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Abstract.
We present analytic approximations of chiralSU(3) amplitudes for the extrapolation of lattice

data to the physical masses and the determination of Next-to-Next-to-Leading-Order low-energy
constants. Lattice data for the ratioFK/Fπ is used to test the approximation proposed1.
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INTRODUCTION

Quantum Chromodynamics (QCD) is believed to be the correct Quantum Field Theory
for the strong interactions in the Standard Model with quarkand gluons as degrees
of freedom. However, at low energies, due to the strong coupling of QCD, quarks
do not show up individually but in bound states called hadrons. In the regime where
the light hadron spectrum is observed, a perturbative approach is not feasible. Many
efforts have been done to study this sector in the past years.Chiral Perturbation Theory
[2, 3] as the correct Effective Field Theories of the Standard Model at low energies
and simulations of QCD performed numerically on a finite lattice discretizing space and
time are the most used ones. In particular, lattice simulations have made huge progress
in the light quark sector employing quark masses corresponding to pion masses as low
as 150−200MeV or even physical masses (see, for example, [4]). In case the simulation
does not use physical values for the masses one needs a certain extrapolation to the
physical point, extrapolation that is performed nowadays in different ways. The most
elaborated once relies on Chiral Perturbation Theory (ChPT) which provides the correct
analytic structure of amplitudes in terms of several a priori undetermined constants,
the so-called low-energy constants (LECs), independent ofthe light quark masses by
construction. The number of LECs increases with the order ofthe expansion in ChPT
also increases. It is therefore impossible to extract all ofthem from experimental data.
Lattice calculations offer a new scenario for determining LECs since one can tune the
quark masses in a lattice simulation. State-of-the-art lattice studies use next-to-leading-
order (NLO) ChPT for chiral extrapolations, determining for example several LECs at
thisO(p4) order. NNLO ChPT results have only been used recently for theinterpretation

1 This work is based on Ref.[1]

http://arxiv.org/abs/1011.5750v1


a b c

d e

f g

FIGURE 1. Skeleton diagrams for the generating functionalZ6 of O(P6). Simple dots, crossed circles,
black box denote vertices from leading-order, NLO, NNLO Lagrangians respectively. Propagators and
vertices carry the full tree structure associated with the lowest-order Lagrangian.

of lattice data [5, 6, 7].
For comparison with lattice calculations, the explicit dependence on the masses

should be known. We propose analytic approximations of chiral SU(3) amplitudes for
the extrapolation of lattice data to the physical masses andto determine NLO and NNLO
LECs through a more interesting approach than a polynomial.

A DISSECTION OF CHIRAL PERTURBATION THEORY AT O(p6)

The most compact representation of ChPT in the meson sector is in terms of the gen-
erating functional of Green functionsZ [2, 3]. Analogous to the chiral Lagrangian, the
generating functional permits a systematic chiral expansion:

Z = Z2+Z4+Z6+ . . . (1)

The NNLO functionalZ6 of O(p6) is itself a sum of different contributions shown
pictorially in Fig. 1. In addition to tree diagrams ofO(p6) (diagram g), there are two
classes of contributions requiring separate treatments: irreducible (diagrams a,b,d) and
reducible (diagrams c,e,f) contributions. For simplicity, we expose here the irreducible
case (the reducible one can be found in [1]). With dimensional regularization, the irre-
ducible diagrams have both double- and single-pole divergences. Moreover, the single-
pole divergences of each irreducible diagram are in generalnon-local. Renormalization
theory guarantees, however, that the sum of the three diagrams has only local diver-
gences [8, 9], i.e., polynomials in momenta and masses in momentum space. Chiral
symmetry guarantees that these divergences can be absorbedby the LECs ofO(p6) via
diagram g. In this process an arbitrary renormalization scale µ is generated. The sum of
diagrams a,b,d,g is then finite and can be written in the form

Za+b+d+g
6 =

∫

d4x

{[

Cr
a(µ)+

1

4F2
0

(

4Γ(1)
a L−Γ(2)

a L2+2Γ(L)
a (µ)L

)

]

Oa(x)



+
1

(4π)2

[

Lr
i (µ)−

Γi

2
L

]

Hi(x;M)+
1

(4π)4K(x;M)

}

. (2)

The monomialsOa(x) (a= 1, . . . ,94) define the chiral Lagrangian ofO(p6) [10] with
associated renormalized LECsCr

a(µ), theLr
i (µ) (i = 1, . . . ,10) are renormalized LECs

of O(p4) with associated beta functionsΓi [3] and the coefficientsΓ(1)
a , Γ(2)

a andΓ(L)
a are

listed in Ref. [9].F0 is the meson decay constant in the chiralSU(3) limit. The chiral log

L =
1

(4π)2 lnM2/µ2 (3)

involves an additional (arbitrary) scaleM butZa+b+d+g
6 as well as the total generating

functional Z6 are independent of bothµ and M. Hi(x;M) are one-loop functionals
associated with diagram d whereas the two-loop contributions (except for the chiral
logs) are contained in the functionalK(x;M). The functional (2) is scale independent
[1].

The complete generating functional ofO(p6) is then given by the sum of the irre-
ducible and reducible parts, again independent of both scalesµ andM:

Z6 = Za+b+d+g
6 +Zc+e+f

6 . (4)

Analytic Approximation for chiral SU(3)

The genuine two-loop contributions contained in the functional K(x;M) are usually
only available in numerical form for chiralSU(3). On the other hand, the one-loop
contributions can be given in analytic form and the dependence on meson masses
is manifest. For the chiral extrapolation of lattice results, we therefore suggest the
following approximate form for the functional ofO(p6):

Zapp
6 =

∫

d4x
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∫
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+ 2

(
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2
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)

Pi,α(x)Gα,β (x,y)Fβ (y;M)

}

. (5)

The approximation proposed, called Approximation I from now on, consists on drop-
ping theK(x;M) pieces and the reducible 2-loop contributions from diagrams a and c in
Fig.1 while keeping all the chiral logarithmsL (more details can be found in Ref. [1]).
For a reliable determination of renormalized LECs the analytic approximation (5) should
be scale independent as it is the case. The main issue to address now is the applicability



TABLE 1. Summary of results for the fittedFK/Fπ for both Approximation I
and Approximation II.

L5 ·103 (Cr
14+Cr

15) ·103 GeV2 (Cr
15+2Cr

17) ·103 GeV2

Approx I 0.76±0.09 0.37±0.08 1.29±0.16
Approx II 0.75±0.09 0.20±0.07 0.71±0.15

of that approximation. The simple answer is based in a naive chiral counting. Consider-
ing aSU(3) amplitude normalized to 1 at LO, the chiral counting suggestthat the NLO
to be of the order of 0.3, the NNLO of the order 0.32 = 0.09 and the NNNLO of the or-
der 0.33 = 0.027≃ 3%. That counting suggests that a good approximation to the NNLO
amplitude should have an accuracy not worse than 3% which would correspond to the
higher order not considered in the approximation. This criterion will be applied for the
FK/Fπ quantity in the next subsection.

Approximation II

The above approximation is motivated by largeNc behavior but some of the terms not
included in the approximate functional (5) have a known analytical form. In practice,
one may include those terms, i.e., the products of one-loopsamplitudes from diagrams
a and c in Fig. 1, to improve the accuracy of the approximationfor certain observables.
This second approach (called Approximation II) should alsosatisfy the accuracy criteria.

Application to lattice data for FK/Fπ

We now apply the analytic approximations Approximation I and Approximation
II to the ratio FK/Fπ of meson decay constants.FK/Fπ is a suited quantity for our
exploratory exercise for several reasons: atµ = 0.77GeV the genuine two-loop accounts
less than 1% and it is known numerically ([11, 5]) allowing a direct evaluation of the
approximation; the BMW Collaboration [12] provides 13 lattice points (considering only
mπ < 450MeV) for that ratio.

The full NNLO calculation at physical meson masses tells us thatFK/Fπ −1= 0.14
atO(p4). At O(p6) there are three different contributions: tree level, 1-loop×Li , 2-loops
and contribute toFK/Fπ −1 with 0.008, 0.051 and 0.002 respectively.

In our approximation, theO(p4) and the tree level and 1-loop×Li atO(p6) are exact
by construction. Our estimation for the genuine 2-loops piece amounts, usingM = MK,
−0.030 using Approximation I and−0.011 using the Approximation II. In both cases,
the criteria of applicability is fulfilled.

We can now proceed on fitting the 13 data points with our approximations forFK/Fπ .
We obtain for the LECs atµ = 0.77 GeV (the fitting function can be found in Ref.[1])
the results shown in Table 1.



The three parameters are strongly correlated [1]. Taking that into account,FK/Fπ for
physical meson masses is found to be

FK/Fπ |ApproxI = 1.198±0.005, (6)
FK/Fπ |ApproxII = 1.200±0.005,

in good agreement with the resultFK/Fπ = 1.192(7)stat(6)systof Ref. [12]. Our errors
take only into account the statistical error of the lattice values forFK/Fπ but not the
systematical once since we do not pretend to improve on the accuracy of the result but
show the feasibility of the lattice data to explore theO(p6) chiral lagrangian.

We have include the NLO LECL5 in our fit because it is the only LEC that appears at
this order and also because at NNLO,L2

5 is the leading piece in 1/Nc counting. We use
the common fit10 [13] values for the otherLi appearing at NNLO.

The residual dependence on the scaleM is evaluated by settingM = MK (the lattice
value) and varying this scale by±20%. In doing this, bothFK/Fπ andL5 remain again
unchanged while the LECs ofO(p6) vary within two standard deviations.

Other examples

The approximations proposed here have also been applied2 to two more quantities.
The first one is the ratioFπ/F0 in chiral SU(3) to obtain a value for the LECL4 and

for the chiral parameterF0, both badly known. The comparison of our approximations
in that case with the numerical available results, [5] are encouraging.

The second example is theKl3 vector form factorf+(t). The particular casef+(0)
is of interest to obtain a prediction for the CKM parameterVus. The approximations
discussed here do not appear very promising in this case: thechiral expansion shows
an unusual behavior and the approximations do not match withthe available numerical
results of Refs. [5, 14, 15].

CONCLUSIONS

We have proposed analytic approximations for chiralSU(3) amplitudes starting from the
structure of the generating functional of Green functions to O(6) in such a way that only
tree-level and one-loop diagrams are needed. Our proposal provides useful formulas
for the extrapolation of lattice data and also allows, due totheir renormalization scale
independence, for the determination of the LECs at NNLO otherwise difficult to extract
from experimental data. These approximations are superiorto the NLO amplitudes and
to the well-known double-log approximations [16]. Concerning the 1/Nc expansion,
these amplitudes contain all the leading and next-to-leading terms and all the chiral
logarithms. This approach is specially useful in cases where the genuine two-loop
contributions are small, in accordance to the large-Nc counting. The particular case of
the quantityFK/Fπ has this property. We fit the approximated expression ofFK/Fπ to

2 Work in progress in collaboration with G.Ecker and H.Neufeld.



recent lattice data where we obtain a value forFK/Fπ in agreement with the analysis
of Ref. [12]. We also obtain a value forL5 and for the LECs ofO(p6), Cr

14+Cr
15 and

Cr
15+ 2Cr

17. While bothFK/Fπ andL5 are insensitive to the approximation made, the
LECs ofO(p6) are consistent with expectations but subject to uncertainties exceeding
the lattice errors. All in all that suggests the potentiality to explore higher-orders on
the chiral expansion using lattice data with an approximation that provides with more
insight than for example a simple polynomial.

We also suggest an Approximation II, as a modification of Approximation I, that
includes the reducible diagrams a and c (Fig 1), when the strict Large-Nc is ignored.
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