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Abstract. The thick center vortex model is applied to G(2) gauge grougbtain the potentials between static sources of the
fundamental and adjoint representations. The group G&dhky one trivial center element and therefore it does net laay
vortices which are defined based on non trivial center elésndio obtain the potential from the thick center vortex mpde
the idea of the vacuum domain structure is used. The intdateedtring tensions from this model are in rough agreement
with the G(2) lattice results and the Casimir ratio. We arthiaze the SU(3) subgroup of G(2) may be responsible for thealin
potential at the intermediate distances.
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INTRODUCTION matricesQ of the groupSO(7) is 1 and:

The thick center vortex model is a phenomenological QapQac = nc- (1)
model which gives a correct behavior for the poten- ] )

tials between static sources at intermediate and large dis-"€ G(2) subgroup elements satisfy a constraint called
tances. Confinement results from random fluctuations irfhe cubic constraint:

the number of center vortices linked to the Wilson loops.
The magnetic flux of a vortex is quantized in terms of the Tape = Taef QdaQerQfc- ©)
center elements of the gauge group. Therefore, confinel—.
ment is not expected for a group without any non trivial
center element. G(2) is a group which has only a trivial
center element. It seems interesting to investigat_e hOWT127:T154:T153:T235:T264:T374:T576: 1. (3)

the thick center vortex model works for this exceptional

group. It has already been observed in lattice calculationghe last two equations lead to the reduction of the 21
[1] that for this group, the potential between a pair of generators of SO(7) to the 14 for G(2) gauge group.
quark antiquark has a linear regime and as a result the To apply G(2) to the thick center vortex model, we
quarks are confined. The interesting question may arisaieed the Cartan subalgebra of the group. Since the rank
how can one get the confinement without the center eleof the group is 2, only two of the generators can be di-
ments? agonalized simultaneously. Because SU(3) is a subgroup

In this paper, we show that using modified thick centerof G(2), we make those two generators out of the diago-
vortex model with the idea of vacuum domain structuresnalized SU(3) Gell-Mann generators:

instead of vortices, one can produce potentials in rough

is a totally anti-symmetric tensor and its non-zero
elements are:

agreement with lattice results. We discuss about the pos- 1 Aa O 0
sibility that the confinement in the group G(2) arises as a Na=—=[ 0 —=A; 0 ]. (4)
result of decomposition into its SU(3) subgroup. V2 0 0 O

HereA, (a= 3,8) are the two diagon&J (3) generators.
THE GROUP G(2) Under SU(3) subgroup transformations, the 7th and
14th dimensional representations of G(2) decomposes
G(2) is one of the simplest exceptional Lie groups whichinto the SU(3) fundamental and adjoint representations:
like SU(3) has rank 2. It is the simplest in the sense that

its universal covering group is the group itself. It has {1} ={3te{3to{1}, (5)
only trivial center element. This group has 14 generators _
and thus 14 objects in the adjoint representation. The {14} = {8} o {3} @ {3}. (6)

dimension of the fundamental representation is 7. Therhe second equation may be interpreted as that the 14
group is real and is a subgroup of SO(7) of rank 3 with 21gluons of G(2) consist of the usual 8 gluons of SU(3)
generators. The determinant of the:7 real orthogonal  plus 6 additional gluons which transform like the SU(3)


http://arxiv.org/abs/1011.5952v2

4x10° —————

fundamental quark and antiquark. One of the differences ax105 ]

between the 6 gluons and the SU(3) quarks is that the for- i 7
mer ones are bosons while the latter ones are fermions. - 14
Quark and antiquark in the G(2) group are the same. This 2 a0t -

is because all G(2) representations are real and thus the

{7} representation is equivalent to its complex conjugate. i 1
1x10° — ]

VACUUM STRUCTURE AND THICK Y
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The thick center vortex model is a phenomenological

model which gives the potential between a pair of static

quark antiquark in the fundamental and higher repreFIGURE 1. Potentials between two static sources of the 7th
sentations of SU) gauge group. The potential is ob- and 14th dimensional representations. 7 is screened aharhig
tained based on the interaction between the Wilson |00p_gnergy than the 14. At intel’medi_ate distances a linear hehav
and the topological field configurations of the vacuum'S 0Pserved for both representations.

named thick center vortices. The center-vortex model in-

troduced in the late 1970'’s [2] and it gave the potential . . .

between quarks in the fundamental representation. Thi§/€ments. However, in Ref. [4], in order to increase the
model has been developed by Fate. [3] to the thick- length of the linear part of the potential, the model has
center-vortex model to obtain linear potentials for higherP&en modified by using both the trivial and non trivial
representations. The vortex model states that the QCISENter elements of the SU(2) gauge group. This means
vacuum is filled by some special line-like (in three di- that one would have another type of the vortex with the
mensions) or surface-like (in four dimensions) objects,Probability fo in Eq. (7). Itis called vauum domain in
which carry a magnetic flux quantized in terms of the Ref- [4]. The non trivial center elements of the group
center elements of the gauge group. The inter-quark poWh'Ch have been called vortices in the thick center vortex

tential induced by the thick vortices is obtained by: model, are called domains, as well. ,
In this paper, we apply the idea of the domain structure

N—1 to the thick center vortex model for G(2) gauge group by
V(R) = z In {1— z fn(l— Re4 [6{8(x)])} (7)  rewriting Eq. (7) :
X n=1

V(R =Y In{1—fo(1—Re%[@2X))}.  (9)
xis the location of the center of the vortex dndhdicates X

the Wilson loop an¢; is defined as: Wherefy is the probability that any given unit is pierced
by a vauum domairt; is the same as Eq. (8) amgl is
“[d] = iTrexp[ia.ﬁ], (8) thedimension of the representations of G(2).
dr We have used the fluctuating flux of the Ref. [5] to

remove the concavity of the potential of the adjoint rep-
resentation. At large distances where the vortex is con-

{Hi.i=1,2,...N—1} are generators spanning the Car- tained completely inside the Wilson loog;[d] is nor-
b e malized tol and a obtains its maximum value. Fig.

tan subalgebra. The parameter(x) describes the vortex .
flux distribution and depends on the vortex location. The.1 shows the potential of the fundamental and the ad-

profile of the vortex should be chosen such that vorticed2INt epresentations vers® the distance between the

. . ; sources. The potentials are flat at large distances. In fact,
which pierce the plane far outside the loop do not aﬁethhen the distance between the sources increases, pairs of
the loop. On the other hand, if the vortex core is entirely P

contained within the loop, it will derive a maximum mul- %ﬁg rl]zgjrr::gg?ncglfg?h\:ea;ljs%lgggc?yT%Oer?r?tlgrlggtmth t:i?] ¢
tiplicative factor exp%) €Z,(n=12,..,N-1) cor- ' gp

responding to the center elements. For the limit when thé> that 7is screened by three 14 while 14 is screened by

spatial size of the Wilson loop goes to zem,should one 14. _Therefore, the Sources of the fur_ldamental r1ep-
be zero, as well. There are many mathematical functiongesentat'on are screened at higher potentials than 14's as
which satisfy these conditions. shown in the figure.

The magnetic flux is quantized in terms of the center {Tte{l4 {14 {l4={1}s.. (10)
elements of the gauge group. Therefore, the model can
be applied to those groups which have non trivial center {14} {14 ={1}®... (12)

dr is the dimension of the representatidpis the proba-
bility that any given unitis pierced by a vortex typand
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FIGURE 3. For 25< R < 35, the slopes of the potentials
are equal, in other words the linear parts of the potentiads a
parallel in this regime.

FIGURE 2. The ratio of the string tension%4 =1.49,isin
rough agreement with Casimir scaling which is 2.0.

Fig. 2 indicates the potential at small and interme-
diate distances. The ratio of the string tension of the

adjoint representation to the fundamental representation . . .
is about 149. It is in rough agreement with the ratio The thick center vortex model is applied to the G(2)

of the Casimir ratio of the two representation which is 9roup. Even though this group dose not have any non
2; and also with the ratio from the lattice [1] which is trivial center element, but if one uses the domain struc-

1.88— 1.96. tures instead of vortices, the model can be applied to the

To understand why G(2) confines quark, we have calG(2) gauge group, as well. We have obtained linear po-
culated Ré&[d] for G(2). It changes between 1 and tentials for both fundamental and adjoint representations

—0.28, where 1 comes from the trivial center elementin rough agreement with the Casimir ratio and the lat-

and—0.28 can be obtained from the relation between theliCe results. We interpret the linear regime as the regime
trace of the group G(2) when it is decomposed into itsWhere G(2) is decomposed into its SU(3) subgroup. As

SU(3) subgroup, and the trace of the SU(3) gauge grougXPected, the string tensions for both representations are

CONCLUSION

itself. In addition, at large distances where the vortex isZero at large distances.

completely inside the Wilson loop, we have normalized
% |d] to the center elements of its SU(3) subgroups in-
stead ofi:

Z33 0 0
Z=( 0 -zZlys O (12)
0 0 0

Wherez = exp%r“l and its complex conjugate are the
non trivial center elements of SU(3) gauge group. Figure
3 compares the potential of the 7th dimensional repre-

sentation of G(2) with the potential obtained from the 1.
. G'tHooft, Nucl. Phys. B 153, 141 (1979), J.M. Cornwall,

7 dimensional representation of its subgroup SU(3) for?
which the flux is quantized to Eq. (12). For 25R < 35,

the slope of the potentials are equal. In other words the
linear part of the potentials are parallel in this regime.

This behavior is also observed for the adjoint (14) repre-
sentation. One may argue that the G(2) gauge group ma
be decomposed into its SU(3) subgroup in this regim
or in fact SU(3) is dominant in this regime. Our results
are also in agreement with the results by M. Pepeeind

al. [6] who have studied the confinement in G(2) gauges.
group using both lattice gauge theory and the Higgss.

mechanism.
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