [C2] + J{L1,L2}δL1,1,C̃

δL1,2,T [C1]δL2,T [C2]

+ J{T [C1],T [C2],C̃}

)

+ ...
}

×
{

J ¯̃
C
+ iPC3

(

JL3δL3,T [C3]+
¯̃
C
+ J

{T [C3],
¯̃
C}

+
1

2
JL3JL4δL3,1+L4,1,T [C3]δL3,2+L4,2,

¯̃
C

)

+ iP{C3,C4}

(

JL3δL3,1,T [C3]δL3,2+L3,4,
¯̃
C
δL3,3,T [C4] + J{L3,L4}δL3,1,

¯̃
C
δL3,2,T [C3]δL4,T [C4]

+ J
{T [C3],T [C4],

¯̃
C}

)

+ ...
}

+ ..., (34)

where... include terms that involve fields associated with multi-loop states and higher order terms

in J, P, 1/N . Here indicesLi, Ci andC̃ are understood to be summed over loops inX + Y , X
′

andY , respectively. LLFT is defined on the(D + 1)-dimensional lattice shown in Fig. 7. This

lattice can be viewed as a discrete version of the anti-de Sitter (AdS) space where the continuous

isometryl = l
′
+ α, xµ = eαxµ′

of the metricds2 = dl2 + e−2l
∑D

µ=1 dx
µ2 is replaced by a

discrete scale invariance,l = l
′
+ 1, xi = 2x

′

i. This kind of ‘discrete AdS’ space has been the

natural setting for the real space renormalization group approach and the multi-scale entanglement

renormalization Ansatz (MERA)[31–33]. The degrees of freedom of LLFT are fields of loops

J
(l)
{C1,..,Cn}

andP (l)
{C1,..,Cn}

.

It is convenient to interpretl as a discrete (imaginary) ‘time’. Then we can identify the

first term in Eq. (33) as the Berry phase term which dictates that J (l)
{C1,..,Cn}

and P
(l)
{C1,..,Cn}

are conjugate to each other : loop fields as operators would satisfy the commutation relation

[J{C1,..,Cn}, P{C1,..,Cn}] = i/N2 if time was continuous. The remaining termH in Eq. (33) is the

‘Hamiltonian’ that governs the evolution of the loop fields along the discrete time[38]. Formally,

J
(l)
{C1,..,Cn}

(iP (l)
{C1,..,Cn}

) can be viewed as the path integration representation of an operator that

annihilates (creates) a set of loops{C1, .., Cn} at timel, andJ (l)

C̄1,..,C̄2
(iP (l)

C̄1,..,C̄2
) is associated with

an annihilation (creation) operator of ‘anti-loops’. It isnoted thatJ{C1,..,Cn} and iP{C1,..,Cn} are

not the usual annihilation and creation operators because they are not Hermitian conjugate to each

12



other. In the basis given by

a{C1,..,Cn} =
N√
2
(J{C1,..,Cn} − iP{C̄1,..,C̄n}),

b{C1,..,Cn} =
N√
2
(J{C̄1,..,C̄n} − iP{C1,..,Cn}), (35)

a{C1,..,Cn} anda†{C1,..,Cn}
(b{C1,..,Cn} andb†{C1,..,Cn}

) become the standard annihilation and creation

operators of loops{C1, .., Cn} (anti-loops{C̄1, .., C̄n}) respectively. However, we will use the

basis ofJ{C1,..,Cn} andP{C1,..,Cn} in the following because it has two merits. First, the Hamiltonian

becomes particularly simple in this basis becauseH contains only thoseP{C1,..,Cn} with Ci ∈ X
′
:

loops can be created only on those links that survive coarse graining at each step of RG. Second, the

equations of motion forJ{C1,..,Cn} andJ{C̄1,..,C̄n} impliesi < P{C1,..,Cn} >= [i < P{C̄1,..,C̄n} >]∗.

Therefore it is convenient to absorbi into P{C1,..,Cn} to defineP{C1,..,Cn} = iP{C1,..,Cn}. At the

saddle point, the Hamiltonian becomes Hermitian and the Berry phase term forP{C1,..,Cn} and

J{C1,..,Cn} becomes that of the standard creation and annihilation operators upto the factor ofN2.

Note that the expectation value of creation operator is not in general complex conjugate of that

of annihilation operator, i.e.< P{C1,..,Cn} > 6=< J{C1,..,Cn} >∗, when the saddle point is ‘time’-

dependent.

(b)(a) (c)

(d) (e)

FIG. 8: Diagrams that contribute to the Hamiltonian.

Now let us take a closer look at the Hamiltonian to understandthe physical meaning

of each term. The quadratic termJC̃J ¯̃
C

describes a process where a loopC̃ and its anti-

loop ¯̃C are pair-annihilated (Fig. 8 (a)). Higher order terms describe fluctuations and join-

ing/splitting processes of loops :iPC1JL1δL1,T [C1]+C̃J ¯̃
C

describes a process where a loopL1

13



with a self intersection becomes a smaller loop by combiningwith a loop ¯̃C (Fig. 8 (b));

iPC1J{T [C1],C̃}J ¯̃
C

describes one of the loops in a two-loop state disappearing into vacuum with

its anti-loop (Fig. 8 (c));iPC1JL1JL2δL1,1+L2,1,T [C1]δL1,2+L2,2,C̃
J ¯̃
C

describes two loops merging

into one loop with a help of an anti-loop which eliminates parts of the two loops(Fig. 8 (d));

iP{C1,C2}JL1δL1,1,T [C1]δL1,2+L1,4,C̃
δL1,3,T [C2]J ¯̃

C
describes a process where one loop gets split into

two(Fig. 8 (e)).

l+1

l

(a)

l+1

l

(c)

l+1

l

(b)

FIG. 9: The quadratic and cubic terms for the propagating loop fields jC , pC in the Hamiltonian. The

quadratic term (a) describes fluctuation and propagation ofloops, and the cubic terms (b), (c) describe

joining and splitting processes of loops.

Usually, it is expected that a quadratic kinetic energy termdescribes propagation of loops in

space and time. Actually there is no such term in the Hamiltonian. Instead, fluctuations of loop

arise only through cubic and higher order terms inJ andP . Here we have to remember that

J
(l)
{C1,..,Cn}

andP (l)
{C1,..,Cn}

have nonzero expectation value in the vacuum because of the boundary

conditionJ (0)
{C1,..,Cn}

6= 0. Therefore one has to identifyj{C1,..,Cn} = J{C1,..,Cn}− < J{C1,..,Cn} >

andp{C1,..,Cn} = P{C1,..,Cn}− < P{C1,..,Cn} > as the propagating loop fields. For these fields that

describe small fluctuations of loop fields, the Hamiltonian includes the quadratic kinetic energy

which describes fluctuations and propagation of loops in spacetime,

∑

C1,C2

tC1,C2p
(l+1)
C1

j
(l)
C2
, (36)

wheretC1,C2 is ‘hopping’ probability amplitude for a loopC2 at timel to change into a loopC1

at timel + 1. The Hamiltonian also contains interactions between propagating loop fields. For

14



example, the cubic interaction terms,

∑

C1,C2,C3

VC1,C2,C3p
(l+1)
C1

j
(l)
C2
j
(l)
C3
,

∑

C1,C2,C3

V
′

C1,C2,C3
p
(l+1)
C1

p
(l+1)
C2

j
(l)
C3

(37)

describe the processes where two loops join into one loop andone loop splits into two loops, re-

spectively. These are illustrated in Fig. 9. In general, loops involved in hopping and interaction

can be far from each other in space. However, such non-local terms will be exponentially sup-

pressed if< J{C1,..,Cn} > is small, and decreases exponentially as the size of loops{C1, .., Cn}
increases or as the separation between the loops in multi-trace couplings increases. This is because

only connected diagrams contribute to the Hamiltonian. Forexample, in order for a loop to hop

by a large distance, there must be a large number of loops thatconnect the initial and final states,

or there must be a multi-trace coupling that connect them. This suggests that LLFT intrinsically

has non-local elements, but a sense of locality emerges if vacuum satisfies certain conditions. In

a sense, locality is a property of the vacuum rather than the theory itself. We will discuss more

about the condition for locality in the next section.

i

j

i

j

(a)                        (b)                         (c)

i

j

FIG. 10: Three loops that contribute charge (a)+1, (b)−1, (c) 0 toQij .

Is there a symmetry underlying this action ? The actionSLLFT in Eq. (33) has infinitely many

conserved charges. Namely, one can define one U(1) chargeQij = −Qji for every directed link

< i, j > so that

[

Qij , J
(l)
{C1,..,Cn}

]

= Y ij

{T l[C1],..,T l[Cn]}
J
(l)
{C1,..,Cn}

,
[

Qij , P
(l)
{C1,..,Cn}

]

= −Y ij

{T l[C1],..,T l[Cn]}
P

(l)
{C1,..,Cn}

, (38)

where< i, j > is a link on the original lattice (the boundary of the discrete AdS space),T l[Ci]

maps a loopCi on thel-th coarse grained lattice to a loop on the original lattice by magnifying
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the loop by2l times (T 1 = T , T 2 = T ◦ T , ...), andY ij

{C1,..,Cn}
is the total number of times that

loops{C1, .., Cn} pass through the link< i, j >. If a loop pass the link fromi to j (from j to i), it

contribute+1 (−1) toY ij

{C1,..,Cn}
as is illustrated in Fig. 10. In general, any term that respects these

symmetries arises inSLLFT . For example, there is a term that describes a multi-loop scattering

process,
[

n
∏

a=1

P
(l+1)
Ca

][

m
∏

b=1

J
(l)

C
′
b

]

δ∑
a T [Ca],

∑

b C
′
b
, (39)

wherem incoming loops becomen outgoing loops. Here the delta function imposes the charge

conservation.

Although the actionSLLFT is invariant under the local symmetries, the infinite set of symme-

tries is broken by the boundary conditionJ (0)
{C1,..,Cn}

6= 0. In general, there remain onlyD unbroken

global symmetries generated by,

Qµ =
∑

i

Qii+µ, (40)

whereµ = 1, 2, ..., D. Conservation ofQµ implies that if a loop has a certain number of links

along+µ direction, it should have the same number of links along−µ to form a closed loop.

The conservation ofQµ means that there are only closed loops. This conserved charge is a lattice

version of the charge carried by world sheet of fundamental string which is coupled to the NS-NS

two form gauge field in the critical string theory.

III. CLASSICALITY AND LOCALITY

The prefactorN2 in SLLFT can be identified as the inverse of ‘Planck constant’ that controls

quantum fluctuations ofJ{C1,..,Cn} andP{C1,..,Cn}. Therefore the theory becomes classical in the

largeN limit. The saddle point occurs along the imaginary axis forP{C1,..,Cn} = −iP{C1,..,Cn}.

The equation of motion takes the form of the Hamilton equation[13] in discrete time,

J
(l+1)
{C1,..,Cn}

− J
(l)
{T [C1],..,T [Cn]}

= −∂H[J (l), P (l+1)]

∂P(l+1)
{C1 ,..,Cn}

, (41)

P(l+1)

{T−1[C1],..,T−1[Cn]}
−P(l)

{C1,..,Cn}
=

∂H[J (l), P (l+1)]

∂J
(l)
{C1,..,Cn}

. (42)

The second equation needs a further explanation. In general, there is no inverse for the mapT

because not all loops in stepl survives in step(l + 1). If there is no inverse forCi, we simply

defineP(l+1)

{..,T−1[Ci],..}
= 0.
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To solve the equations of motion, one needs two boundary conditions for each{C1, .., Cn}.

One condition is given by Eq. (32). The other condition should be implemented dynamically,

namely by minimizing the whole action over all possible paths ofJ (l)
{C1,..,Cn}

andP (l)
{C1,..,Cn}

subject

to Eq. (32). This is analogous to the problem of finding the classical trajectory of a particle where

the initial position is fixed, but the initial velocity is a variational parameter one uses to minimize

the action.

FIG. 11: A non-local coupling between two separated circular small loops mediated by two large elongated

loops. The non-local interaction creates dips in the final state of the small loops.

Is the theory local in(D+ 1) dimensions ? The theory is evidently local along the new dimen-

sion l. The locality along the originalD dimensions is more tricky. This is because size of loops

can be arbitrarily large. Even though one starts with small loops, multi-loop interactions generate

large loops. Large loops can, in turn, mediate interactionsbetween loops which are far from each

other. Fig. 11 shows an example where two large loopsC1 andC2 mediate interaction between

two small loopsC
′

1 andC
′

1 which are far from each other,

P
(l+1)
{L1,L2}

J
(l)
C1
J
(l)
C2
J
(l)

C
′
1

J
(l)

C
′
2

δC′
1,1+C1,1,T [L1]

δC′
2,1+C1,3,T [L2]

δC1,2+C
′
2,2+C1,4+C

′
1,2,C2

. (43)

The non-local coupling betweenJ (l)

C
′
1

andJ (l)

C
′
2

is proportional to the amplitude of the large loops,

J
(l)
C1
J
(l)
C2

. This looks bad for locality. However, if the saddle point value ofJC decreases exponen-

tially as the size of the loop increases, the non-local coupling is exponentially small. In this case,

locality is still maintained. Therefore, we can choose the initial couplings as

J
(0)
C1

∼ λ−AC1 ,

J
(0)
C1,C2

∼ λ−(AC1
+AC2

+dC1,C2
),

... (44)

whereλ is the ’t Hooft coupling much larger than1, AC is the minimum area enclosed by the

loop C, anddC,C
′ is the minimum distance between the two loops. Now we prove that if the

saddle point values ofJ (l)
{C1,..,Cn}

are exponentially small for large loops, those ofJ
(l+1)
{C1,..,Cn}

are
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also exponentially small for large loops. Because the Hamiltonian depends onP{C1,..,Cn} only

throughr{C1,..,Cn} in Eq. (29), Eq. (41) can be written as

J
(l+1)
{C1,..,Cn}

− J
(l)
{T [C1],..,T [Cn]}

= −
∑

{C̃1,..,C̃m}

∂r
(l)

{C̃1,..,C̃m}

∂P(l+1)
{C1,..,Cn}

∂H
∂r

(l)

{C̃1,..,C̃m}

= −
∑

{C̃1,..,C̃m}

h{T [C1],..,T [Cn]};{C̃1,..,C̃m}[J
(l)]

∂H
∂r

(l)

{C̃1,..,C̃m}

, (45)

where we used

r
(l)

{C̃1,..,C̃m}
= J

(l)

{C̃1,..,C̃m}
+

∞
∑

n=1

∑

{C1,..,Cn}

P(l+1)
{C1,..,Cn}

h{T [C1],..,T [Cn]};{C̃1,..,C̃m}[J
(l)]. (46)

Note that h{T [C1],..,T [Cn]};{C̃1,..,C̃m}[J
(l)] carries Qij charges for loops,{T [C1], .., T [Cn]} and

{C̃1, .., C̃m}. Therefore, if any loop in{C1, .., Cn} is large there must be a large number ofJ (l)’s

or at least oneJ (l) with a large loop inh{T [C1],..,T [Cn]};{C̃1,..,C̃m} in order to match the charge. Sim-

ilarly, if there are two loops in{C1, .., Cn} which are far from each other,h{T [C1],..,T [Cn]};{C̃1,..,C̃m}

must include either a large number of loop fieldsJ (l) or at least one multi-loop fields such asJ
(l)
C1,C2

where the separation betweenC1 andC2 is large which connect the separated two loops. This is

because disconnected diagrams do not contribute toh{T [C1],..,T [Cn]};{C̃1,..,C̃m}[J
(l)]. This guarantees

that if the condition in Eq. (44) is satisfied for a largeλ(l) at timel, a similar set of condition will

be satisfied with a largeλ(l+1) ∼ λ(l) at timel + 1. Therefore the theory will remain local as far

as the theory stays strongly coupled with large ’t Hooft couplings along the renormalization group

flow. This is certainly true for smalll (UV region) if one starts with large ’t Hooft couplings.

Whether the amplitudes for large loops remain exponentially small for largel (IR region) will

be determined dynamically through the equation of motion. Here we can think of three possibil-

ities. The first possibility is that the energy dependent ’t Hooft couplingλ(l) increases without a

bound asl increases. In this case, the locality becomes better at IR. On the other hand, fluctua-

tions of loop fields become suppressed and loops become very heavy in the IR limit. This is the

case for the pureU(N) gauge theory in the strong coupling limitλ >> 1. In the low energy

limit, there is no light degrees of freedom, which describesthe confinement phase. The second

possibility is the case whereλ(l) decreases to a small value in the IR limit. If this happens, non-

local couplings between loops become significant below a certain energy scale (l > lc). In this

case, the theory becomes non-local in the IR limit. This occurs if the theory flows to a IR fixed

point which is not strongly coupled, that is,liml→∞ λ(l) ≤ 1. The last possibility, for which the
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holographic description is most useful, is that the ’t Hooftcoupling stays at a large but finite value

liml→∞ λ(l) >> 1 in the largel limit. This can be realized in a theory which flows to a strongly

interacting conformal field theory, such as theN = 4 super Yang-Mills theory at a large ’t Hooft

coupling. Then the IR dynamics is described by a weakly interacting local theory of closed loops.

At the saddle point, loop fields generically have nonzero expectation values. Small fluctuations

of loop fields around the classical configuration will be described by a perturbative string theory.

However, LLFT is well defined even non-perturbatively, and one can consider non-perturbative

objects such as solitons.

IV. DISCUSSIONS

A. Relation between LLFT and string field theory

One may view LLFT as a string field theory put in lattice. In order to obtain a string field theory

in the smooth AdS space, it would be better to use a different regularization for the gauge theory.

This is because RG steps can not be continuous in the lattice regularized theory. It would be of

interest to devise a better regularization scheme for strongly coupled gauge theory which allows

one to construct a more cut-off independent holographic theory. However, the lattice construction

will be more useful to describe non-critical phases in real lattice models.

B. Comparison with theO(N) vector model

The equation of motion in Eqs. (41) and (42) can be solved onlyif another boundary condition

is provided besides the UV boundary condition in Eq. (32). The extra boundary condition should

be imposed dynamically in the IR limit. In the case of the holographicO(N) vector model[18],

imposing the IR boundary condition amounts to solving the original field theory. Because the

holographic theory for theO(N) model has non-singlet bulk fields which are not classical even in

the largeN limit, one has to integrate over the non-singlet bulk fields in the IR limit to dynamically

impose the second boundary condition. On the other hand, in theU(N) gauge theory onlyU(N)

singlet fields are physical and all bulk degrees of freedom are classical in the largeN limit. For this

reason, the IR boundary condition can be imposed by minimizing the whole action with respect

to the loop fields in the IR limit. Whether this leads to a simple regularity condition as in the

standard AdS/CFT correspondence is yet to be understood. Nonetheless, in largeN gauge theory,
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everything boils down to solving classical problem, which is the major difference from theO(N)

model. Therefore, the duality between LLFT and the largeN gauge theory is a strong-weak

coupling duality, contrary to the case for theO(N) vector model.
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...Ũi3j;αβ
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