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from 3 dimensional reflexive polytopes with 5 vertices
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Abstract

In this article we study the families of K3 surfaces derived from 3 dimensional 5 verticed re-
flexive polytopes with at most terminal singularity. We determine the lattice structures, the period
differential equations and the projective monodromy groups for these families.

Introduction

A K3 surface S is characterized by the condition K¢ = 0 and simply connectedness. It means that S is
a 2-dimensional Calabi-Yau manifold. V. V. Batyrev [Bal introduced the notion of the reflexive polytope
for the study of Calabi-Yau manifolds.

In this article we use the 3-dimensional reflexive polytopes with at most terminal singularities. Such
a polytope P is defined by the intersection of several half spaces

a;x+bjy+cjz <1, (aj,b;,¢5) ez? (j=1,---,9)

in R? with the conditions
(i) every vertex is a lattice point,
(ii) the origin is the unique inner lattice point,
(iii) only the vertices are the lattice points on the boundary.
Moreover, if a reflexive polytope satisfies the condition
(iv) every face is triangle and its 3 vertices generate the lattice,
it is called a Fano polytope.
All 3-dimensional 5-verticed reflexive polytopes with at most terminal singularity are listed up (see

[KS] or [O)):

100 -1 0 100 0 -1 100 -1 0
p=|0o10 0 -1|], B=|010 -1 —-1|, Ps={0 10 -1 0|,

001 -1 —1 001 -1 —1 001 0 -1

100 0 -1 100 0 -1
Ppr=l010 0 -1], Ps=|010 0 -1

001 -1 —1 001 -1 -2

Among them, P, P5, P, and P5 are Fano polytopes.

We can find a family of K3 surfaces for each polytope by a natural method. In this article we study
the polytopes P;, P> and Ps;. Namely, we determine the lattice structure, the period differential equation
and the projective monodromy group for each of them.
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T. Ishige [I] has made a detailed research on the family of K3 surfaces coming from the polytope Pj.
Especially he noticed characterization of the corresponding monodromy group by a numerical approach.

Inspired by Ishige’s discovery, we have studied families of K 3 surfaces derived from the other polytopes
Py, Py, P3 and P5. We have made an intensive study on the polytope Ps in our previous article [Na].
There, we have studied the period map for a family, saying F = {S(\, p)}, of K3 surfaces, where

S p) :xy2(x+y+ 2+ 1) + dayz + p.

Namely, we have determined the lattice structure of a generic member of the family F, the period
differential equation and the projective monodromy group using the Torelli type theorem for polarized
K3 surfaces and the lattice theory. Furthermore, we have shown that our differential equation coincides
with the uniformizing differential equation of the Hilbert modular orbifold for Q(v/5) studied by Sasaki-
Yoshida [SY] and T. Sato [Sal.

Here, we study the remaining cases P, P» and Ps;. Namely we investigate corresponding families
F; (7 =1,2,3) of K3 surfaces.

In Section 1, we show explicit defining equations for the families F; = {S;(\, 1)} (j = 1,2,3) (see
(1), (C2) and ([T3)) and we introduce elliptic fibrations for these families. The singular fibres of each
elliptic fibration are described in Table 1.

In Section 2, we determine the lattice structure for a generic member of each family F; (j = 1,2, 3).
Namely, we obtain the Néron-Severi lattice NS(S; (A, 1)) (j = 1,2, 3) as in Table 2. Note that in the case
P5 we could determine N.S(S(A, ) for S(A, 1) € F by a naive method (see [Nal). In this article we need
more advanced theory of the Mordell-Weil lattice due to T. Shioda [Shi].

For 95 weighted projective K3 surfaces, there is a result of S. M. Belcastro [Be]. And for K3 surfaces
with non-symplectic involution, there is a result of V. V. Nikulin [Ni]. Our case is not contained in these
results. Furthermore, we note that the result of K. Koike [Koi| and our result in this article support the
mirror symmetry conjecture (see Remark [2.]).

In Section 3, we determine the period differential equations (Theorem B2)). Furthermore, we obtain
their monodromy groups (Theorem [3.3)).

1 Families of K3 surfaces and elliptic fibrations

We obtain a family of algebraic surfaces by the following canonical procedure from P; (j = 1,2, 3):
(i) Make a toric 3-fold X; from the reflexive polytope P;. This is a rational variety.
(ii) Take a divisor D on X that is linearly equivalent to —Kx;.
(iii) Generically D is represented by a K3 surface.
We obtain the corresponding families of K3 surfaces F; = {S;(A, u)} for P; (j = 1,2,3) given by

S1O\p) s 2y=(+y+ 2+ 1) + Ao+ py =0, (11)
So\ ) rxyz(z+y+2z+1)+ Az +pu=0, (1.2)
Ss(\ p) rxyz(z+y+2z+1)+ Az + pay = 0. (1.3)

We can find an elliptic fibration for every surface of our family F; (j = 1,2,3). Moreover we can
describe these surfaces in the form

y? = 2% — go(2)z3 — g3(2),

where g2 (g3, resp.) is a polynomial of z with 5 < deg(g2) < 8 (7 < deg(gs) < 12, resp.). In this paper we
call it the Kodaira normal form. From the Kodaira normal form we can obtain singular fibres of elliptic
fibration. Corresponding singular fibres of our elliptic fibration of F; (j = 1,2, 3) are shown in Table 1.



Family Fi Fo Fs
Singular Fibres Ig+ 15 +6I7 I7 + 11 +6I, 19+ Iy+ 61

Table 1.

1.1 F

Proposition 1.1. (1) The surface S1(\, p) is birationally equivalent to the surface defined by the equation
22 =i+ (U 4 2ur1 + 25 — 4a})y7 + (=8 uxt — 8 x)yr + 16078, (1.4)

This equation gives an elliptic fibration of S1(\, ).
(2) The elliptic surface given by (L) has the holomorphic section

P:ay— (21,91, 21) = (21,0, 4 23). (1.5)

Proof. (1) By the birational transformation

= 225y y— yi R —4\zf + py1 + Ty + 21
—4A\x3 + pyr + 2191 + 21 221 (=423 + pyr + x191 + 21)” 2x111 ’
(1) is transformed to (T4).
(2) This is apparent. 0O

(T4) gives an elliptic fibration for the surface Sy (A, p). Set
Ay = {(\ ) € CPIAu(T290N2 — 54AN(27p — 1) + (1 +27p)* # 0)}. (1.6)

Proposition 1.2. Suppose (A, u) € Ay. The elliptic surface given by (L) has the singular fibres of type
Iy over x1 =0, of type I35 over x1 = oo, and other siz fibres of type I;.

Proof. ([L4)) is described in the Kodaira normal form

2t =y — ga(x1)y2 — g3(x1), T1 # o0,

with
wo 4plx dux? x} 16px} 8z 1628
gg(xl):—(—g—T—Quzx%—Tl—S)\/w?—i—?l—S)\x?—i— 3 ! +?1— 31),
gs(21) = _(2_#6 4psry  10pta? n 40p323 n S udad _ Suta? n 10p2x]
27 9 9 9 3 9 9
32p3zt  Aual 16p223 2%  8Aaf 32p29
+8Aﬁﬁ—$+%+8mx§— ’; L 31+16A2x§—%
_32)\/mc? n 3228 _ 8_%{ _ 322z 64px]  32a% _ 128:6%)
3 9 9 3 9 9 27 )’
and
z5 =y — ha(x2)ys — hs(z2), w2 # 00,
with
1623  8x3 i 16puxs  4uxd Su’x3 432l ot
h :_(_ 2 S% _ Ta_ gy,.4 2 _ ZHTS gy a8 _2_226__2__)7
2(2) 3 T3 3 Mt 3 Hr2 ¥ AT 73 73
12823 3223 8z  32X\x)  64ux) 228 8Ax§ 32uxS
h :_(_ 2 2 STy 2 2 | 4Ly 2 L 160226 — 2
3(2) 27 9 9 3 o 27 T3 TOVmT Ty
32 px§  32u%aS  dpal . 16p2x]  10p228 5 s 32utal
— 8 — 8\ -—
3 + 9 + 9 + 8Apx, 3 + 9 + 8Au Ty 9
40p523t 8 plxd _ 8utad n 10p*230 n 4pdxit 2;16:10%2)
27 3 9 9 9 27 )7




where x1 = 1/25. We have the discriminant of the right hand side for y; (y2, resp.):

Do = 25622 (A\u® — p* + 3 pPxy — 4pdxy + 3 pa? — 6pca? + \ad + 270223
—4px? — 36 urd + 8uxd — 2t — 36Axt + 162t + 823 — 1629),
Do = 2567223 (=16 + 8z — 23 — 3623 + 16pa3 + A + 27A\%x3 — 4pa — 36 s
8uxd + 3 pxs — 6p’xs + 3 p2ad — 4pdad + A\uda§ — ptak).
From these deta, we obtain the required statement (see [Kod]). O
1.2 K
Proposition 1.3. (1) The surface Sa2(\, p) is birationally equivalent to the surface defined by the equation
2 =2t + (=4 + v + 207 + yN)a] + (=8uy® — 8uyt)ar + 16p°y". (1.7)

This equation gives an elliptic fibration of Sa(\, ).
(2) The elliptic surface given by (LLT) has the holomorphic section

P Y= (xluya Zl) = (07 y74ﬂy2) (18)

Proof. (1) By the birational transformation

xr = I% 7Z:—x1y_4‘uy2+xly+217
2y(1y — 4py? + 21y + 21) 221y
([T2) is transformed to (L.1).
(2) This is apparent. O

(L) gives an elliptic fibration for So(\, ). Set
Ao = {(A\, 1) € C*Ap(NZ(1 42702 — 22 u(1 4 189N) + (1 + 5767 ) u* — 25613) # 0}. (1.9)
Proposition 1.4. Suppose (A, 1) € Ay. The elliptic surface given by (7)) has the singular fibres of type
I over y =0, of type 111 over y = oo, and other six fibres of type I.
Proof. (L) is described in the Kodaira normal form

27 =23 — g(y)z2 — g3(y), Y # o0,

with
16A%2y2  8Ay? yt  16Xy* 45 8N\y° 4y” 48
O e R ik S R Vi sl ek i st Y1
128033 3222yt 32yt 8\y®  64M2y5 SuyS  32xuy®  2y8  3202%y0
93(y)=—(— Vo 2N 2EMY g2 SNV DEATYT L ST S2AMYT 2V 52Ty
27 9 3 9 9 3 3 27
47 16)\y7 10y 320°  Suy®  40y°  8\y?  10yl0  4yll 2412
gyt B 10T 107 3207 Sy ¥’ 8y y vl 2%
9 3 9 9 3 27 9 9 9 27
and
25 = a3 — ha(y1)zs — h(y1), Y1 # o0,
with
1 4y o dyi 8\ oyl | 116My] 4, 8P 5 16027
h :—(—————2 s SR S I} -8 S AR ——),
2(v1) 573 -5 T3 3 3 py+ = 1y 3
2 4y 10y7 | 40y? 8ay? 10yl 32xyt | 8uyi | 4y) 16y} 5
hs(y1) = —(— AL - - AR A
3(u1) 27T 0 T a7 9 9 9 3 9 3 oM
Q_y? _ 3205 320%y§ n 8uy? _ 8y n 64\2y] n 8uy
27 9 9 9 9 3
322uyT 32028 322y’ 12839
_ HY1 + Y1 HY1 + 16u2y§ _ Y1 )7
3 9 3 27

9

)



where y = 1/y;. We have the discriminant of the right hand side for z3(z3, resp.):

Do = —256p%y7(16A% — 8\2y + 36 \uy — 27y + A\y? — 1602y% — py? + 36 uy? + 4 y3
=8Ny = 3uy® + 6yt — Buyt 4+ 4Ny° — py® + My°),

Do = =256yt (A + 4Ay1 — py1 + 6Ay7 — 3uyi + 4 g7 — 8X2yd — 3uy + Ayt — 1602y}
—pyt + 36yt — 8X2yP + 36Auy} — 2717y} + 1603yF).

From these data, we obtain the required statement. O

1.3 7

Proposition 1.5. (1) The surface Ss(\, i) is birationally equivalent to the surface defined by the equation
yi =28 + (A2 + 22wy + 2? — dpa? — 423) 23 + 16pas. (1.10)

This equation gives an elliptic fibration of Ss(\, u).
(2) The elliptic surface given by (LIQ) has the holomorphic sections

Pz (21,51, 21) = (01, 4pat(an + N), daip, (1.11)
o' : Z1 > (Ilaylvzl) = ('Ilvoao)'
The section O satisfies 20" = O.
Proof. (1) By the birational transformation
. 223 (4pux? — 21) y— Y1+ Az1 + 2121 —— 21 (dpx? — 1)
Y1+ Az1 + 1120 221 (4pa? — 21)’ 2x1(y1 + A2y +x121)’
([T3) is transformed to (LI0).
(2) This is apparent. O
(CIQ) gives an elliptic fibration for S3(A, ). Set
As = {(\ ) € C*IAu(T29N — (4 — 1)% + 54N(1 + 12p)) # 0}. (1.12)

Proposition 1.6. Suppose (A, u) € As. The elliptic surface given by [LIQ) has the singular fibres of
type Lo over z =0, of type I3 over z = 0o, and other six fibres of type I.

Proof. ([ILI0) is described in the Kodaira normal form

Yt =25 — ga(1)22 — g3(z1), @1 # 00,

with
A ANy SA2ux?  4xzd 82z 16Auxd
(A AT gy22 T 1 1 1
ga(0) = —( =5 - =5 nrT 35 3 T3
,T_il 16 z]  Suxt  16px] 8_.%“15 16z} 16:6(13)
3 3 3 3 3 3 3 /)
gs(21) = _(E AN5z; 10N _ 8\ puw? n 40323 _ 8\ix? _ 3223 n 10\ 227 _ 32\3x¢
27 9 9 9 27 9 9 9 9
_ 16227 n 32222t n A\x3 _ 16223 _ 32 \ux} n 16\ 2} n 64 \ux? 2_:10(1S _ 32228 32228
3 9 9 3 9 9 9 27 9 9
_8/w? n 32\ ux§ n 3228 _ 128u32§ _ 8_%{ 64 \z?  16px] n 64p227  322F  64pad _ 128:[:?)
9 9 9 27 9 9 9 9 9 9 27 )
and

ys = 25 — ho(22)z5 — h3(w2), a2 # 0,



ho(2) ( 1603  8x3  16pxs x5 16M\x3  Spxs  16p%wd  4)xd
x9)=—| — — - = - -
2 3 3 3 3 3 3 3 3
8\2x5 n Ay _ox246 4 8A2 B 4N327 _ A28 )
3 3 2 3 3 3
12823 3223  64pxs  Sxd 64 x 225 32X\af§  32X%2§  Suaf
h3($2):—(— + - - — -
27 9 9 9 9 27 9 9 9
+32)\u:vg n 3242 _ 128u32§ 4 al _ 16227 B 322328 B 162 _ 3222 %
9 9 27 9 3 9 9 9
+40)\3:vg _ 8\ix) _ 3223 n 10A*2:30 _ 8\t prd? n 4N\5 3t n 2)\6:1052)
27 9 9 9 9 9 9 ’

where x1 = 1/x2. We have the discriminant of the right hand side for z3 (23 resp):
Do = 25603210\ + 4X\321 + 672227 — 8A2ux? + 4 xd — 8M\2xd — 16 uxs
+xf — 162t — 8uxt + 16p%x] — 8xF — 32ux} + 1625),
Do = —256%28(16 — 8z2 — 32uws + 23 — 16\23 — Suas + 1623
+4Azd — 8Nl — 16 puxl + 62z — 8N 2 pay + AN3z5 + A*af).
From these data, we obtain the required statement. O
We need another elliptic fibration.
Proposition 1.7. (1) The surface Ss(\, i) is birationally equivalent to the surface defined by the equation
y? = o+ (0 4 20z + 2%+ 202 + 227 + 22 4+ (=8 p2® — 8Azt — 8A2%)a + 16A220.  (1.13)

This equation gives an elliptic fibration of Ss(\, ).
(2) The elliptic surface given by (LI3) has the holomorphic sections

Q2 (2h,y),2) = (0, —4X23, 2). '
Proof. (1) By the birational transformation
. _4)\z2 _—pxy — Y — iz — a2t AN
- S 22 2 ’
([C3) is transformed to (LI3).
(2) This is apparent. O

Proposition 1.8. Suppose (A, p) € As. The elliptic surface given by (LI3) has the singular fibres of
type Iy over z =0, of type Iy over z = 0o, and other six fibres of type I.
Proof. (LI3)) is described in the Kodaira normal form

2 3
yll = wl2 - 92(2)55/2 —g3(2), z# oo,

with
92(z) = —(— %4 - 4”—332 —2u%2? — # - 4”—;:23 — 8A\uz —4pz® — %4 —8\z*
—dpt —2u22t — %25 —8X\2° —4puz® —22° - 4;1726 — 4?27 — ?),
g5(2) = _(22_u76 n 4;;52 n 10;;422 n 4u§zz 40;;23 n 8)\;;323 n 20;;42'3 n 10;:)224 +sau2et 4 40p3 24
10‘:;24 + 4’55 + 82’ + 40“7225 + 8225 + 40*;325 + % + SA;G 416020 + 20—52,6 + 16020
+20;;226 40;;;2'6 n 4?27 LT 4 4052'8 n 10;:)228 n 4(2);9 n 8/\329 n 2052'9 n 10;10 n 4,;11 n 2;;2

).



and

with
4 4 32 4 322 4 323 4
ha(z1) = —( — % — MT — 2222 — MT — MT — 8z —4p2z? — % — 8\t
4 5 4 3.6 4 3.7 4
—dpzt — 222} — % — 8z — 4pzd —2u220 — N321 — M3Z1 — M321
2 4z 1027 4pz? 4028 8z 20uz]  10zf 40pzf  10p22f
h3(zl):_(ﬁ+71 o A:)l 5 T3 gl g T8 gl+ /; :
422 40025 400222 228 4pzT 400327 104228
ot e+ =g ks + T T L ] —H . A
82 4+ 400328 40p32)  8AuB2Y n 20p12 n 10p*230 n 445219 n 4pd 2t n 2@62112)
! 9 27 3 9 9 9 9 27 )7

where z = 1/2z; We have the discriminant of the right hand side for a’9(2’3, resp.):

Do = 25632° (u® + 3u%2 + 3uz? + 3u2% + 23 + 27022 + 6z + 32% + 3uzt + 32° + 29),
Doo = 2567329 (1 + 321 + 327 + 3p2? + 23 4+ 2723 + 6uzf + 3uzi + 3p22) + 322 + p329).

From these data, we obtain the required statement. o

2 Lattices for F;

In this section, we determine the lattice structure of a generic member of F; (j = 1,2, 3).
For a general K3 surface S, Hz(S,Z) is a free Z-module of rank 22. The intersection form of H3(S,Z)
is given by
Es(-1)® Es(-1)eUaUaU,

where
-2 1
1 -2 1
1 -2 1
1 -2 1
E8(_1): 1 —9 1 1 )

1 -2 0
1 0o -2 1

0 1
c=(1 )
Let NS(S) denote the sublattice in Ha(S,Z) generated by the divisors on S. It is called the Néron-Severi

lattice. The rank of H»(S,Z) is called the Picard number. We call the orthogonal complement of NS(S)
in Hs(S,Z) the transcendental lattice. We note that the Picard number is equal to dimg(NS(S) ®z Q).

Theorem 2.1. Let j € {1,2,3}. The Picard number of a generic member of the family F; is equal to
18.

As a principle, we obtain the above theorem by the method exposed in the section 2 of the article [Na].
Because we shall have the lattice Ly (Lo, Ls, resp.) in (Z3) ((ZI0),(ZI0), resp.) for Fi (Fa, F3,resp.),
we have rank(N.S(S;(A, 1)) > 18. Let j € {1,2,3}. Take (o, o) € A;. Take a small neighborhood § of
(Ao, pto) in A so that we have a local trivialization

T: {Sj(/\,/L)K/\,/L) S 5} — Sj()\o,/l,o) X 4.



We note that 7 may preserves the lattice L;. Let w;(A, 1) be the unique holomorphic 2-form on the K3
surface S; (A, u) up to a constant factor. By using the pairing

()« H?(S; (Mo, o), C) x Ha(S;(Mo, o)) = C,

we define a period ® (g, po) € P2H(C) of Sj(Ao, o) given by (w; (Ao, po), ) (k = 1,---,22) for a fixed
basis {1,722} of Ha(S;(Xo, f0),Z). We have a natural extension ®(\, p) for (A, p) € § by using
(w\, 1), 77 () (k=1,---,22). Then we can define a local period map

5 : 5 — P2(C).

It is sufficient to have that ®4 is injective on ¢ to prove rank(NS(S; (A, 1)) = 18 for generic (A, u) € A;.
In this situation, we have dim(®s(5)) = 2. It implies rank(NS(S; (A, u))t) = 4 for generic (A, u) € A;.
But, to assure this assertion, we need a delicate observation exposed in the argument to obtain Theorem
2.2 in [Na].

We have the following fact for the elliptic fibration of S; (A, i) stated in Section 1 by the same argument
to prove Lemma 1.1 in [Nal.

Fact 2.1. Let j € {1,2,3} and (A1,p11), (A2, u2) € Aj. Two elliptic surfaces (Sj(A,m1,PH(C))) and
(Sj(Aa, T2, PY(C))) are isomorphic as elliptic surfaces if and only if (A1, p1) = (A2, p2).

Also, we have the following fact.

Fact 2.2. ([Na] Lemma 2.1) Let S be a K3 surface with elliptic fibration © : S — P(C), and let F be
a fized general fibre. Then 7 is the unique elliptic fibration up to Aut(P'(C)) which has F as a general
fibre.

Because we established Fact 2] and Fact 2.2 by the same argument to obtain Proposition 2.1 in
INa], we have the same marked K3 surfaces S;(A1, u1) and S;(Ae, p2) if and only if (A1, pu1) = (A2, p2).
According to the Torelli type theorem for K3 surfaces, we obtain that ®; is injective.

We need explicit lattice structures of the Néron-Severi lattices and the transcendental lattices for
further study.

In the article [Nal we could determine the explicit Néron-Severi lattice for the polytope Ps in a naive
way, for we have det(NS(S()\, 1))) = —5 which does not contain any square factor.

However, it is much more difficult to determine the explicit Néron-Severi lattice for the polytopes
Pj (5 =1,2,3), for det(NS(S;(A, 1)) = —9 = —32. In this section, we prove the following theorem.

Theorem 2.2. For a generic point (A, 1) € A; (j =1,2,3), we have the intersection matrices of Néron-
Severi lattices NS and the transcendental lattices T'r as in Table 2.

Family Fi1 Fo Fs
0 3 0 3 0 3
NS Es(—1) ® Es(—1)® <3 O> Es(—1) ® Es(-1)® (3 2> Eg(—1)® Es(-1)® <3 _2>
0 3 0 3 0 3
Tr A =U® <3 O) Ay =UO (3 _2) As =U O (3 2)
Table 2.

Remark 2.1. K. Koike [Koil has made a research on the families of K3 surfaces derived from the
dual polytopes of 3 dimensional Fano polytopes. The polytopes Py and Ps in our notation are the Fano
polytopes. Due to Koike we have Néron-Severi lattices for the dual polytopes Ps and Ps (given by Table

3).



Dual Polytope Py F3

, . . 0 3 0 3
Néron-Severi lattice <3 _2> <3 2>

Table 3.

By comparing Table 3 and Table 2, we can assure the mirror symmetry conjecture for the reflexive

polytopes P and Ps.

2.1 The Mordell-Weil lattices

Let us recall the theory of Mordell-Weil lattices due to T. Shioda. For detail, see [Shl] and [Sh2].

Let S be a compact complex surface and C be a algebraic curve. Let 7w : § — C be an elliptic fibration
with sections. For generic v € C, the fibre 77! (v) is an elliptic curve. In the following we assume that the
elliptic fibre 7 : S — C has singular fibres. C(C) denotes the algebraic function field on C. If C' = P(C),
the field C(C) is isomorphic to the rational function field C(t).

In this article, (-) denotes the intersection number and F(C(C)) denotes the Mordell-Weil group of
sections of : S — C. For all P € E(C(C)) and v € C, we have (P -7~ !(v)) = 1. Note that the section
P intersects an irreducible component with multiplicity 1 of every fibre 77!(v). Let O be the zero of the
group E(C(C)). The section O is given by the set of the points at infinity on every generic fibre.

Set

R={veClr C) is a singular fibre of 7}.

For all v € R we have

My —1

7 (0) =Ouo+ > t;Ouy, (2.1)
j=1

where m,, is the number of irreducible components of 7! (v), ©,; (j = 0,---,m, — 1) are irreducible
components with multiplicity s, ; of 7~!(v), and ©,,¢ is the component with 0,0 N O # ¢.
Let F' be a generic fibre of 7. Set

T=(F,0,0,;veR,1<j<m,—1)z CNS(S).
We call T the trivial lattice for 7. For P € E(C(C)), (P) € NS(S) denotes the corresponding element.

Theorem 2.3. (T. Shioda [Shi] (see also [Sh2] Theorem (3-10))) (1) The Mordell-Weil group E(C(C))
is a finitely generated Abelian group.

(2) The Néron-Severi group NS(S) is a finitely generated Abelian group and torsion free.

(3) We have the isomorphism of groups E(C(C)) ~ NS(S)/T given by

P+~ (P) modT.
We set T' = (T ®z Q) N NS(S) for the trivial lattice T'.
Corollary 2.1. ([Shl], see also [Sh2] Proposition (3-11)) (1) We have

rank(FE(C(C))) = rank(NS(S)) — 2 — Z(mv —1).

vER

(2) We have
E(C(C))tor ~ T/T,

where E(C(C))tor is the torsion part of E(C(C)).



Set
E(C(C))" ={P € E(C(C))|[PNO, # ¢ for all ve R}.

We have
E(C(C))° € E(C(C))/E(C(C))1or (2:2)

(see [ShI], see also [Sh2] Section 5).
Let v € R. Under the notation (1), we set

(r (@)t = U CHes

OSjSmu_LHv,j:l
where 6%— =0, ; — {singular points of 7~ !(v)}. Set mit) = #10 <j<my —1, p; =1}

Theorem 2.4. ([Ne|, [Kod], see also [Sh2] Section 7) Let v € R. The set (' (v))* has a canonical group

structure.

Remark 2.2. Especially, for the singular fibre 7=1(v) of type I, (b > 1),
(77 (v))* ~ C* x (Z/VZ).
For the singular fibre 7= (v) of type I} (b > 0),

(1)) = {(C x (Z/AZ) (b€ 2Z+1),
T | Cx (z/)22)? (be27).

For each v € C, we introduce the map
spy 2 B(C(0)) = (7 *(v))*: P— PN t(v).
Note that

Pnat(v) = (z,0) € (%X) x {finite group}

(see [Sh2] Section 7). We call sp, the specialization map.

Theorem 2.5. ([Sh2] Section 7) For all v € C, the specialization map

X

spy : P (z,a) € (% ) x {finite group}
is a homomorphism of groups.
Remark 2.3. Especially for the singular fibre 7=1(v) of type I, (I}, resp.), the projection of sp,
E(C(C)) = (2/bZ) ((Z/AZ) or (Z/27)?, resp.)
is a homomorphism of groups.

22 FA

The elliptic fibration given by (4] is described in Figure 1.
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Figure 1.
The trivial lattice for this fibration is
Ty = (a1, a2, a3, a4, aly, a4y, ay, ay, c1, by, be,bs, ca, 3,0, F)y.
Let P be the section in (LH). PNag # ¢ at x1 =0 and PNey # ¢ at 21 = 0o. Set
L, =(P,Th)z. (2.3)

This is a subgroup of NS(S1(A, 11)). We have det(L1) = —9. According to Theorem [2.1] and Theorem 23]
(3), we obtain NS(S1(\, 1)) ®z Q = L1 ®z Q, and we obtain also

NS(S1(% 1)) = ((P)a N NS(S1 (A ) + T (2.4
for generic (A, u) € A1. We have
[NS(S1(A, ) : L1] =1 or [NS(S1(A\,p)): Li] = 3. (2.5)

In the following, we prove
[NS(Sl ()\,M)) : Ll] =1.

Lemma 2.1. For generic (A, n) € A1, we have T =T.

Proof. From (Z4) and (23) it is necessary that Ty = Ty or [T} : Ty] = 3. We assume [T} : T3] = 3. Then,
according to Corollary [Z1] (2),

E(C(x1))tor ~ Ty /Ty ~ 7./3L. (2.6)

Therefore there exists Sy € E(C(21))t0or such that 35Sy = O. By Remark 23 and (2.2]), we can assume
that Soﬁ&g 75 d) at r1 = 0 and SoﬁC() # gf) at 1 = oo. Put (S()O) =k eZ. Set T’l = <T1,S0>Z. By
calculating the intersection matrix, we have

det(T1) = =72(1 4 k + k?) # 0. (2.7)
On the other hand, due to (Z8), we have rank(7}) = 17 . So it follows det(7}) = 0. This contradicts
@) O

11



By the above lamma, we have
NS(S1 (0 1)) = ((P)g NNS(S1 (0 ) +Ti. (2.5)
Lemma 2.2. For generic (A, u) € A1, we have NS(S1(A\, 1)) = L.

Proof. Tt is sufficient to prove [NS(S1(A, p)) : L1] = 1. We assume [NS(S1(A, i) : L1] = 3. By ([2.8)) there
exists R € F(C(z1)) such that 3R = P. According to Remark 23]

(R-c3)=1, at 3 =00

and
(R-a1) =1,
or
(R-aq) =1, at 1 = 0.
or
(R-a7) =1,

We can assume (R-O) = 0, for P in ([LH) does not intersect O. By the addition theorem for elliptic
curves, we have 2P and we can check 2P does not intersect O. So, we assume (R - P) = 0 also. Set
Ly = (L1, R)z. By calculating the intersection matrix, we have

12 (if (R-a)
det(Ly) = { =30 (if (R-a4)=1)

On the other hand, we have rank(L;) = 18 from Theorem Il Hence, we obtain det(L;) = 0. This
contradicts (29). Therefore, we have [NS(S1(\, u)) : L1] = 1. O

1)

1), (2.9)
1).

Lemma 2.3. The lattice L1 is tsomorphic to the lattice given by the intersection matrix

Eg(—1)
Eg(-1)
0 3
3 0

)

and its orthogonal complement is given by the intersection matric
0 1
A = 10

w o
o W

12



Proof. We obtain the corresponding intersection matrix M; for the lattice Lq:

Let Uy be the unimodular matrix

We have
UL MU, = Es(—1)® Es(—1) @ (

Therefore we obtain Theorem for Fi.

23 K
The elliptic fibration given by (1) is described in Figure 2.
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The trivial lattice for this fibration is

Ty = (a1, a2, a3, a4, as, ay, ay, ay, ay, ay, c1, by, b1, c2, c3,0, F)z.
Let P be the section in ([8). Note P Nay # ¢ and PN ¢y # ¢. Set
Ly = (P, T5)s. (2.10)
This is a subgroup of NS(S2(A, 11)). We have det(Ly) = —9. As in the case F1, so we obtain
NS(S2(A, 1) = ((P)g NNS(S2(A, 1)) + T
for generic (A, u) € Ay. We have
[INS(S2(A, ) : Lo] =1 or [NS(S2(A, ) : La] = 3. (2.11)
In the following, we prove [NS(S2(A, 1)) : La] = 1.
Lemma 2.4. For generic (A, p) € A2, we have TQ =1T5.
Proof. By a direct calculation, we have det(T) = —44. From (ZII)), we have Th = Tb. O
Therefore we obtain
NS(S2(A 1)) = ((P)g NNS(S2(A 1)) + T (2.12)
Lemma 2.5. For generic (A, 1) € Ag, we have NS(S2(A, ) = Lo.

Proof. We assume [NS(S2(\, 1)) : Lo] = 3. From ([2I2) there exists R € E(C(y)) such that 3R = P.
According to Remark 2.3 we obtain (R-a4) = 1 and (R-¢3) = 1. Because the section P in (L8] and the
section 2P do not intersect O, we have (R-0) =0 and (R- P) = 0. Set Ly = (Lo, R)z. Calculating its

intersection matrix, we have det(Ls) = —38. As in the proof of Lemma 22 this contradicts to Theorem
21 O
Lemma 2.6. The lattice Lo is isomorphic to the lattice given by the following intersection matriz
Es(-1)
Es(-1)
0 3 |’
3 2

14



and its orthogonal complement is given by the intersection matrix

Ao

0 1
10

-2

Proof. We obtain the corresponding intersection matrix My for Lo:

Let Us be the unimodular matrix

We have

tUyMyUs = Es(—1) ® Es(—1) @ (

Therefore, we obtain Theorem for Fo.

2.4 F

The elliptic fibration given by (I.I0) is described in Figure 3.
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The trivial lattice for this fibration is
i li i i i
T3 - <(1,1, az, as, a4, g, Gy, a3, 09, a1, C1, bO; b17 b27 C2,C3, 07 F>Z

Let P be the section in (LII]). Set
Ly = (P, T3)z.

This is a subgroup of NS(S5(), 1)) and we have det(L5) = —36. Moreover, the section O" in (LI is a
2-torsion section for this elliptic fibretion. Due to Corollary 2.1] [Tg : Ts] is divided by 2. Hence, we have

[NS(S5(A, ) : Ls] =2 or [NS(S5(A, ) : Ls] = 6. (2.13)
Lemma 2.7. For generic (A, j1) € As, we have [T : T3] = 2.
Proof. We have det(Ts) = —40. From (2I3), we obtain [T3 : T3] = 2. O
Lemma 2.8. For generic (A, u) € Az, we have [NS(S3(A\, p)) : L] = 2.

Proof. We shall show that [NS(S3(\, i) : L] = 2. We assume [NS(S5(A, i) : L] = 6. From Lemma[2.7]
there exists R € E(C(z1)) such that 3R = P. According to Remark 23] it is necessary that (R-cz) =1
and (R-a4) = 1. Also we have (R-O) =0, for P in (ITI) does not intersect O. Moreover we can assume
that (R- P) = 0 or 1, for the section 2P does not intersect O at zy # co. Set L} = (Lj, R)z. Calculating
the intersection matrix, we have

~16  (if (R-P)=0)

—112 (if (R-P)=1)" (2.14)

det(L}) = {

On the other hand, Theorem 1] implies that rank(Ls) = 18 and det(Ls) = 0. This is a contradiction to
ZI19). O
Due to the above lemma, we have

|det(NS(S3(A, 1)) =9

for generic (A, 1) € As.
To determine the explicit lattice structure for F3 we use another elliptic fibration defined by (LI3]).
This fibration is described in Figure 4.
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Let Py and Qg be the sections in (II4) for this elliptic fibration.
Set
L3 = <d1,dg,dg,d4,dﬁl,dg,dl2,d/1,€1,€2,€3,€4,€§,el2,,PO,QO,O,F>Z. (215)

We have L3 ®z Q = NS(S3(\, 1)) ®z Q for generic (A, u) € Ag and det(L5) = —9. Therefore we have
Lz = NS(S5(A, 1))
for generic (A, ) € As.

Lemma 2.9. The lattice L3 s isomorphic to the lattice given by the intersection matriz

Eg(—1)
Eg(—1)

and its orthogonal complement is given by the intersection matrix
0 1
Ay = 10

w o
N W

17



Proof. We obtain the corresponding intersection matrix Mj for the lattice Ls:

-2 1
1 -2 1
1 -2 1
1 -2 1
1 -2 1
1 -2 1
1 -2 1
1 =2
-2 1
1 -2 1
1 -2 1
1 -2 0
0o -2 1
1 -2
0
1 1
1 1
Let Us be the unimodular matrix
1 28 5
1 56 10
1 84 15
27 5
21 1 4
15 1 3
10 1 2
5 1 1
1 34 6
1 68 12
1 102 18
1 51 9
-1 1
-1 1 0
1 0
1 85 15
-1 1 0
—16 -3

We have

0 3
"UsM3Us = Es(—1) @ Es(—1) © (3 _2> :

Therefore, we obtain Theorem for Fj.

3 Period differential equations

In this section, we determine the system of period differential equations and its projective monodromy

group for the family F; (5 = 1,2, 3).

468
936
1404
432
378
324
216
108
576
1152
1728
864
36
18
35
1440
54

—252

Set
Fi(z,y,2) =zyz(e+y+2z+1)+ e+ py, (A p) €A,
Fy(z,y,2) =ayz(e+y+z+1)+Av+p,  (Ap) €Ay,
Fs(z,y,2z) =zyz(x +y+ 2+ 1)+ Az +uzy, (A p) € As.
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The unique holomorphic 2-form on the K3 surface S;(A, u) € A; (j =1,2,3) is given by

dz N\ dx
wW; = ————
! OF; /oy

up to a constant factor.
First, we consider a period of S;(\, ) (7 =1,2,3).

Theorem 3.1. We can find a 2-cycle T'; (j = 1,2,3) so that we have the following power series expansion
of the period // wj which is valid in a sufficiently small neighborhood of (A, 1) = (0,0).
Ly
(1) (A period for F1) We have a period of S1(A, w):
) 3m + 3n)!
A ) = = (2mi)? ( A" ™, 3.1
i p) //plwl Cri)* Y G 2+t (3.1)

(2) (A period for Fa) We have a period of Sa(A, u):

v = | / w2 = (omi”

(3) (A period for F3) We have a period of S3(A, u):

o0

4m + 3n)!
2. (_1)n(m!)(2n!(;:n +)n)!)2An“m' (32)

n,m=0

9 > n@Bm+2n)
n3(A, 1) = //F% w3 = (2m) n,rnZ:O(_l) WA [ (3.3)

Proof. Let j € {1,2,3}. By the same argument in the proof of Theorem 3.1 of the article [Na], we can

choose a certain 2-cycle I'; on S;(A, u) so that the period integral // wj is given by a power series of
Ly
(A ). O

Remark 3.1. In the case Py, our period is reduced to the Appell Fy(see [Koil ):

1 2 1 2 12
)‘7 =F (_7_7171;27)‘727 ):F(_a_ul; )F(_u_ula; )7
mAp) = Faf3,3 1 33 be)F(33 15y
where F is the Gauss hypergeometric function and x(1 —y) = 27\, y(1 — z) = 27p.

Secondary, we apply the theory of the GKZ hypergeometric functions to obtain the system of differ-
ential equations whose solution is the period integral in Theorem 3.1. In the following, set

0 0
Oy = A, 0, = p—.
A 8)\, 14 /’Lau

Proposition 3.1. (1) (The GKZ system of equations for Fi) Set

Ly =M = (5.4
LY = \(30) + 36,)(30x + 36, — 1)(30x + 36, — 2). '
It holds
Lm0 i) = L m (A, i) = 0.
(2) (The GKZ system of equations for Fs) Set
L = AOZ + pb (30 + 46, + 1), (3.5)
LY = 05(0x +60,)2 + A(30x + 40, + 1)(30x + 40, + 2) (30 + 46,, + 3). '

It holds
L0\ ) = L 12\, ) = 0.
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(3) (The GKZ system of equations for Fs) Set

L =62 — (305 + 20, + 1)(30x + 20, + 2), (3.6)
LY =63 + A(30x + 20, + 1)(30x + 20,, + 2)(30x + 26, + 3). '
It holds
LPn3(\ ) = L n3(\, ) = 0.
Proof. Set
11 11 1 1 1111 1 1 11 11 1 1
0100 —1 0 0100 0 -1 0100 -1 0
A1_0010 0 —1’A2_0010—1—1’A3_0010—1 0|’
0001 -1 -1 0001 -1 —1 0001 0 -1
and
-1
0
B 0
0

Let j € {1,2,3}. From the matrix A; and the vector 3, we have the system of the GKZ system of
equations concerned with the period n; (A, 1) in Theorem 311 For detail, see the proof of Proposition 3.1
in [Na]. O

Each system in the above proposition has the 6-dimensional space of solutions. On the other hand,
Theorem [2.T] says that the rank of transcendental lattice for F; is 4. It implies that there are the system
of period differential equations for the family F; (j = 1,2, 3) with the 4-dimensional space of solutions.

Theorem 3.2. (1) (The period differential equation for Fy) Set

LYY =2 + uf(3605 + 46, + 1),
{Lg) = M5 (305 +20,,) + pOx(1 — 05) +9N2(305 + 46, + 1)(30, + 40, + 2). (3.7
It holds
L§1)m(%u) = Lgl)nl (A ) =0.
The space of solutions of the system Lgl)u = Lgl)u =0 is 4-dimensional.
(2) (The period differential equation for Fy) Set
LY = 202 + (305 + 46, + 1),
{Lg2> = M5 (305 +20,,) + pOx(1 — 05) +9N2(305 + 46, + 1)(30, + 40, + 2). (3:8)
It holds
L\ p) = L 12 (A, p) = 0.
The space of solutions of the system Lg2)u = Lg2)u =0 is 4-dimensional.
(3) (The period differential equation for Fs) Set
L =62 — (30 + 26, +1)(30x + 26,, + 2),
{Lg3> = 05(30x — 26,)) + IN(30 + 26, + 1)(30 + 26, + 2) + 405 (305 + 26, + 1). (3.9)

It holds
LPns(\ ) = L3 (A, ) = 0.

The space of solutions of the system Lgs)u = Lgs)u =0 is 4-dimensional.
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Proof. We determine these systems by the method of indeterminate coefficients. For detail, see the proof
of Theorem 3.2 in [Nal.

In the following we prove that those spaces of solutions is 4-dimensional.

(1) Set p = (1,0,,0,,0%). We obtain the corresponding Pfaffian system Q; = A;d\ + Bidu with
de = Q¢ by the following way. Setting

ty = T29\% — 5AN(27p — 1) + (1 + 27p)3,

we have
0 1 0 0
A, — 0 0 0 1
! -1/9  —1/2 —1/2  —(1+27A+27u)/(54)) |’
ai/ty aia/(2t1) as3/(2t1) az/(2t1)
with
a1 = 3)\(1 — 27\ + 27#),
a1s = 3A(5 — 351\ + 135p),
a1y = 27TA(1 — 3\ + 27),
ars = 3(=T2072 + (1 + 27)2),
and
0 0 1 0
B — -1/9 -1/2 -1/2 —(1 427X+ 27u)/(54N)
! 0 0 0 /A ’
bin/ti bia/(2t1) biz/(2t1) bia/(2t1)
with

by = 3A(1 + 27\ — 27p),

bia = 27TA(1 + 27X — 3p),

bz = 3A(5 + 1351 — 351p),

bra = (14 27A)2 4 108(27A — 1) — 36452,

We have d2; = Q1 A Q. Therefore the system Lgl)u = Lgl)u = 0 has the 4-dimensional space of
solutions.

(2) Set p = (1,0,,0,,0%). We obtain the corresponding Pfaffian system Qo = Asd\ + Badp with
dp = Qap as the following way. Setting

to = A2(1 +270)2 — 22u(1 + 189A) + (1 + 576\)u? — 2563,
5o =14 108\ — 288,

we have
0 1 0 0
Ay = 0 0 0 1
aii/s2  aiz/(2As2)  aiz/(s2)  aia/(2Xs2) |’
az1/(t2s2) aga/(t2s2) ag3/(t2sz) aos/(t2sz)
with
ain = =9,
ajp = —(81A2 + Hm— 144/\,u),
a3 = —54A,

arq = —3\(1 + 27\ — 144p) + p,

agr = —6A3(1 + 145802 — 2592\ 11 + 6(—55 + 460811)),

ags = —3A2(11 + 54A(5 + 351N)) + A(1 + 4X(61 + 810A(5 + 7T2))))pu + 64(17 + 2808\ ) 3
—147456u% — 2(1 + 9N(53 + 32X(131 + 864\)))u?,

ass = —8X3((2 — 27A\)? + 9(—133 + 2160\ u + 8294442),

azy = 3rasy + 162Xy — 3As2 (A + 81A% + 1458X3 — 378\p + pu(—1 + 288p)),
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and
0 0 1 0

b11/82 blg/(2)\82) b13/82 b14/(2)\82)

Bz = b21/(82) b22/()\282) b23/52 b24/()\252) ’
bs1/(t2s2) ba2/(2Mt2s2) bss/(t2s2)  bsa/(2Mt2s2)
with
b1 = —9A,
bio = —(S1A2 + p — 144\p),
bis = —54),
bua = —3A(L + 27X — 144p) + p,
bo1 = 36,
baz = p(A(=1 + 54X) + 2p),
beg = 2164,

bag = (3(1 = BANA = 2p)p,
bg1 = 3A(BIA3(1 + 27A) + A(—1 + 36X) (=5 + 108A)p + 3(—1 + 32X) (1 + 432X)p? + 7683,
bao = 2187TA°(1 + 27X) — (1 + 192X\(11 + 1164X)) > + 256(1 + 864\ u?
=224 27TA(4 + IA(TT + 864N)) )i + A(5 + A(1279 + 864A(85 + 864\)))p?,
baz = 2A(3A2(1 + 27A) (=1 + 135X) + 2A(23 + 54A(—11 4 972)\))p
+9(—3 + 64N) (1 + 432\)u? + 691273,
bgq = —(—8IAH(1 4 27N\)? 4+ N2(=7 + 9N(—58 4 27TA(—125 + 3456))))p
+A(8 + 9A(425 + 24192)))p% — (1 + 3456\ (1 + 162X)) % + 256(1 + 1440 ) ™.

We see da = Q5 A Q5. Therefore the system Liu = Lsu = 0 has the 4-dimensional solution space.
(3) Set ¢ ="' (1,05,6,,60%). We obtain the corresponding Pfaffian system Q3 = Azd\ + Bsdu with
de = Q3¢ as the following way. Setting

ts = T2002 — (4 — 1) + 54A(1 + 12p0),
83 = =54\ + (1 —4pu)?,

we have
0 1 0 0
e 0 0 0 1
3 ai1/ss3 ai12/(2s3) ai3/s3 aia/(2s3) |’
az1/(t3ss) ao2/(tsss) ags/(t3ss) aoga/(t3ss)
with
al] = 9/\7
aiz = 81N+ 4(1 — 4p)p,
a3 = 27A,

a14 = 3+ 81\ — 48[142,

ag = —2X(—2187A% + 27\ (4p — 9)(4p — 1) — (=1 4+ 4p)>(3 + 8p)),

agy = 3A(947TA? + (1 — 4p)? (=11 + 4p(—9 + 16p)) — 27A(25 + 4u(—31 + 40u))),
azz = 2X(7290% 4+ (=1 + 4p)3(11 + 16p) + 27A(—1 + 4)(19 4 20p)),

agq = 81IA(—=2 + 27X\ + 8u) (1 + 27X\ — 1642,

and
0 0 1 0
B — bi1/s3 bi2/(2s3) bi3/s3 bi4/(2s3)
3 b21/53 b22/83 b23/53 b24/83 ’

ba1/(tss3) bsa/(2tzss) bas/(t3s3) bsa/(2tzs3)
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with

bi1 =9A,
bis = 27\,

by = 3+ 81\ — 482,

bo1 = —2u(—1+4u),

by = —3u(=3 +4p),

bag = —6p(—1+4p),

bag = 9u(3 + 4p),

b31 = —3A(2187A2 +32(1 — 4p)2u(1 + p) + 27TA(3 + 161(2 + p)))

baz = —9A(6561A2 — 81IA(—3 + 4u) (1 + 8u) + 4p(—1 + 4p) (=33 + 4p(—3 + 16p))),
bss = —3A(3645)07 + 2(1 — 4p)%(1 + 16(3 + 2p)) + 27A(7 + 16u(5 + 9u))),

by = —1383 + 1r3(—8 + 351\ + 32u) + s3(9(729A% + (1 — 4u)? + 54A(1 + 8u)).

We have d23 = Q3AQ3. So the system ng)u = Lég)u = 0 has the 4-dimensional space of solutions. [

Remark 3.2. From the Puffian systems in the above proof, we obtain the singular locus of the system

B2
A=0, p=0, 729\ —54\27u— 1)+ (1+27u)* =0,

the singular locus of the system [B.3)):
A=0, p=0, MN(1+270)? =2 \u(1+189)) + (1 + 576)\)u* — 2561° = 0,
and the singular locus of the system ([B.9):
A=0, pu=0, 729\ — (4 —1)> +54\(1 + 12p) = 0.
Omitting these locus from C* we have the domain A; (j =1,2,3) in (L6), (C3) and [CI12).

Finally, we determine the projective monodromy groups.

Let j € {1,2,3}. For generic (A, 1) € A;, we can take a basis {vs,- -, 722} of NS(S;(A, ) such that
the intersection matrix (v - Vi)s<k,i<22 is equal to the matrix in Theorem 2:2] This basis is extended to a
basis {71, 74,75, , Y22} of Ha(S; (A, 1)) Let {77, -+, 735} be its dual basis (namely (vx-7;) = 0k,1)-
By Theorem 22 we have (7§ - v) = A;.

Using this basis {71, ,722}, we define the local period map as in the beginning of Section 2.
Moreover, we define the multivalued period map

‘I)j : Aj — ]P)g((C)

by the analytic continuation of the local period map along any arc in A;.
Set
D; = {¢ € P*(C)|€A;'€ = 0,64;%¢ > 0}

By the Riemann-Hodge relation, we have ®;(A;) C D;.

The fundamental group 71 (A;, *) acts on ®;(A;) by the analytic continuation of the local period map.
This action induces a group of projective linear transformations which is a subgroup of PGL(4,7Z). We
call it the projective monodromy group of the multivalued period map @;.

Note that D; is composed of two connected components: D; = D;-r UD;. Set PO(A;,Z) = {g €
GL(4,7)|gA;tg = A;}. Tt acts on D; by ¢ — ¢'¢ (£ € Dj,g € PO(A;,Z)). Let POT(A;,Z) be the
subgroup of PO(A;,Z) given by {g € PO(Aj,Z)|g(D;f) = Dj}
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Theorem 3.3. Let j € {1,2,3}. The projective monodromy group of the period differential equation for
the family F; is equal to POT(A;,Z).

Proof. Because the projective monodromy group G of the multivalued period map ®; is equal to that of
the period differential equation for F;, we determine G;. It is obvious G; C PO (A;,Z). However, we
need a delicate observation to prove the converse PO*(A;,Z) C G;. For precise argument, see Section 4
in [Na]. O
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