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Abstract
Based on the earlier work [S.-S. Lee, Nucl. Rev8®, 567 (2010)], we derive a holographic dual for
the D-dimensionall/ (V) lattice gauge theory from a first principle construction.eThasulting theory is a
lattice field theory of closed loops, dubbedatsice loop field theoryhich is defined on a lattice version of
the (D +1)-dimensional anti-de Sitter space. The lattice loop fiettly is well defined non-perturbatively,

and it becomes weakly coupled and local in the lak¥gémit with a large 't Hooft coupling.
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I. INTRODUCTION

Although there are many non-trivial evidences for the @etiSitter space/conformal field the-
ory (AdS/CFT) correspondence|1-3], a first principle dation of the conjecture is not available
yet. Nonetheless the correspondence has been employedidie aange of physical systems in-
cluding condensed matter systems|[4—7], in a hope thaticdeatures of strongly coupled quan-
tum field theory can be captured by holographic theoriestoocted based on phenomenological
reasoning. On the one hand, such approaches have produeessimg insights into strongly
coupled quantum many-body systems. On the other hand, ¢éhests a clear limitation because
it has not been possible to identify precise holographid thuagyeneral quantum field theory that
one may want to understand.

Since the 't Hooft’'s observation that largeé gauge theory is related to a weakly interact-
ing string theory[8], it has been suggested that there exishsic connections between the two
theories[9]. The fundamental object that bridges betwkesd two theories is Wilson loop which
becomes classical in the large N limit. The dual string tii¢bat governs the classical equation
of motion of Wilson loop[10, 11] in the loop space is expectede defined on one higher di-
mensional space than the space on which the field theory isediefand the additional dimension
corresponds to the energy scale in the renormalizationpg(B@) sense[9]. There have been
many works which made the connection between RG flow of gégeantum field theory and
holographic theory more precise[12+20].

In this paper, we present a first principle construction obkgraphic theory dual té&/ (V)
gauge theory based on the prescription[18] which has begiedpo theO (V) vector model[21—
25]. We use the lattice regularization for the gauge thedhe derived holographic theory is a
lattice field theory of closed loop defined oii/a + 1)-dimensional lattice which can be viewed as
a discrete AdS space. The holographic theory becomesadhsgsithe large/V limit and locality
emerges when the 't Hooft coupling is large. This constorcprovides a realization of an earlier

idea of reformulating large N gauge theory as a classicalrthef gauge neutral fields[26, 27].



II. FROM U(N) GAUGE THEORY TO LOOP FIELD THEORY

We start with the/(N) gauge theory defined on the D-dimensional Euclidean hypérdat-

tice,
Z[J] = / dUe=971U:7] 1)
with the action,
SU; T = — i Z Nz_nj{cl,..,cn} ﬁ We,. (2)
n=1{C1,..,Cp} i=1

HerelW is Wilson line defined on closed oriented lo6p

WC:tr[ H Uij

<ig>eC

, 3)

whereU;; = U]Ti is U(N) matrix (holonomy) defined on nearest neighbor bend, ; >, and
dU = H<m’> dU;;. In Eq. (3) and all products of holonomies hereafter, wemesthat the product
is path-ordered along the orientation of the cur¥e,, . , is the sum over unordered sets of
n closed loops.Jc,3, Jicy,c.}s -~ are coupling constants associated with single-traceble-
trace operators, and so on. For single trace coupling, wealsib use the notatiofc, = Jic,y
interchangeably. The factor gf>~" has been singled out from each coupling. Roughly, the
inverse of7;c, . c,} corresponds to the 't Hooft coupling. Throughout the paperwill focus
on the largeN limit with fixed Jic,,..c,;- In this limit, the action is manifestly proportional to
NZ2. To guarantee the reality of the action, we impo&e, ¢,..1 = Jicr.c,1 where(; is the
inverse loop ofC;, namely the loop with the same trajectory but with the ingeygentation. If
one ignores all multi-trace deformations and loops largantthe unit plaguette, one restores the
standard lattice gauge theary[28]. Here we consider the geteral gauge invariant action. We
assume that couplings associated with large loops or rmatte couplings with loops which are
far from each other are exponentially small in the size agfddoops or in the separation between
loops. If couplings satisfy this condition, we say the tlydserlocal. We note that effective theories
obtained by integrating out short distance fluctuationsegeally contain non-local terms which
are exponentially small.

To set the stage for a real-space renormalization, we divile in the lattice into two sets[29].

The first setX contains links that form a coarse grained lattice, thahis Hypercubic lattice with
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FIG. 1: (a) Two-dimensional illustration of thB-dimensional hypercubic lattice. (b) Links in the hyper-
cubic lattice divided into two sets where solid links beldoghe coarse grained latticé which form a

hypercubic lattice with a larger lattice spacing and theéhdddinks belong t&@” = X°.
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FIG. 2. Three types of loops; Wilson loops 6%, C5 andCs are included inSy, Sy andSxy, respec-

tively.

the lattice spacing twice larger than the original one. Témoad sel” contains all other links.

This is illustrated in FiglI1. The action can be divided as
S[U,U; 7] = Sx[U] + Sy[U] + Sxv[U, U], (4)

where holonomy on links iy” are denoted with tilde U;; — (72-3- if <i,j > Y. HereSy and
Sy are the actions which contain Wilson loops onlyXnandY’, respectively, and 'y includes

loops that span across andY’, as is shown in Fid.12. Now the partition function is writtes1 a
Z|TJ) = /dUe_SX[U} <e_SXY[U’U}> , (5)
Y

where(0), = [ dUOe S¥17,
We note thaly [U, U] consists of Wilson loops where parts of the loops are madeloflomy
in X and the remaining parts . For example, the loop in Figl 3 (a) represents a term

NZJthr[HLLlF[LlQ] (6)

Ly
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FIG. 3: Examples of Wilson loops included én®x> . The solid line represents links i and the dashed

lineinY.
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FIG. 4: Parts of two Wilson lines if'xy that cross at sit¢. The solid (dashed) lines represent linksXin
(Y). This crossed Wilson lines can be reconnected inside temge of< ... >y so that links inX (Y)

form a Wilson line by themselves (see the text).

in Sxy, whereL, ; and L, , are two segments of the closed lodp which belong to the sub-
lattices X andY respectively. Hereafter, we will use the notatibp= ), L, to represent that
L, is theb-th segment of a closed lodp,, whereb increases along the orientation. Accordingly,
Hy, , represents the holonomy along the curlgs. We add tilde a§~{La7b to represent holonomies
along curves which are ir. For all diagrams in Fid.]3, we have

H,, = [ Uy Hu.= [[ Us (7)

<i,j>€La <i,j>ELq 2

Since the actioﬁ?y[f] ] respects the gauge symmetry in latti¢eonly those configurations where
there is no open end il survive inside< ... >y. Therefore,<tr[HL1’1F[Lw]>Y for Fig. [3 (a)
vanishes. Segments i1 may form closed loops by themselves as in Eig. 3 (b), in whadedhe
average does not vanish. Non-vanishing contributions eamrliten as a product of Wilson loops

using the formula [34],

o 1 L
<tr(AUi1jUjizB)tr(CUisjsz‘4D)>Y = N<tr(AUZ-1jUji4D)tr(CUi3jUji2B)>Y. (8)



This is illustrated in FigL 4. We emphasize that this idgnistvalid only inside the average, but

not as an operator identity. Using this formula, we obtain

. 1 .
<tr[HL1,1HL1¢2]>Y = N <tr[HL1,1]tr[HL1,2]>Y
1 .
- N <WL1,1WL1,2>Y (9)
for Fig. [3 (b). Generally, only those diagrams where all opegments in sub-latticé form

closed loops do not vanish. For Fig. 3 (c) and (d), one obtains

. . 1 .
<tr[HL1,1HL1,2]tr[HL2,1HL2,2]>Y = m <WL1,1+L2,1WL1,2+L2,2>Y )
. . . 1 .
<tr[HL1,1HL1,2]tr[HL2,1HL2,2]tr[HL3,1HL3,2]>Y = ﬁ <WL1,1+L2,1+L3,1WL1,2+L3,2+L2,2>Y (10)

Note that if segments in sub-lattidé form loops, segments in sub-latticé automatically form
loops. Therefore all non-vanishing terms<i‘SXY[Uvm> can be expressed as a polynomial of
Y

Wilson loops inX andY’,

<e‘SXY[U’U]>Y = <1+ZZ > > F{ch..vcn};{éh..vém}mHWCi]nWCk> ’
=1

n=1 m=1 {C1,..,Cr}eX {él,..,ém}EY =1 v
(11)
where Fie, o e, [J] depends only o7, {Ci, .., Cy} and {Cy, .., C,,}, but not onU;,
Uij[35]. This polynomial forlV andW can be exponentiated as
<6—SXY[U,U}> _ <e—s’ [W,VV]> ’ (12)
Y Y
where
SWW] = =) Y Ny Y Nenonenen T [We [T We,-
n=1m=1 {C1,.,Cr}eX {Cy,..,Crn}eY =1 k=1
(13)

Here N>~"th oy anlJ] is the cumulant ofF e, o y.6,. 60[T]. SincelnZ ~
O(N?), hye,  cnyien..cnyT) 18 O(1) in the large N imit [36]. he, o146, 6,1 [T] can be



computed perturbatively iy, . ¢, and1/N[37],
hienenld) = Y Tndeen + Jiei
Ly

1
+§ E \714jL26L1,1+L2,17016L1’2+L272,C~’1
Li,Lo

1
+6 E: lejL2jL:55L1,1+L2,1+L3,17015L1,2+L3,2+L2,2,C1
L1,L2,L3

+O(J* 1/N), (14)

h{C’l,Cg};{C’l}[j] = ZjL15L1,1,C'16L172+L1’4,C~'15L1,3,C’2

Ly

+ § :j{Ll,Lz}éLLl,(}l5L1,2,C16L2,02

Ly,L2

_'_‘7{01,02,@1} + O(j27 1/N)7 (15)

h{C1};{él,ég}[‘7] = ZleéLl,l,él5L1,2+L1,47016L173,C~'2

Ly

+ § : j{L17L2}5L1,17015L1,2,C’15L2,C“2

Ly,L2

_'_‘7{01,@1,@2} + O(j27 1/N)7 (16)

and so on. Heré¢, ¢, is a Kronecker delta function in the space of loops. It is éasynderstand
physical meaning of each term. The first term in Hq.l (14) dlessra loopL; which has a self-
intersecting point as in Fig.] 3 (b) decomposes into two la@psndC; which are inX andY’,
respectively. The second term describes a two-loop stageendne is included irX and the other
in Y. The third and fourth terms describe the process where twidtaee loops join to form a
loop C; in X and a loopC; in Y as in Fig.[B (c) and (d), respectively. The first term in EqJ)(15
describes a loogh; decomposing into three loops, two of whidh,( C,) are inX and one (),

in Y through two self intersecting points. The remaining teraus lse understood similarly.

We call those Wilson loops that contributeitq. . ,.a,  &,,[J] ‘connected Wilson loops’.
There are two kinds of them. Connected Wilson loops of the Kirel are those that touch each
other in space at crossing points where linkXirandY meet. For example, the Wilson loop$
and(, in the first term of Eq.[{14) are connected at a crossing paiti &ig.[3 (b). The second
kind includes those Wilson loops that are physically sejedraut the separated loops originate
from multi-trace couplings, such as the second term in E§), (khereC; andC, are in general

separated in space but they are ‘connected’ thrfgh, .



Now the partition function can be written as
Z|J) = / U / e ST Sieycmex N Tier ey Hier o WD IT We, (17)

where

o0

fier, o W] = Z N—" Z hicy. .cuyicn. eyl J] H We, - (18)
m=1 k=1

{C1,...Cm}eY
This theory can be viewed as a theory defined on the lafticeshose sources/ic,, ¢, +
f{ch.ﬂn}[W] are dynamical, where fluctuations of the sources are prdvmethe dynamical
degrees of freedom defined dh SincelV; ~ O(N), the dynamical sources become classical
in the largeNV limit. Therefore it is useful to introduce collective fieltts the source fields. We

decomposé&l” andWW by introducing Hubbard Stratonovich fields[18],
Z[j] _ /dUdUdePe_ (SY[UH-S’/ [JJ—"’,W,VV])’ (19)

wheredJdP = HZO:1 H{C’1,..,Cn}EX dJ{C1,..,Cn}dP{C1,..,Cn} and

S"[J, P,W,W] = iN® Z Z Py, o0 (J{Cl,..,cn} —Jicr,.00) — f{cl,..,cn}[W])
n=1{Cj,..,.Cr}eX

—Z > N, cn}HWC (20)
n=1{Cj,..,.Cr}eX

Jicy,...cny'S are fluctuating sources for Wilson loops an and Py, .. ¢,y = P, is a com-

Ciyeesy
plex Lagrangian multiplier which imposes the constraipt, ¢, = j{cl,..,ci} + f{;,.,,cn}[W]
and its complex conjugate. With this normalization &f, .., the equation of motion for
Jicy,..ony impliesi < Py, ¢ >= N ([[_, We,) ~ O(1). Physically,P;c,, ¢, describes
fluctuations of the Wilson loop operators. The dynamicaioactor Py, . ¢,) is generated once

U is integrated over,
ZlJ) = / dUdJdPe~SplT-FPIHSx U] (21)

where

SplJ.J,P] = iN? Z Z Piey,..on(Jion,..ony — Jicn,..cny) + GLT, P,

n=1 {Cl,..,C7L}EX

G[T.P] = —In <eiN2230:1Z{cl,‘.,cn}exP{cu-?cn}f{cl,u,cn}[W]> :

Y

Sx[U; J] = —Z Z N*"Jo . Cn}HWC (22)

n=1 {Cy,..,Cn}eX
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FIG. 5: Procedure of coarse graining. First, the link vdgabnY” are integrated out. Then, the remaining
lattice X is rescaled into a coarse grained lattike so that every two consecutive links ¥ without a

branch get merged into one ii .

In order to repeat the coarse graining procedure, it is aueme to mapX into the same form
as the original lattice. For this, we merge every two links\irinto one link in a new latticeX’
as is shown in Figl15. Accordingly, two holonomies on mergelld< i,j >, < j,k >€ X are
combined to produce one holonomylds = U;;U;;, which is defined on the coarse grained lattice
labeled by< i,k > X'. Since the Wilson loops o depend only o/, the partition function

becomes
Z|TJ) = /dU/dJ/dP'e_(Sl[;[j,J,P]—i-SX/[U/;J]) (23)

upto an  unimportant  multiplicative  constant, where dJ dP'

[Lo ey cnyex @ier 0y Py @N

SplT LPY = iN*Y " > P oWl oy = T, rieny) + G 1T, P1,(24)

n=lror ol yex’

G/[j, P] = —In <eiN2220—1z{01m,c;}ex’ P{C{,A.,cﬁl}f{T[CQL.A,T[CQ]}[W}> 7 (25)
Y
SplU ) == Y N2‘”J{Ci’._’C;L}HWC;. (26)
i=1

n=1(c1,..chyex’

HereC;’s are loops onX'. T represents a dilatation map which takes a loojirto the original
one before rescaling ifX' as is illustrated in FigL15. This is necessary becalige ., and
Picr ¢y are defined o’ while Ji¢,. ¢,y andfic,. ., [W] are defined oX ¢ X + Y.

This is a theory defined on the coarse grained latficewith dynamical coupling fields

9
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FIG. 6: First two leading order planar diagrams €917, P]. These loops are defined &hand each loop

is associated with; s, & 4.

J{c{,..,c,g}’ P{c{,..,c;} with the actionS},. The second term in Eq._(R4) is given by
G'[J,P] = —In / de=5v101, 27)
where
SUT==>"" > N an][We (28)
m=1{Cy,...Com}€Y i=1
with

T(C1,..Cm} = j{él,..,ém} +1 Z Z P{C{,..,C;}h{T[C{],..,T[C;}};{CH,..7C~'m}[j]' (29)
n=l{oy,..onyex’

ThereforeG'[7, P] is given by the effective potential for the gauge theory dafion the sub-
lattice Y with the set of couplingsr{@h__vém}. In the largeN limit, planar diagrams give the
leading contribution and’[7, P] is O(N?). For large 't Hooft couplingsf << 1), it is natural

to computel’ [, P] as a power series ofs, ¢,y inthe real space[30],

G'|J,P) = —N? % D rélr@(sm@,ﬁé Y rararedececg e - (30)
C1,C2€Y C1,C2,C3€Y

This can be easily checked by usitfgdlU;; UsjasUjins = ~0as0s~[f dU;). Due to the
Kronecker delta function, the first term survives only whép = 52. Similarly, the sec-
ond term is nonzero only when the three oriented loops fornoranected double-line graph
with no unpaired single line. These are illustrated in Figl &eneral contributions to
G'[J, P] are given by multiple oriented surfaces made of double Jingsere each face
in double line graphs is associated with, s ,. For example,—N?TJ, ré.05 é,0 and
—N?r 6, i rec ILirerde, o5, e 09euty, e o @€ contributions from one surface and two sur-
faces, respectively. Note théat |7, P] is non-linear inP, .. ¢,1, and fluctuations o, .}

no longer impose a strict delta function féf., ¢, : they become dynamical fields.

10



FIG. 7: The ‘lattice AdS’ space. The sequence/bflimensional coarse grained lattices forri/a+ 1)-

dimensional space on which the lattice loop field theory finde.

This completes one step of our RG procedure. If we repeatgajiyy this cycle to the theory
on X', and then to the coarse grained latticeXdfand so on, we can write the partition function

as a integration ovef's and P()’s[18],
Z[J] = /H [dj(l)dp(l)] e~ SLLFT
=1
Sperr = Y SplJV, JED, pey], (31)
=0

where.J) and P¥) are Hubbard-Stratonovich fields introduced at/ttle step of coarse graining,

and.J© is fixed by the microscopic couplings,
{C1,..,Cn} "7{017--70n}‘ ( )

Herel plays the role of a discrete coordinate for the r{éw4- 1)-th dimension that corresponds to
the length scale in RG,; fields at small (largelescribe UV (IR) physics. Thi@)+1)-dimensional
theory is a holographic theory for the-dimensionall (V) lattice gauge theory. We will call it
lattice loop field theorfLLFT).

Since it is difficult to write down the full theory in a compacrrm, let us try to understand

some general features of the theory from the first few leatBngs of the action in the strong

11



coupling expansionf << 1). By plugging Eqs.[(14)E(16) into Eqs. (29) and](30), oneadtx,

_ (I+1) (l+1) 0] (1) p(+1)
Suprr = N Z Z Z Piey,.eioreny — Tizien,.meay) T HITY PEULL

1=0 | n=1{C,...Cn}
(33)

where the ‘HamiltonianH (the reason for this naming will become clear shortly) issgiby

) 1
H[Jv P] - _{JC' + ZPC& (JLt(SLl,T[Cl]—t—C' + J{T[Cl],é’} + QJLt JL26L1,1+L2,1,T[01}6L1’2+L272,C~’)
+ 1Pcy 05 (JL15L1,1,T[Cﬂ5L1,2+L1,4,65L1,3,T[02] + J1L1,02301, 1 GOL1 2, TIC1]OLs,T(C]

+ J{thltthgLC‘}> + } .
{Jé +1Pc, (JL35L3,T[03]+C‘ + J{T[Cst,é} + %JLg JL45L3,1+L4717T[C3}6L3=2+L4’2’é)
P (JL3 OLar 710310y 511y 4 GOLaa1Cs) + JiLaLi}Op, | EOLa2 Ca0LaTICH)
+ JopcaTic. C}) Tt } T o

where... include terms that involve fields associated with multid@tates and higher order terms
in J, P,1/N. Here indice<;, C; andC are understood to be summed over loopXin Y, X’
andY’, respectively. LLFT is defined on theé + 1)-dimensional lattice shown in Fi¢.l 7. This
lattice can be viewed as a discrete version of the anti-der§AdS) space where the continuous
isometryl = I' + a, z* = ez of the metricds®> = dI*> + e~ % Zle dz#? is replaced by a
discrete scale invariance=1' + 1, z; = 2xZ This kind of ‘discrete AdS’ space has been the
natural setting for the real space renormalization groypagch and the multi-scale entanglement
renormalization Ansatz (MERA)[31-33]. The degrees of dia of LLFT are fields of loops
J{(lc)*l,..,cn} andP{(lc)*l,..,cn}-

It is convenient to interpret as a discrete (imaginary) ‘time’. Then we can identify the
first term in Eq. [(3B) as the Berry phase term which dictated m{\gl’_.,cn} and P{C O
are conjugate to each other : loop fields as operators wotisfyséhe commutation relation
[Jicy...ons Pin,..ony] = i/N? if time was continuous. The remaining tefthin Eq. (33) is the
‘Hamiltonian’ that governs the evolution of the loop fieldsray the discrete time[38]. Formally,
J{(g O (z C e }) can be viewed as the path integration representatlon ofpenator that
annihilates (creates) a set of loofgs,, .., C, } at timel, andJc-, (zP G ) is associated with
an annihilation (creation) operator of ‘anti-loops’. Itnsted thatJ{cl,,,,Cn} andiPc, ¢, are

not the usual annihilation and creation operators becuggeare not Hermitian conjugate to each

12



other. In the basis given by

N
a{c,..Cny = E(J{cl,..,cn} — P, en)s
N )
bicy,..cny = E(J{él’”’é"} —iPiey,..cn), (35)

aicy...cy @dale, o (bey..c.y andbl., . 1) become the standard annihilation and creation
operators of loopgCy, .., C,,} (anti-loops{Cy, .., C,}) respectively. However, we will use the
basis ofJi¢, ...c,,; and Py, ¢,y in the following because it has two merits. First, the Haomian
becomes particularly simple in this basis becatiseontains only thosé’c, . ¢, with C; € X'
loops can be created only on those links that survive coaeseigg at each step of RG. Second, the
equations of motion for;c, . ¢,y andJie, .y impliesi < P, ¢,y >= [i < Pe, e >
Therefore it is convenient to absoibnto Pyc, . ¢, to definePic, oy = 1P, c.)- At the
saddle point, the Hamiltonian becomes Hermitian and theyBenase term fofPc, ¢, and
Jic,...c,.y becomes that of the standard creation and annihilatioratqrarupto the factor alv?.
Note that the expectation value of creation operator is m@teneral complex conjugate of that

of annihilation operator, i.e< P, . .c.} >#< Jici,..c.y >", When the saddle point is ‘time’-
@ (b) (©)
(e)

FIG. 8: Diagrams that contribute to the Hamiltonian.

dependent.

(d)

Now let us take a closer look at the Hamiltonian to understtra physical meaning
of each term. The quadratic termyJ; describes a process where a lo6pand its anti-
loop C are pair-annihilated (Fig.18 (a)). Higher order terms diéscfluctuations and join-

ing/splitting processes of loops iPc, Jr,0r, rc, 16/ describes a process where a lobp

13



with a self intersection becomes a smaller loop by combiniiip a Ioopé (Fig. (b));
iPey Jyricy,¢y /5 describes one of the loops in a two-loop state disappeanitegviacuum with

its anti-loop (Fig. [8 (€));ilc, Jr, 1,01, 14121, T(C110L, 541,65 describes two loops merging
into one loop with a help of an anti-loop which eliminatestparf the two loops(Fig[18 (d));
iPicy,003 0100, 1 110101, 44 10.4,60105,7(C) /5 describes a process where one loop gets split into
two(Fig.[8 (e)).

[+1

(a) (b) (©)

FIG. 9: The quadratic and cubic terms for the propagating elds jo, pc in the Hamiltonian. The
quadratic term (a) describes fluctuation and propagatioloags, and the cubic terms (b), (c) describe

joining and splitting processes of loops.

Usually, it is expected that a quadratic kinetic energy tdescribes propagation of loops in
space and time. Actually there is no such term in the Hamdtoninstead, fluctuations of loop
arise only through cubic and higher order terms/imnd P. Here we have to remember that

O] O]
S, Cn} andP{C \Cn}
conditionj{clwcn} # 0. Therefore one has to identifyc, . ¢,y = Jic,...coy— < Jian,..cnr >

have nonzero expectation value in the vacuum because obthedary

andp¢c,...c.y = Pen,..c.y— < Piey,..c,y > as the propagating loop fields. For these fields that
describe small fluctuations of loop fields, the Hamiltoniadudes the quadratic kinetic energy
which describes fluctuations and propagation of loops icejrae,
¢
> ta, e i, (36)
C1,C2

wheretc, ¢, is ‘hopping’ probability amplitude for a loop’; at time!l to change into a loog

at time! + 1. The Hamiltonian also contains interactions between pyafag loop fields. For

14



example, the cubic interaction terms,

(I+1) (1) (D)
E Veyca, cspcl JeyJcy
C1,C9,C3

I+1) (141) .(1
Z V01 Co, C,p(c1 (02 )Jég (37)
C1,C5,C

describe the processes where two loops join into one loopaadoop splits into two loops, re-
spectively. These are illustrated in Fig. 9. In generalp®mvolved in hopping and interaction
can be far from each other in space. However, such non-leocaist will be exponentially sup-
pressed if< Jic, ¢, > is small, and decreases exponentially as the size of 1§6ps., C,,}
increases or as the separation between the loops in madg-tiouplings increases. This is because
only connected diagrams contribute to the Hamiltonian. é@mple, in order for a loop to hop
by a large distance, there must be a large number of loopsdinatct the initial and final states,
or there must be a multi-trace coupling that connect thems 3iggests that LLFT intrinsically
has non-local elements, but a sense of locality emerge<ifura satisfies certain conditions. In
a sense, locality is a property of the vacuum rather thanheery itself. We will discuss more

about the condition for locality in the next section.

| | s
|, |
| | J

(a) (b) (c)
FIG. 10: Three loops that contribute charge{d), (b) —1, (c) 0 to Q%.

Is there a symmetry underlying this action ? The acigprr in Eq. (33) has infinitely many
conserved charges. Namely, one can define one U(1) cliftge —Q’* for every directed link

< 4,7 > so that

ij g _ Vi 0]
[Qj%a J“ﬁWM}meﬁa Cnp

i o ij )
Pﬂ 0. J'— ~Yiriey..rienPich. (38)

where< i,j > is a link on the original lattice (the boundary of the diser&dS space)7"[C;]

maps a loop”; on thel-th coarse grained lattice to a loop on the original lattigentagnifying
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the loop by2' times (T' =T,7T?> =T o T, ..), andY{% ¢,y 1S the total number of times that
loops{Cy1, .., C,, } pass through the link ¢, 5 >. If a loop pass the link fromto 5 (from j to i), it
contribute+1 (—1) to Y{% ¢,y asisillustrated in Fid._10. In general, any term that retpihese
symmetries arises I8, -r. For example, there is a term that describes a multi-loofiesaag

process,

05 T(Ca).X, Ol (39)

] 11

wherem incoming loops become outgoing loops. Here the delta function imposes the charge

conservation.

Although the actior5, -7 is invariant under the local symmetries, the infinite setyohse-
tries is broken by the boundary conditid@h_vcn} = 0. In general, there remain only unbroken
global symmetries generated by,

Q" =y Q" (40)
wherep = 1,2, ..., D. Conservation of# implies that if a loop has a certain number of links
along + direction, it should have the same number of links alengto form a closed loop.
The conservation ab* means that there are only closed loops. This conservedeismeglattice
version of the charge carried by world sheet of fundamemtaigswhich is coupled to the NS-NS

two form gauge field in the critical string theory.

lll. CLASSICALITY AND LOCALITY

The prefactorV? in S; ;7 can be identified as the inverse of ‘Planck constant’ thatrots
quantum fluctuations of;¢, . ¢,y and Pi¢, . ¢,1. Therefore the theory becomes classical in the
large NV limit. The saddle point occurs along the imaginary axisft, ¢,y = —1Pcy,..c}-
The equation of motion takes the form of the Hamilton equdfi@] in discrete time,

OH[JO, P+

(1+1) 0] B
Jiercny ~ Tirien ey = Wm : (41)
{ )
(I+1)
(1+1) 0) _ OH[JY, PO
Pure.oien ~ .oy T T 0m : (42)
{C1,.,Cn}

The second equation needs a further explanation. In gerikesk is no inverse for the map
because not all loops in stépsurvives in stegl + 1). If there is no inverse fo€;, we simply

(1+1)
deflneP{ Ty = 0.
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To solve the equations of motion, one needs two boundaryitionsl for each{C1, .., C,,}.
One condition is given by Eq.L(B2). The other condition sddag implemented dynamically,
namely by minimizing the whole action over all possible ﬁamhj{(gl’__,cn} andP{(gh__’Cn} subject
to Eq. [32). This is analogous to the problem of finding thesilzal trajectory of a particle where
the initial position is fixed, but the initial velocity is a wational parameter one uses to minimize

the action.

v VA

FIG. 11: A non-local coupling between two separated cincstiaall loops mediated by two large elongated

loops. The non-local interaction creates dips in the firetbesof the small loops.

Is the theory local if D + 1) dimensions ? The theory is evidently local along the new dime
sion!/. The locality along the originaD dimensions is more tricky. This is because size of loops
can be arbitrarily large. Even though one starts with snoalbs, multi-loop interactions generate
large loops. Large loops can, in turn, mediate interactimta/een loops which are far from each
other. Fig.[1ll shows an example where two large la@pandC, mediate interaction between

two small loopsC; andC; which are far from each other,

(+1) 7O 7O 7O 70O
LEPWATLRle Jc; Jc;501’1+01,1,T[Ll]50;,1+01,3,T[L2}501,2+c;,2+cl,4+c;2,02- (43)

The non-local coupling betwee]g,) and Jg,) is proportional to the amplitude of the large loops,
1 2

ng) Jgg This looks bad for locality. However, if the saddle pointueof J- decreases exponen-

tially as the size of the loop increases, the non-local dagps exponentially small. In this case,

locality is still maintained. Therefore, we can choose thigdl couplings as

JE ~ AT,

(0) —(Acy+Acy+dey,cy)
J01,02 ~ A 1 2 1,02/

(44)

where \ is the 't Hooft coupling much larger thah Aq is the minimum area enclosed by the

loop €', andd .+ is the minimum distance between the two loops. Now we proee iftthe

saddle point values of T.).,cn}

(C1..0n) AT exponentially small for large loops, thoseJ(ég

are
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also exponentially small for large loops. Because the Hami&n depends o, ¢, only

throughrc, . ¢,y in Eq. (29), Eq.[(411) can be written as

@)
J(l+1 J(l) _ Z 8T{él,~~,ém} oH
{Cl Cn} {T[Cl]v“vT[Cn]} - 8P(l+1) a (l
{él,..,ém} {017--70’ } {C1 Cm}
OH
_ - @
- Z h{T[Cl] 7L]}§{Cl7--7CnL}|:J ]a (l 9 (45)
Cm} {Cl Cm}
where we used
@) _ 70 (+1) L l
Tnimy = TG om T Z Yo P enen. rcayicrcm ] (46)

n= 1{01 Cn}

Note that hypie,  rioyicn..can /7] carries QY charges for loops{T[C1], .., T[C,]} and
{Cy,..,C,,}. Therefore, if any loop i{C}, .., C,,} is large there must be a large numbet/ét’s
or at least ong/") with a large loop M) TiCoy (G Gy 1N OFDeEr to match the charge. Sim-
ilarly, if there are two loops i{C}, .., C,, } which are far from each oth€t o, ricoy4é1..6m0
must include either a large number of loop fielt8 or at least one multi-loop fields suc:htééél),c2
where the separation betweéh andC; is large which connect the separated two loops. This is
because disconnected diagrams do not contribdt({eﬂgﬂv__jm};{@l7__7ém}[J(l)]. This guarantees
that if the condition in Eq.[(44) is satisfied for a lary@ at timel, a similar set of condition will
be satisfied with a larga’™") ~ A at timel + 1. Therefore the theory will remain local as far
as the theory stays strongly coupled with large 't Hooft dogys along the renormalization group
flow. This is certainly true for small(UV region) if one starts with large 't Hooft couplings.
Whether the amplitudes for large loops remain exponewntstiall for largel (IR region) will
be determined dynamically through the equation of motioareHve can think of three possibil-
ities. The first possibility is that the energy dependentobH coupling\(!) increases without a
bound ag increases. In this case, the locality becomes better at IRh® other hand, fluctua-
tions of loop fields become suppressed and loops become eamy lin the IR limit. This is the
case for the puré/(N) gauge theory in the strong coupling limit >> 1. In the low energy
limit, there is no light degrees of freedom, which descrithessconfinement phase. The second
possibility is the case wherd!) decreases to a small value in the IR limit. If this happens-no
local couplings between loops become significant below &iceenergy scalel (> [.). In this
case, the theory becomes non-local in the IR limit. This eeduthe theory flows to a IR fixed

point which is not strongly coupled, that im; ,.. A)/ < 1. The last possibility, for which the

18



holographic description is most useful, is that the 't Haftipling stays at a large but finite value
lim;_, AY) >> 1 in the largel limit. This can be realized in a theory which flows to a strgngl
interacting conformal field theory, such as the= 4 super Yang-Mills theory at a large 't Hooft
coupling. Then the IR dynamics is described by a weakly aukeng local theory of closed loops.
At the saddle point, loop fields generically have nonzerceetqtion values. Small fluctuations
of loop fields around the classical configuration will be disd by a perturbative string theory.
However, LLFT is well defined even non-perturbatively, ame @an consider non-perturbative

objects such as solitons.

IV. DISCUSSIONS
A. Relation between LLFT and string field theory

One may view LLFT as a string field theory put in lattice. In@rtb obtain a string field theory
in the smooth AdS space, it would be better to use a diffenilarization for the gauge theory.
This is because RG steps can not be continuous in the lattipdarized theory. It would be of
interest to devise a better regularization scheme for gtyoroupled gauge theory which allows
one to construct a more cut-off independent holographiorthéHowever, the lattice construction

will be more useful to describe non-critical phases in ratilde models.

B. Comparison with the O(N) vector model

The equation of motion in Eqd._(¥1) arid(42) can be solved ibalyother boundary condition
is provided besides the UV boundary condition in EqJ (32)e €ktra boundary condition should
be imposed dynamically in the IR limit. In the case of the lgoéphicO(N) vector model[18],
imposing the IR boundary condition amounts to solving thgional field theory. Because the
holographic theory for th&(N') model has non-singlet bulk fields which are not classicahéwe
the largeV limit, one has to integrate over the non-singlet bulk fietdthie IR limit to dynamically
impose the second boundary condition. On the other hanteiti {/V) gauge theory only/ (V)
singlet fields are physical and all bulk degrees of freedantkassical in the largd’ limit. For this
reason, the IR boundary condition can be imposed by minngiiie whole action with respect
to the loop fields in the IR limit. Whether this leads to a sienpdgularity condition as in the

standard AdS/CFT correspondence is yet to be understoatkthNeless, in larg&/ gauge theory,
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everything boils down to solving classical problem, whishhe major difference from th@(N)
model. Therefore, the duality between LLFT and the lafgegauge theory is a strong-weak

coupling duality, contrary to the case for th¢ V') vector model.
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index 5 (vy) carry fundamental (anti-fundamental) charge of U(N) & $i BecauseSy is gauge

invariant, we have< ...Ui,;.a8Ujiyiys-- >y = VB’BV;’V < ..U, U >y for anyU(N)

isjiaf’ jizy 67
matrix V. The onlyU () singlet tensor that can be constructed from one fundameanthbne anti-
fundamental indices is the identity. Therefote...Us, j.aUjisns- >v= Aasdpy With Aps = & <

Uy iapUjip.g'5- >v. From this, one obtains Eq.](8).

When more than two Wilson loops cross at a point, one sieadre general formula than E@J (8).
However, all non-vanishing contributions can be alwaystemias products of Wilson loops.

This is why we deliberately singled out the factoréf~ "+ out ofh (., v 6 5, 4[T].

This corresponds to a strong 't Hooft coupling expansiothe large/V limit.

However, the analogy with Hamiltonian is not perfectiéese is not Hermitian.
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