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Abstract

Properties of local Polyakov loops for SU(2) and SU(3) lattice gauge
theory at finite temperature are analyzed. We show that spatial clusters
can be identified where the local Polyakov loops have values close to
the same center element. For a suitable definition of these clusters the
deconfinement transition can be characterized by the onset of percolation
in one of the center sectors. The analysis is repeated for different resolution
scales of the lattice and we argue that the center clusters have a continuum
limit.

http://arxiv.org/abs/1011.2329v2


1 Introductory remarks

Understanding the mechanisms that drive the transition to the deconfined regime
is one of the great open problems of QCD. In particular with the expected new
results from the experiments at the RHIC, LHC and GSI facilities also the theo-
retical side is challenged to contribute to our understanding of confinement and
the transition to the deconfined phase.

Since phase transitions are non-perturbative phenomena, the applied meth-
ods must be non-perturbative approaches. A particularly powerful technique
is the lattice formulation of QCD, where numerical simulations have become
reliable quantitative tools of analysis.

An interesting idea, which is partly rooted in the lattice formulation, is the
Svetitsky-Jaffe conjecture [1] which links the deconfinement transition of an
SU(N) gauge theory in d + 1 dimensions to the magnetic transition of a d-
dimensional spin system which is invariant under the center group ZN . The
spins of the system are related [2] to the local Polyakov loops, which are static
quark sources in the underlying gauge theory.

Having identified an effective spin system which describes SU(N) gauge
theory at the deconfinement transition, it is natural to ask whether one can turn
the argument around and identify characteristic features of a spin system directly
in the corresponding gauge theory. Furthermore one may analyze whether the
gauge-spin relation holds only at the critical temperature Tc or also in a finite
range of temperatures around Tc.

A particular property of many discrete spin systems is the percolation of
suitably defined clusters of spins at the magnetic transition. Since the spin
systems relevant for gauge theories have the discrete ZN invariance, one may
expect to find some kind of percolation phenomenon for center degrees of free-
dom at the deconfinement transition of the gauge theories. Indeed, for the case
of SU(2) lattice gauge theory studies of percolation properties can be found in
the literature [3, 4, 5], and more recently first results for SU(3) [6] as well as
full QCD [7] were presented.

Establishing finite clusters below Tc and percolating infinite clusters above
Tc gives rise to a tempting interpretation of the deconfinement transition: The
size of finite clusters in the confining phase might be related to the maximal
distance one can place a quark and an anti-quark source such that they still
have a non-vanishing vacuum expectation value. For larger distances the two
sources always end up in different clusters and average to zero independently.
Above Tc there exists an infinite cluster and with a finite probability the two
sources are correlated also at arbitrary distances such that they can move freely.

However, the above sketched picture hinges crucially on the scaling proper-
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ties of the center clusters – a question that so far has not been addressed in
the literature. A spin system has an intrinsic scale: The lattice constant of the
underlying grid. In lattice gauge theory the situation is different: There one is
interested in studying the system for finer and finer lattices in order to learn
about the continuum limit. For the percolation picture this implies that when
measured in lattice units, the clusters have to be larger for finer lattices. Only
then the size of the cluster in physical units, e.g., the diameter of the cluster
multiplied with the lattice constant in fm can approach a finite value and can
be assigned a physical meaning. If no such scaling behavior can be established
the clusters are merely lattice artifacts.

In this article we compare for SU(3) and SU(2) lattice gauge theory the
evidence for the existence of center clusters and their percolation at Tc. Par-
ticular focus is put on the analysis of the scaling behavior of the clusters. We
study the flow of the cluster parameters as a function of the lattice spacing and
demonstrate that a continuum limit for the cluster picture is plausible.

2 Conventions and setting of our analysis

In our analysis we explore pure SU(3) and SU(2) lattice gauge theory at tem-
peratures below and above the deconfinement transition. The basic observable
we analyze is the local Polyakov loop L(~x) defined as

L(~x) = Tr
Nt
∏

t=1

U4(~x, t) . (1)

L(~x) is the ordered product of the SU(3) or SU(2) valued temporal gauge
variables U4(~x, t) at a fixed spatial position ~x, where Nt is the number of lattice
points in time direction and Tr denotes the trace over color indices. The loop
L(~x) thus is a gauge transporter that closes around compactified time. Often
also the spatially averaged loop P is considered, which we define as

P =
1

V

∑

~x

L(~x) , (2)

where V is the spatial volume. Due to translational invariance P and L(~x) have
the same vacuum expectation value.

The Polyakov loop corresponds to a static quark source and its vacuum
expectation value is (after a suitable renormalization) related to the free energy
Fq of a single quark, 〈L(~x)〉 = 〈P 〉 ∝ exp(−Fq/T ), where T is the temperature
(the Boltzmann constant is set to 1 in our units). Below the critical temperature
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Tc quarks are confined and Fq is infinite, implying 〈L(~x)〉 = 〈P 〉 = 0. The
transition from the confined to the deconfined phase is of first order for the
case of SU(3), while it is second order for SU(2) gauge theory.

The deconfinement transition of pure Yang-Mills theory may also be inter-
preted as the spontaneous breaking of center symmetry. For SU(3) the elements
z of the center group Z3 are a set of three phases, z ∈ {1, ei2π/3, e−i2π/3}, while
for SU(2) we have the center group Z2 with z ∈ {1,−1}. In a center transfor-
mation all temporal links in a fixed time slice are multiplied with an element z of
the center group. While the action and the path integral measure are invariant
under a center transformation, the local and averaged Polyakov loops transform
non-trivially as

L(~x) −→ z L(~x) and P −→ z P . (3)

The non-vanishing expectation value 〈L(~x)〉 = 〈P 〉 6= 0, which we find above
Tc, thus signals the spontaneous breaking of the center symmetry.

In our study we analyze the behavior of the local Polyakov loops L(~x) using
quenched SU(3) and SU(2) configurations at finite temperature. For both gauge
groups we use the Lüscher-Weisz gauge action [8] on lattices with different
sizes ranging from 203 × 6 to 403 × 12. For SU(3) the lattice constant a was
determined in [9] using the Sommer parameter, while for SU(2) we express
dimensionful quantities using suitable powers of the string tension σ at zero
temperature. For SU(3) the critical temperature determined in [10] is used, for
SU(2) it was determined using the Polyakov loop susceptibility [5]. All errors
we show are statistical errors determined with single elimination Jackknife.

3 Distribution properties of local Polyakov loops

We begin our analysis with studying the distribution properties of the local
Polyakov loops L(~x) defined in (1). While L(~x) is a real number for the gauge
group SU(2) it is complex for SU(3). For the latter case we decompose the
local Polyakov loops into modulus and phase,

L(~x) = ρ(~x) eiϕ(~x) . (4)

In [6] it was demonstrated that the distribution of the modulus ρ(~x) is a rather
unspectacular quantity. It is very well described by the Haar measure distribution
P (ρ) =

∫

dUδ(ρ − |TrU |), where dU denotes the integration according to
Haar measure over SU(3) group elements U . In particular the distribution of
the modulus is almost entirely insensitive to temperature, lattice volume and
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Figure 1: Histograms for the distribution of the phases of local Polyakov
loops for the case of SU(3). The results are from our 403×6 SU(3) ensembles
and we compare two temperatures, T = 0.63Tc (lhs. plot) and T = 1.32Tc

(rhs.). The curve superimposed on the low temperature histograms is the
Haar measure distribution P (ϕ) =

∫

dUδ(ϕ − argTrU). The high temper-
ature results are for the sector of gauge configurations characterized by the
SU(3) center element z = e−i2π/3.

resolution scale [6]. Thus we conclude that the first order transition of SU(3)
lattice gauge theory into the deconfined phase is not driven by a change in the
distribution of the modulus.

The situation is different for the distribution of the phase ϕ(~x), where indeed
we observe a strong change in the distribution as one crosses into the deconfined
phase. This is illustrated in Fig. 1, where we show histograms H[ϕ(~x)] for the
distribution of the phases ϕ(~x) comparing the two temperatures T = 0.63Tc

and T = 1.32Tc. Below Tc (lhs. plot), the distribution shows three pronounced
peaks located at the center phases −2π/3, 0 and +2π/3. The whole T =
0.63Tc histogram perfectly matches the Haar measure distribution P (ϕ) =
∫

dUδ(ϕ − arg TrU) which we superimpose as a full curve on the histograms
in the lhs. plot of Fig. 1.

Above Tc (rhs. plot) the distribution changes: One of the peaks has grown,
while the other two peaks have shrunk. We stress at this point, that the selection
which peak becomes enhanced is a matter of spontaneous symmetry breaking.
In the rhs. plot of Fig. 1 the system has chosen the sector which is characterized
by a phase e−i2π/3 of the spatially averaged Polyakov loop P (compare Eq. (2)).
In case one of the other two center sectors is selected, the whole distribution in
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Figure 2: Histograms for the distribution of the local Polyakov loops for
the case of SU(2). The results are from our 403 × 6 SU(2) ensembles and
we compare two temperatures, T = 0.63Tc (lhs. plot) and T = 1.40Tc

(rhs.). The curve superimposed on the low temperature histograms is the
Haar measure distribution P (L) =

∫

dUδ(L− TrU). The high temperature
results are for the sector of gauge configurations characterized by the SU(2)
center element z = +1.

the rhs. plot is shifted periodically by ±2π/3. It is interesting to note, that also
above Tc we still see the subdominant peaks which correspond to the center
sectors that were not selected in the act of spontaneous symmetry breaking.
This already hints at the possibility that spatial bubbles with phases ϕ(~x) near
the subdominant center phases might exist also above Tc.

Let us now come to the case of SU(2). There the local Polyakov loops
L(~x) are real and we can directly look at their distribution. In Fig. 2 we show
histograms H[L(~x)] for the distribution of L(~x), again comparing two temper-
atures, T = 0.63Tc (lhs. plot) and T = 1.4Tc (rhs.). Similar to the SU(3) case
we find that below Tc the distribution very closely follows the Haar measure
distribution P (L) =

∫

dUδ(L− TrU), which we superimpose as a full curve in
the corresponding plot. Above Tc we observe a deformation of the distribution
favoring positive values. However, again we stress that this is a manifestation
of spontaneous symmetry breaking, since here we use high temperature config-
urations which are characterized by a positive value of the spatially averaged
Polyakov loop P . In case the system spontaneously selects the sector of the
other center element z = −1, which is characterized by negative values of P
above Tc, the distribution in the rhs. plot of Fig. 2 would display its peak at
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Figure 3: Abundance A of sites in each sector normalized by the spatial
volume V as a function of temperature. The results are for our 403 × 6
lattices and we compare the case of SU(3) (lhs. plot) with SU(2) gauge
theory (rhs.).

negative values of L(~x).
The spontaneous symmetry breaking, which leads to a non-vanishing ex-

pectation value of the Polyakov loop above Tc, can now be directly related to
the distributions of the local Polyakov loops L(~x). In particular the relative
distributions in the three (two) center sectors for gauge group SU(3) (gauge
group SU(2)) drive the change of the expectation value of the Polyakov loop.
The three sectors of SU(3) are here defined by the three intervals [−π,−π/3],
[−π/3,+π/3] and [π/3, π], the phases ϕ(~x) can fall into. The two sectors for
the case of SU(2) are distinguished by the sign of L(~x).

Below Tc all three (two) sectors are populated with an equal number of sites
~x. When all center sectors are equally populated, the Polyakov loop expectation
value vanishes as the center elements add up to zero, i.e., 1+ei2π/3+e−i2π/3 = 0
for SU(3), and 1 + (−1) = 0 for SU(2). Above Tc one of the center sectors
is more populated and thus the contributions do no longer add up to zero.
In Fig. 3 we show the abundance A of sites in each sector normalized by the
spatial volume V as a function of temperature and compare SU(3) (lhs. plot)
and SU(2) (rhs.). For low temperature each of the sectors is for the case of
SU(3) populated with roughly a third of the lattice sites (half of the lattice
sites for SU(2)). Near Tc one of the sectors starts to increase the abundance of
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sites, while the other sectors become depleted. It is interesting to note that for
the case of SU(3), where the transition is first order, the curves show a rather
sudden change near Tc, while for SU(2), where the transition is of second order,
the behavior is smoother (as expected).

4 Center clusters

In the previous section we have studied the distribution of the local Polyakov
loops L(~x). When analyzing the abundance of sites assigned to the differ-
ent center sectors we found that near Tc one of the sectors starts to become
more populated, thus giving rise to the non-vanishing expectation value of the
Polyakov loop. In this section we now analyze the connectedness properties of
sites ~x, ~y where the values of the local loops L(~x), L(~y) fall in the same center
sector. For that purpose we assign sector numbers n(~x) to the sites ~x. For the
case of SU(3) the sector numbers can have three values n(~x) ∈ {−1, 0,+1}
assigned according to

n(~x) =











−1 for ϕ(~x) ∈ [−π + δ , −π/3− δ ] ,
0 for ϕ(~x) ∈ [−π/3 + δ , π/3 − δ ] ,

+1 for ϕ(~x) ∈ [π/3 + δ , π − δ ] ,
(5)

while for SU(2) we have two possibilities, n(~x) ∈ {−1,+1}, with

n(~x) =

{

−1 for L(~x) ≤ − δ ,
+1 for L(~x) ≥ + δ .

(6)

If the phase ϕ(~x) (the local loop L(~x) for SU(2)) is not contained in one of the
intervals, no sector number is assigned to the site ~x, which then is no longer
taken into account in the subsequent analysis. We can now define center clusters
by assigning two neighboring sites ~x and ~y to the same cluster if n(~x) = n(~y).

Let us comment on the role which the parameter δ plays in our construction
of the center clusters. The parameter δ allows one to cut those lattice sites
where the corresponding local Polyakov loop does not clearly lean towards one
of the center elements. For the case of SU(3) sites ~x with phases near the
minima of the distributions shown in Fig. 1 are cut, while for SU(2) the cut
leads to a removal of sites where L(~x) is close to zero. In order to have a more
accessible definition of how much we cut, instead of quoting a value of the
parameter δ, from now on we express the cut in percent of sites that are not
assigned a sector number n(~x), i.e., the percentage of sites that are removed
from the analysis. To allow for a comparison of the values δ and the cut in %,
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δ sites cut, 0.69Tc sites cut, 1.01Tc sites cut, 1.22Tc

0.0 0.00 % 0.00 % 0.00 %
0.1π/3 5.76 % 5.67 % 5.57 %
0.2π/3 11.67 % 11.51 % 11.28 %
0.3π/3 17.85 % 17.61 % 17.25 %
0.4π/3 24.48 % 24.21 % 23.72 %
0.5π/3 31.83 % 31.46 % 30.86 %
0.6π/3 40.18 % 39.76 % 39.06 %

Table 1: Comparison of the cut parameter values δ and the fraction of cut
sites in %. We show the SU(3) results for our 303 × 6 lattices and compare
different temperatures.

we list the corresponding numbers for 303× 6 at three temperatures in Table 1.
The percentage of points that are cut for a given δ shows a mild temperature
dependence, and when refering to these numbers in the subsequent text we
quote an average value. The volume dependence is negligible.

Introducing such a cut for the analysis of cluster properties of course imme-
diately raises the question whether such a cut does not destroy the physics one
wants to study. In order to address this question we show in the lhs. plot of
Fig. 4 the results for the Polyakov loop as a function of temperature for different
amounts of lattice sites removed when turning on δ (we show results for SU(3)
on 403 × 6). It is obvious that even a cut of almost 40 % of lattice points
leads to only a small reduction of the expectation value of the Polyakov loop,
indicating that the cut indeed removes only the rather unimportant fluctuations
between the center values. One can even go one step further and replace the
local loop L(~x) by the nearest center element. The result is shown in the rhs.
plot of Fig. 4, again comparing different values for the cut. It is obvious that
the center elements alone are sufficient to reproduce most of the Polyakov loop
expectation value. Repeating the same analysis for SU(2) leads to equivalent
results [5].

Having convinced ourselves that the cut does not destroy the physics we
want to analyze, let us add a few more comments on the role of the cluster
parameter δ. It is obvious that a small value of δ will produce denser clusters
as more points are available for forming the clusters. As one increases δ the
clusters become thinner and smaller. One of the motivations of this analysis
is to study a possible characterization of the deconfinement transition as a
percolation phenomenon. This is an idea that has been widely explored in the
context of spin systems, where for many models the magnetic transition may be
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Figure 4: Lhs. plot: Expectation value of the modulus of the Polyakov loop
when only those sites are taken into account that survive the cut defined in
(5). Rhs.: Expectation value of the Polyakov loop when using the nearest
center elements instead of the local loop L(~x). Both figures are for SU(3)
on 403 × 6 lattices and we compare different values of the cut.

characterized by the percolation of suitably defined clusters. For these systems
it is well known that a naive cluster definition, where neighboring sites with
equal spin values are assigned to the same cluster, gives rise to clusters that
are too dense, such that the percolation- and the magnetic transitions do not
coincide. Only if the clusters are ”thinned out” the two critical temperatures will
agree. In particular one may use the Fortuin-Kasteleyn cluster construction [11],
which is now understood to give the correct cluster description of the magnetic
transition in Potts models [12]. The parameter δ which we introduce in our
cluster construction plays exactly the same role as the more educated cluster
definitions in spin systems, such as the Fortuin-Kasteleyn construction. As a
matter of fact the introduction of a free parameter for controlling the cluster
density, similar to our prescription, has been discussed in the literature [13].

There is, however, an important difference between the analysis of perco-
lation in spin systems and in lattice gauge theory. While in the former case
there is a fixed scale, the lattice spacing of the ferromagnet one studies, in the
analysis of lattice gauge theories one is interested in performing the continuum
limit, i.e., the limit of vanishing lattice constant a → 0. The cluster picture
only has a chance for a reasonable continuum limit, if the cluster diameter in
lattice units diverges as one approaches a = 0. Only in that case the cluster
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Figure 5: Weight Wmax of the largest cluster normalized by the volume as
a function of temperature. We compare the case of SU(3) (lhs. plot) with
SU(2) gauge theory (rhs.) and display data for three different volumes. The
cuts we use are 39 % of sites for SU(3) and 48 % for SU(2).

diameter in physical units, which is obtained as the product of the diameter
in lattice units with the lattice constant a, can have a finite limit. As we will
demonstrate in the next section, our cluster definition with the parameter δ is
suitable for such an analysis of a possible continuum limit.

Having discussed our cluster construction and the role of the parameter δ,
we now have a first look at a possible percolation behavior near Tc. For that
purpose we analyze the weight Wmax of the largest cluster, i.e., the number of
sites in the largest cluster, as a function of temperature. In Fig. 5 we display the
expectation value of Wmax normalized by the spatial volume V as a function
of T . We show the results for SU(3) in the lhs. plot (for a cut of 39 %) and
the results for SU(2) on the rhs. (for a cut of 48 %). In both cases we compare
three different volumes.

Below Tc we find that 〈Wmax〉/V depends on the spatial volume V . The
observation that for a fixed lattice constant 〈Wmax〉/V decreases with increas-
ing volume V suggests that below Tc the clusters have a finite maximal size
〈Wmax〉 ∼ const. Above Tc the volume dependence is gone and the largest
cluster fills a certain fraction of the total volume with a finite density that keeps
growing as one further increases the temperature. This absence of a volume
dependence indicates that the clusters are percolating above Tc. For a direct
analysis of the percolation probability as function of temperature see [5, 6, 7].
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5 Continuum limit of the center clusters and the

percolation picture

In the previous section we have demonstrated that for suitably defined center
clusters percolation sets in at Tc. So far the free parameter δ which we intro-
duced in our cluster construction was chosen arbitrarily. Now we change our
approach and use a physical scale to set the cluster parameter δ. The scale we
use is the diameter of the clusters in physical units. With such a prescription we
can compare properties of center clusters on lattices with different resolution a.

In order to define the diameter of the clusters we consider the correlation
functions of points within the same cluster, belonging to the center sector char-
acterized by the sector number n,

Cn(r) =
1

3Nn

∑

~x

3
∑

µ=1

∆n(~x, ~x+ rµ̂) . (7)

The sector number n can have the three values n ∈ {−1, 0,+1} for SU(3),
while for SU(2) we have n ∈ {−1,+1}. By Nn we denote the total number
of sites ~x with section number n(~x) = n. The first sum runs over all lattice
sites, the second one over all three spatial directions µ and by µ̂ we denote
the corresponding unit vector. The parameter r assumes values r = 0, 1, 2, ... ,
i.e., in (7) we consider the correlation along the coordinate axes. The function
∆n(~x, ~y) is defined through

∆n(~x, ~y) =

{

1 if ~x and ~y are in the same cluster, and this cluster is type n,
0 else .

(8)
Up to some correction at short distances, these correlation functions decay
exponentially in r. Similar to euclidean correlators in lattice spectroscopy, for
sufficiently large r we fit them with the function

Cn(r) ∼ A cosh((r − L/2)/ρ) , (9)

where A and ρ are two real fit parameters and L is the number of lattice points
in the spatial direction. As always, for correlation functions in a finite volume
the hyperbolic cosine appears due to the periodic spatial boundary conditions
which we use. An example of the correlation function and the corresponding fit
is shown in Fig. 6 for the case of SU(3).

The value of dlat = 2ρ is now used as the diameter in lattice units. It
is converted to the diameter in physical units dphys by multiplication with the
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Figure 6: Example for the cluster correlation function Cn(r) as a function of
r (symbols), and the corresponding fit with the functional form of (9) (full
curve). The data are for SU(3), 403×12 at T = 0.64Tc with a cut of 18 %.

lattice constant a, such that we obtain the diameter dphys = a dlat in fm (or in
units of the string tension for SU(2)). We now use the physical scale dphys to
set the value for the cluster parameter δ. For example we may decide to analyze
clusters that have a fixed diameter of dphys = 0.5 fm defined at some fixed
temperature, e.g., T = 0.63Tc. Then, working on the T = 0.63Tc ensembles,
we adjust the parameter δ such, that our diameter dphys has the desired value of
dphys = 0.5 fm. This procedure can now be repeated on lattices with different
lattice constant a and we thus can study scaling effects and the continuum limit.

Based on that physical definition of the center clusters we now address the
question how the average diameter of the clusters in physical units behaves as
a function of temperature. For that purpose we proceed as described in the last
paragraph and for a given lattice constant a we adjust the cluster parameter δ
such that the clusters have an average diameter of dphys = 0.5 fm (which is a
reasonable mesonic scale for very heavy quarks). We then keep this value of the
cluster parameter δ fixed and change the temperature, to study how the physical
cluster diameter changes with T . Keeping δ fixed simply means that we work
with the same cluster construction for all temperatures, i.e., the percentage of
points we cut is almost the same for all T (compare Table 1). The result of this
analysis is presented in Fig. 7 where we show the cluster diameter dphys in fm for
the case of SU(3) (lhs. plot), and for SU(2) in units of the string tension (rhs.),
as a function of temperature. For both cases we find that below Tc the cluster
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Figure 7: Diameter dphys of the clusters in physical units as a function of
temperature for the case of SU(3) (lhs. plot) and SU(2) (rhs.). The inserts
are a zoom into the low temperature data. In both cases we compare the
results for two different values of the lattice constant a.

diameter in physical units remains essentially constant at the value of dphys that
we dialed in at T = 0.63Tc. At the critical temperature the cluster diameter
starts to rise quickly indicating that the clusters start to percolate. We stress
at this point that on an infinite lattice the curve for the diameter would jump
to infinite slope at Tc. On a finite lattice with L lattice points in the spatial
directions, the cluster diameter we can determine using the correlator Cn(r)
is always bounded by the finite spatial box size, giving rise to a finite slope in
Fig. 7 above Tc. Comparing different values of the box size aL in physical units,
we found that the results for dphys at a fixed value of T (> Tc) increase with
L. We stress at this point that while it is obvious that at fixed T the values for
dphys increase with L, it is not a priori clear that for fixed L the value of dphys
is an increasing function of T , because we drive the temperature by changing
the lattice constant a, such that also the physical volume shrinks. The fact that
above Tc dphys keeps growing with T is due to an increase of the density of the
percolationg cluster which can, e.g., be seen from Fig. 5, which shows that the
number of sites in the largest cluster keeps growing above Tc.

The crucial check for our analysis of the cluster diameter in physical units
is the comparison of the results obtained on ensembles with different lattice
spacing a. For that purpose in Fig. 7 we compare the curves for the cluster
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diameters on 303 × 6 and 403 × 8 lattices. In both cases we followed the above
described procedure, adjusted the diameter to a fixed physical value dphys at
T = 0.63Tc and kept the corresponding cluster parameter δ for all temperatures.
If the cluster picture and the percolation properties we found have a meaning in
physical units, the two curves should fall on top of each other. The plots show
that this is the case for both SU(3) and SU(2).

Having analyzed the percolation picture in physical units and finding uni-
versal behavior when comparing different lattice spacings, let us now turn to
another conundrum related to the continuum limit of the center cluster picture.
Fig. 7 suggests that the center clusters have a fixed physical diameter below Tc

(at least in the range of temperatures we studied), and that this behavior can
be seen on lattices with different resolution a. This poses the questions how
below Tc the physical diameter

dphys = a dlat , (10)

can remain finite in the limit a → 0. Equation (10) implies that for the con-
struction of the continuum limit the cluster diameter in lattice units dlat has to
diverge, in other words the clusters must become infinite in that limit.

We address this question by comparing clusters of the same physical size
on lattices with different resolution a. This comparison is done at the fixed
temperature T = 0.63Tc. For each value of a we set the cluster parameter δ
such that the physical cluster diameter dphys has the desired size, e.g., dphys =
0.5 fm. For different values of the lattice spacing a different values of δ are
necessary to obtain the desired dphys: For finer lattices we need larger clusters
and thus can cut only fewer points than for coarse lattices. By Ncut we denote
the number of lattice sites that are removed when constructing the clusters
according to Eqs. (5) and (6). We measure the influence of the parameter δ by
defining the following fraction

f =
V − Ncut

V Nc
. (11)

This fraction measures how many sites are available (= the numerator V −Ncut),
per volume (factor 1/V ), per center sector (factor 1/Nc, whereNc is the number
of center elements). In other words f measures the fraction of sites available for
clusters in a given center sector. In Fig. 8 we show the flow of f with 1/Nt. The
continuum limit is reached for 1/Nt → 0. We compare the results for different
values of dphys, which for the case of SU(3) we measure in fm (lhs. plot), while
for SU(2) (rhs.) we express dphys in units of the string tension.

It is obvious from the plots that for a given dphys the values for the available
fraction f at different 1/Nt fall on almost perfect straight lines. Moreover,
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Figure 8: The fraction f of points available for clusters per center sector
for the case of SU(3) (lhs. plot) and SU(2) (rhs.). We compare different
physical cluster diameters, which for the case of SU(3) we give in fm, while
for SU(2) the cluster diameter is given in units of the string tension.

all the lines extrapolate to roughly the same value in the continuum limit,
namely fcont ∼ 0.33. We use shaded bands to mark the straight lines and
their extrapolation to the continuum limit in order to indicate our estimate
in the uncertainty of the analysis. We stress at this point, that the number
fcont ∼ 0.33 has nothing to do with the number of colors in SU(3) – the same
value is obtained also for the case of SU(2).

Let us now try to understand the significance of the value fcont ∼ 0.33.
For site percolation in three dimensions the critical value for the occupation
probability is Pc = 0.316. The fraction f of points available for clusters in each
of the sectors extrapolates in the continuum limit to a value of fcont ∼ 0.33
which is just above the percolation threshold Pc = 0.316 1. This suggests that
the clusters indeed grow to infinity in lattice units as we approach a = 0, and a
continuum limit of the center clusters may be possible. We stress again that our
calculation should be viewed only as a first indication that a continuum limit

1As a matter of fact it could be that f tries to extrapolate to exactly the percolation

threshold 0.316, which would be an extremely beautiful result. However, with the resources

currently available to us we cannot perform a calculation which is accurate enough for a

determination of fcont with sufficient precision to test this hypothesis.
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Figure 9: Illustration of the confinement mechanism and the deconfinement
transition in terms of center clusters (see the text for explanations).

might be possible and certainly needs to be substantiated with a (unfortunately
very expensive) high precision analysis.

6 Summary and conclusions

In this paper we analyze distribution properties of the local Polyakov loop in
SU(3) and SU(2) lattice gauge theory at finite temperature. At each spatial
lattice site we identify the nearest center element and study cluster properties
of neighboring sites in the same center sector. While all center sectors are pop-
ulated equally below Tc, above Tc one of the sectors is selected spontaneously
and becomes more populated at the expense of the other, subdominant sectors.
After introducing the cluster parameter δ one can construct suitable clusters
which start percolating at the deconfinement transition.

We address the question whether a continuum limit for the clusters is possi-
ble by using the cluster diameter in physical units as a physical scale. Working on
lattices with different lattice constant a we adjust the cluster parameter δ such
that the cluster diameter has a fixed value in physical units. When approach-
ing the continuum limit we find that the fraction of sites which are available
for clusters extrapolates to a value just above the percolation threshold. This
implies that in lattice units the clusters become infinite in the continuum limit,
while in physical units they remain constant (below Tc). This finding indicates
that the cluster picture could indeed have a well defined continuum limit. When
analyzing the cluster diameter in physical units as a function of temperature,
we find it is essentially constant below Tc and becomes infinite above.

The center clusters and their percolation at the deconfinement temperature
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give rise to a simple picture for confinement and the deconfinement transition,
which we illustrate in Fig. 9. Below Tc (lhs. and center panels in Fig. 9) the
center clusters have a characteristic finite size. If one places two static sources
L(~x) and L(~y)⋆ at a distance |~x − ~y| which is small enough to fit into one
of the clusters (lhs. panel), the center phase information is the same at both
positions ~x and ~y and cancels in the correlator 〈L(~x)L(~y)⋆〉 which thus can
have a non-vanishing expectation value. If the distance |~x−~y| is too large to fit
into a single cluster (center panel), then the two sources will always end up in
different clusters. Consequently L(~x) and L(~y)⋆ will be subject to independent
fluctuations of the center phase such that 〈L(~x)L(~y)⋆〉 averages to zero. This
averaging does not imply that the correlator vanishes abruptly above a fixed
value of |~x − ~y|, because the sizes of the clusters fluctuate giving rise to the
well known exponential decay of 〈L(~x)L(~y)⋆〉. Above Tc (rhs. panel in Fig. 9),
the center clusters percolate and thus provide a coherent center information for
arbitrary large distances. As a consequence, above Tc there are non-vanishing
contributions to 〈L(~x)L(~y)⋆〉 at arbitrary large distances |~x−~y|, and the sources
are deconfined.

For a further analysis of the center cluster picture several directions need to
be explored. As already discussed, the numerical evidence presented here can
be improved considerably by a large scale precision study of the behavior of the
center clusters using ensembles in a wide range of the lattice constant a. In
particular the behavior of the fraction f of available sites for clusters per center
sector should be explored closer to the continuum limit in order to precisely
determine the value it extrapolates to. A second highly important question
is how the center clusters change when full QCD with dynamical fermions is
considered. In this case the deconfinement transition turns into a crossover and
this different behavior should be reflected in the cluster properties. Preliminary
results for that case can be found in [7] and a more detailed account on the
dynamical case is in preparation.
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[8] M. Lüscher, P. Weisz, Commun. Math. Phys. 97 (1985) 59 [Err.:
98 (1985) 433]; G. Curci, P. Menotti, G. Paffuti, Phys. Lett. B 130

(1983) 205 [Err.: B 135 (1984) 516].

[9] C. Gattringer, R. Hoffmann, S. Schaefer, Phys. Rev. D 65 (2002)
094503.

[10] C. Gattringer, P.E.L. Rakow, A. Schäfer, W. Söldner, Phys. Rev. D
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