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Period differential equations for families of K3 surfaces derived

from 3 dimensional reflexive polytopes with 5 vertices

Atsuhira Nagano

December 2, 2010

Abstract

In this article we study the families of K3 surfaces derived from 3 dimensional 5 verticed re-

flexive polytopes with at most terminal singularity. We determine the lattice structures, the period

differential equations and the projective monodromy groups for these families.

Introduction

A K3 surface S is characterized by the condition KS = 0 and simply connectedness. It means that S is

a 2-dimensional Calabi-Yau manifold. V. V. Batyrev [Ba] introduced the notion of the reflexive polytope

for the study of Calabi-Yau manifolds.

In this article we use the 3-dimensional reflexive polytopes with at most terminal singularities. Such

a polytope P is defined by the intersection of several half spaces

ajx+ bjy + cjz ≤ 1, (aj , bj, cj) ∈ Z3 (j = 1, · · · , s)

in R3 with the conditions

(i) every vertex is a lattice point,

(ii) the origin is the unique inner lattice point,

(iii) only the vertices are the lattice points on the boundary.

Moreover, if a reflexive polytope satisfies the condition

(iv) every face is triangle and its 3 vertices generate the lattice,

it is called a Fano polytope.

All 3-dimensional 5-verticed reflexive polytopes with at most terminal singularity are listed up (see

[KS] or [O]):

P1 =





1 0 0 −1 0
0 1 0 0 −1
0 0 1 −1 −1



 , P2 =





1 0 0 0 −1
0 1 0 −1 −1
0 0 1 −1 −1



 , P3 =





1 0 0 −1 0
0 1 0 −1 0
0 0 1 0 −1



 ,

P4 =





1 0 0 0 −1
0 1 0 0 −1
0 0 1 −1 −1



 , P5 =





1 0 0 0 −1
0 1 0 0 −1
0 0 1 −1 −2



 .

Among them, P2, P3, P4 and P5 are Fano polytopes.

We can find a family of K3 surfaces for each polytope by a natural method. In this article we study

the polytopes P1, P2 and P3. Namely, we determine the lattice structure, the period differential equation

and the projective monodromy group for each of them.
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T. Ishige [I] has made a detailed research on the family of K3 surfaces coming from the polytope P4.

Especially he noticed characterization of the corresponding monodromy group by a numerical approach.

Inspired by Ishige’s discovery, we have studied families ofK3 surfaces derived from the other polytopes

P1, P2, P3 and P5. We have made an intensive study on the polytope P5 in our previous article [Na].

There, we have studied the period map for a family, saying F = {S(λ, µ)}, of K3 surfaces, where

S(λ, µ) : xyz2(x+ y + z + 1) + λxyz + µ.

Namely, we have determined the lattice structure of a generic member of the family F , the period

differential equation and the projective monodromy group using the Torelli type theorem for polarized

K3 surfaces and the lattice theory. Furthermore, we have shown that our differential equation coincides

with the uniformizing differential equation of the Hilbert modular orbifold for Q(
√
5) studied by Sasaki-

Yoshida [SY] and T. Sato [Sa].

Here, we study the remaining cases P1, P2 and P3. Namely we investigate corresponding families

Fj (j = 1, 2, 3) of K3 surfaces.

In Section 1, we show explicit defining equations for the families Fj = {Sj(λ, µ)} (j = 1, 2, 3) (see

(1.1), (1.2) and (1.3)) and we introduce elliptic fibrations for these families. The singular fibres of each

elliptic fibration are described in Table 1.

In Section 2, we determine the lattice structure for a generic member of each family Fj (j = 1, 2, 3).

Namely, we obtain the Néron-Severi lattice NS(Sj(λ, µ)) (j = 1, 2, 3) as in Table 2. Note that in the case

P5 we could determine NS(S(λ, µ)) for S(λ, µ) ∈ F by a naive method (see [Na]). In this article we need

more advanced theory of the Mordell-Weil lattice due to T. Shioda [Sh1].

For 95 weighted projective K3 surfaces, there is a result of S. M. Belcastro [Be]. And for K3 surfaces

with non-symplectic involution, there is a result of V. V. Nikulin [Ni]. Our case is not contained in these

results. Furthermore, we note that the result of K. Koike [Koi] and our result in this article support the

mirror symmetry conjecture (see Remark 2.1).

In Section 3, we determine the period differential equations (Theorem 3.2). Furthermore, we obtain

their monodromy groups (Theorem 3.3).

1 Families of K3 surfaces and elliptic fibrations

We obtain a family of algebraic surfaces by the following canonical procedure from Pj (j = 1, 2, 3):

(i) Make a toric 3-fold Xj from the reflexive polytope Pj . This is a rational variety.

(ii) Take a divisor D on Xj that is linearly equivalent to −KXj
.

(iii) Generically D is represented by a K3 surface.

We obtain the corresponding families of K3 surfaces Fj = {Sj(λ, µ)} for Pj (j = 1, 2, 3) given by

S1(λ, µ) : xyz(x+ y + z + 1) + λx + µy = 0, (1.1)

S2(λ, µ) : xyz(x+ y + z + 1) + λx + µ = 0, (1.2)

S3(λ, µ) : xyz(x+ y + z + 1) + λz + µxy = 0. (1.3)

We can find an elliptic fibration for every surface of our family Fj (j = 1, 2, 3). Moreover we can

describe these surfaces in the form

y2 = x3 − g2(z)x3 − g3(z),

where g2 (g3, resp.) is a polynomial of z with 5 ≤ deg(g2) ≤ 8 (7 ≤ deg(g3) ≤ 12, resp.). In this paper we

call it the Kodaira normal form. From the Kodaira normal form we can obtain singular fibres of elliptic

fibration. Corresponding singular fibres of our elliptic fibration of Fj (j = 1, 2, 3) are shown in Table 1.
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Family F1 F2 F3

Singular Fibres I9 + I∗3 + 6I1 I∗1 + I11 + 6I1 I9 + I9 + 6I1

Table 1.

1.1 F1

Proposition 1.1. (1) The surface S1(λ, µ) is birationally equivalent to the surface defined by the equation

z21 = y31 + (µ2 + 2µx1 + x2
1 − 4x3

1)y
2
1 + (−8λµx3

1 − 8λx4
1)y1 + 16λ2x6

1. (1.4)

This equation gives an elliptic fibration of S1(λ, µ).

(2) The elliptic surface given by (1.4) has the holomorphic section

P : x1 7→ (x1, y1, z1) = (x1, 0, 4λx
3
1). (1.5)

Proof. (1) By the birational transformation

x = − 2x2
1y1

−4λx3
1 + µy1 + x1y1 + z1

, y =
y21

2x1(−4λx3
1 + µy1 + x1y1 + z1)

, z = −−4λx3
1 + µy1 + x1y1 + z1

2x1y1
,

(1.1) is transformed to (1.4).

(2) This is apparent.

(1.4) gives an elliptic fibration for the surface S1(λ, µ). Set

Λ1 = {(λ, µ) ∈ C2|λµ(729λ2 − 54λ(27µ− 1) + (1 + 27µ)2 6= 0)}. (1.6)

Proposition 1.2. Suppose (λ, µ) ∈ Λ1. The elliptic surface given by (1.4) has the singular fibres of type

I9 over x1 = 0, of type I∗3 over x1 = ∞, and other six fibres of type I1.

Proof. (1.4) is described in the Kodaira normal form

z21 = y32 − g2(x1)y2 − g3(x1), x1 6= ∞,

with


















































g2(x1) = −
(

− µ

3
− 4µ3x1

3
− 2µ2x2

1 −
4µx3

1

3
− 8λµx3

1 +
x4
1

3
− 8λx4

1 +
16µx4

1

3
+

8x5
1

3
− 16x6

1

3

)

,

g3(x1) = −
(2µ6

27
+

4µ5x1

9
+

10µ4x2
1

9
+

40µ3x3
1

9
+

8λµ3x3
1

3
− 8µ4x3

1

9
+

10µ2x4
1

9

+8λµ2x4
1 −

32µ3x4
1

9
+

4µx5
1

9
+ 8λµx5

1 −
16µ2x5

1

3
+

2x6
1

27
+

8λx6
1

3
+ 16λ2x6

1 −
32µx6

1

9

−32λµx6
1

3
+

32µ2x6
1

9
− 8x7

1

9
− 32λx7

1

3
+

64µx7
1

9
+

32x8
1

9
− 128x9

1

27

)

,

and

z22 = y33 − h2(x2)y3 − h3(x2), x2 6= ∞,

with






















































h2(x2) = −
(

− 16x2
2

3
+

8x3
2

3
− x4

2

3
− 8λx4

2 +
16µx4

2

3
− 4µx5

2

3
− 8λµx5

2 +
8µ2x5

2

3
− 2µ2x6

2 −
4µ3x7

2

3
− µ4

3

)

,

h3(x2) = −
(

− 128x3
2

27
+

32x4
2

9
− 8x5

2

9
− 32λx5

2

3
+

64µx5
2

9
+

2x6
2

27
+

8λx6
2

3
+ 16λ2x6

2 −
32µx6

2

9

−32λµx6
2

3
+

32µ2x6
2

9
+

4µx7
2

9
+ 8λµx7

2 −
16µ2x7

2

3
+

10µ2x8
2

9
+ 8λµ2x8

2 −
32µ4x8

2

9

+
40µ5x11

2

27
+

8λµ3x9
2

3
− 8µ4x9

2

9
+

10µ4x10
2

9
+

4µ5x11
2

9
+

2µ6x12
2

27

)

,
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where x1 = 1/x2. We have the discriminant of the right hand side for y1(y2, resp.):


















D0 = 256λ2x9
1(λµ

3 − µ4 + 3λµ2x1 − 4µ3x1 + 3λµx2
1 − 6µ2x2

1 + λx3
1 + 27λ2x3

1

−4µx3
1 − 36λµx3

1 + 8µ2x3
1 − x4

1 − 36λx4
1 + 16µx4

1 + 8x5
1 − 16x6

1),

D∞ = 256λ2x9
2(−16 + 8x2 − x2

2 − 36λx2
2 + 16µx2

2 + λx3
2 + 27λ2x3

2 − 4µx3
2 − 36λµx3

2

8µ2x3
2 + 3λµx4

2 − 6µ2x4
2 + 3λµ2x5

2 − 4µ3x5
2 + λµ3x6

2 − µ4x6
2).

From these deta, we obtain the required statement (see [Kod]).

1.2 F2

Proposition 1.3. (1) The surface S2(λ, µ) is birationally equivalent to the surface defined by the equation

z21 = x3
1 + (−4λy + y2 + 2y3 + y4)x2

1 + (−8µy3 − 8µy4)x1 + 16µ2y4. (1.7)

This equation gives an elliptic fibration of S2(λ, µ).

(2) The elliptic surface given by (1.7) has the holomorphic section

P : y 7→ (x1, y, z1) = (0, y, 4µy2) (1.8)

Proof. (1) By the birational transformation

x =
x2
1

2y(x1y − 4µy2 + x1y + z1)
, z = −x1y − 4µy2 + x1y + z1

2x1y
,

(1.2) is transformed to (1.7).

(2) This is apparent.

(1.7) gives an elliptic fibration for S2(λ, µ). Set

Λ2 = {(λ, µ) ∈ C2|λµ(λ2(1 + 27λ)2 − 2λµ(1 + 189λ) + (1 + 576λ)µ2 − 256µ3) 6= 0}. (1.9)

Proposition 1.4. Suppose (λ, µ) ∈ Λ2. The elliptic surface given by (1.7) has the singular fibres of type

I∗1 over y = 0, of type I11 over y = ∞, and other six fibres of type I1.

Proof. (1.7) is described in the Kodaira normal form

z21 = x3
2 − g2(y)x2 − g3(y), y 6= ∞,

with






























g2(y) = −
(

− 16λ2y2

3
+

8λy3

3
− 8µy3 − y4

3
+

16λy4

3
− 8µy4 − 4y5

3
+

8λy5

3
− 2y6 − 4y7

3
− y8

3

)

,

g3(y) = −
(

− 128λ3y3

27
+

32λ2y4

9
− 32λµy4

3
+ 16µ2y4 − 8λy5

9
+

64λ2y5

9
+

8µy5

3
− 32λµy5

3
+

2y6

27
− 32λ2y6

9

+8µy6 +
4y7

9
− 16λy7

3
+ 8µy7 +

10y8

9
− 32λy8

9
+

8µy8

3
+

40y9

27
− 8λy9

9
+

10y10

9
+

4y11

9
+

2y12

27

)

,

and

z22 = x3
3 − h2(y1)x3 − h3(y1), y1 6= ∞,

with






















































h2(y1) = −
(

− 1

3
− 4y1

3
− 2y21 −

4y21
3

+
8λy31
3

− y41
3

+
116λy41

3
− 8µy41 +

8λy51
3

− 8µy51 −
16λ2y61

3

)

,

h3(y1) = −
( 2

27
+

4y1
9

+
10y21
9

+
40y31
27

− 8λy31
9

+
10y41
9

− 32λy41
9

+
8µy41
3

+
4y51
9

− 16λy51
3

+ 8µy51

+
2y61
27

− 32λy61
9

+
32λ2y61

9
+ 8µy61 −

8λy71
9

+
64λ2y71

9
+

8µy91
3

−32λµy71
3

+
32λ2y81

9
− 32λµy81

3
+ 16µ2y81 −

128λ3y91
27

)

,
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where y = 1/y1. We have the discriminant of the right hand side for x2(x3, resp.):



















D0 = −256µ2y7(16λ3 − 8λ2y + 36λµy − 27µ2y + λy2 − 16λ2y2 − µy2 + 36λµy2 + 4λy3

−8λ2y3 − 3µy3 + 6λy4 − 3µy4 + 4λy5 − µy5 + λy6),

D∞ = −256µ2y111 (λ + 4λy1 − µy1 + 6λy21 − 3µy21 + 4λy31 − 8λ2y31 − 3µy31 + λy41 − 16λ2y41
−µy41 + 36λµy41 − 8λ2y51 + 36λµy51 − 27µ2y51 + 16λ3y61).

From these data, we obtain the required statement.

1.3 F3

Proposition 1.5. (1) The surface S3(λ, µ) is birationally equivalent to the surface defined by the equation

y21 = z31 + (λ2 + 2λx1 + x2
1 − 4µx2

1 − 4x3
1)z

2
1 + 16µx5

1. (1.10)

This equation gives an elliptic fibration of S3(λ, µ).

(2) The elliptic surface given by (1.10) has the holomorphic sections
{

P : z1 7→ (x1, y1, z1) = (x1, 4µx
2
1(x1 + λ), 4x2

1µ,

O′ : z1 7→ (x1, y1, z1) = (x1, 0, 0).
(1.11)

The section O′ satisfies 2O′ = O.

Proof. (1) By the birational transformation

x =
2x2

1(4µx
2
1 − z1)

y1 + λz1 + x1z2
, y =

y1 + λz1 + x1z1
2x1(4µx2

1 − z1)
, z = − z1(4µx

2
1 − z1)

2x1(y1 + λz1 + x1z1)
,

(1.3) is transformed to (1.10).

(2) This is apparent.

(1.10) gives an elliptic fibration for S3(λ, µ). Set

Λ3 = {(λ, µ) ∈ C2|λµ(729λ2 − (4µ− 1)3 + 54λ(1 + 12µ)) 6= 0}. (1.12)

Proposition 1.6. Suppose (λ, µ) ∈ Λ3. The elliptic surface given by (1.10) has the singular fibres of

type I10 over z = 0, of type I∗2 over z = ∞, and other six fibres of type I1.

Proof. (1.10) is described in the Kodaira normal form

y21 = z32 − g2(x1)z2 − g3(x1), x1 6= ∞,

with










































































g2(x1) = −
(

− λ4

3
− 4λ3x1

3
− 2λ2x2

1 +
8λ2µx2

1

3
− 4λx3

1

3
+

8λ2x3
1

3
+

16λµx3
1

3

−x4
1

3
+

16λx4
1

3
+

8µx4
1

3
− 16µ2x4

1

3
+

8x5
1

3
+

16µx5
1

3
− 16x6

1

3

)

,

g3(x1) = −
(2λ6

27
+

4λ5x1

9
+

10λ4x2
1

9
− 8λ4µx2

1

9
+

40λ3x3
1

27
− 8λ4x3

1

9
− 32λ3µx3

1

9
+

10λ2x4
1

9
− 32λ3x4

1

9

−16λ2x4
1

3
+

32λ2µ2x4
1

9
+

4λx5
1

9
− 16λ2x5

1

3
− 32λµx5

1

9
+

16λ2µx5
1

9
+

64λµx5
1

9
+

2x6
1

27
− 32λx6

1

9
+

32λ2x6
1

9

−8µx6
1

9
+

32λµx6
1

9
+

32µ2x6
1

9
− 128µ3x6

1

27
− 8x7

1

9
+

64λx7
1

9
+

16µx7
1

9
+

64µ2x7
1

9
+

32x8
1

9
+

64µx8
1

9
− 128x9

1

27

)

,

and

y22 = z33 − h2(x2)z3 − h3(x2), x2 6= ∞,
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with










































































h2(x2) = −
(

− 16x2
2

3
+

8x3
2

3
+

16µx3
2

3
− x4

2

3
+

16λx4
2

3
+

8µx4
2

3
− 16µ2x4

2

3
− 4λx5

2

3

+
8λ2x5

2

3
+

λµx5
2

3
− 2λ2x6

2 +
8λ2µx6

2

3
− 4λ3x7

2

3
− λ4x8

2

3
,
)

,

h3(x2) = −
(

− 128x3
2

27
+

32x4
2

9
+

64µx4
2

9
− 8x5

2

9
+

64λx5
2

9
+

2x6
2

27
− 32λx6

2

9
+

32λ2x6
2

9
− 8µx6

2

9

+
32λµx6

2

9
+

32µ2x6
2

9
− 128µ3x6

2

27
+

4λx7
2

9
− 16λ2x7

2

3
− 32λ3x8

2

9
− 16λ2µx8

2

9
− 32λ2µ2x8

2

9

+
40λ3x9

2

27
− 8λ4x9

2

9
− 32λ3µx9

2

9
+

10λ4x10
2

9
− 8λ4µx10

2

9
+

4λ5x11
2

9
+

2λ6x12
2

9

)

,

where x1 = 1/x2. We have the discriminant of the right hand side for z2 (z3 resp):


















D0 = −256µ3x10
1 (λ4 + 4λ3x1 + 6λ2x2

1 − 8λ2µx2
1 + 4λx3

1 − 8λ2x3
1 − 16λµx3

1

+x4
1 − 16λx4

1 − 8µx4
1 + 16µ2x4

1 − 8x5
1 − 32µx5

1 + 16x6
1),

D∞ = −256µ2x8
2(16− 8x2 − 32µx2 + x2

2 − 16λx2
2 − 8µx2

2 + 16µ2x2
2

+4λx3
2 − 8λ2x3

2 − 16λµx3
2 + 6λ2x4

2 − 8λ2µx4
2 + 4λ3x5

2 + λ4x6
2).

From these data, we obtain the required statement.

We need another elliptic fibration.

Proposition 1.7. (1) The surface S3(λ, µ) is birationally equivalent to the surface defined by the equation

y′21 = x′3
1 + (µ2 + 2µz + z2 + 2µz2 + 2z3 + z4)x′2

1 + (−8λµz3 − 8λz4 − 8λz5)x′
1 + 16λ2z6. (1.13)

This equation gives an elliptic fibration of S3(λ, µ).

(2) The elliptic surface given by (1.13) has the holomorphic sections
{

P : z 7→ (x′
1, y

′
1, z) = (0, 4λz3, z),

Q : z 7→ (x′
1, y

′
1, z) = (0,−4λz3, z).

(1.14)

Proof. (1) By the birational transformation

x = −4λz2

x′
1

, y =
−µx′

1 − y′1 − x′
1z − x′

1z
2 + 4λz3

2x′
1z

,

(1.3) is transformed to (1.13).

(2) This is apparent.

Proposition 1.8. Suppose (λ, µ) ∈ Λ3. The elliptic surface given by (1.13) has the singular fibres of

type I9 over z = 0, of type I9 over z = ∞, and other six fibres of type I1.

Proof. (1.13) is described in the Kodaira normal form

y′
2
1 = x′3

2 − g2(z)x
′
2 − g3(z), z 6= ∞,

with






































































g2(z) = −
(

− µ4

3
− 4µ3z

3
− 2µ2z2 − 4µ3z2

3
− 4µ3z3

3
− 8λµz3 − 4µ2z3 − µ4

3
− 8λz4

−4µz4 − 2µ2z4 − 4z5

3
− 8λz5 − 4µz5 − 2z6 − 4µz6

3
− 4z7

3
− z8

3

)

,

g3(z) = −
(2µ6

27
+

4µ5z

9
+

10µ4z2

9
+

4µ5z2

9
+

40µ3z3

27
+

8λµ3z3

3
+

20µ4z3

9
+

10µ2z4

9
+ 8λµ2z4 +

40µ3z4

9

+
10µ4z4

9
+

4µz5

9
+ 8λµz5 +

40µ2z5

9
+ 8λµ2z5 +

40µ3z5

9
+

2z6

27
+

8λz6

3
+ 16λ2z6 +

20µz6

9
+ 16λµz6

+
20µ2z6

3
+

40µ3z6

27
+

4z7

9
+ 8λz7 +

40µz8

9
+

10µ2z8

9
+

40z9

27
+

8λz9

3
+

20µz9

9
+

10z10

9
+

4z11

9
+

2z12

27

)

,
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and

y′
2
2 = x′3

3 − h2(z1)x
′
3 − h3(z1), z1 6= ∞,

with






































































h2(z1) = −
(

− µ4

3
− 4µ3z

3
− 2µ2z2 − 4µ3z2

3
− 4µ3z3

3
− 8λµz3 − 4µ2z3 − µ4

3
− 8λz4

−4µz41 − 2µ2z21 −
4µz51
3

− 8λµz51 − 4µ2z51 − 2µ2z61 −
4µ3z61
3

− 4µ3z71
3

− µ4z81
3

)

,

h3(z1) = −
( 2

27
+

4z1
9

+
10z21
9

+
4µz21
9

+
40z31
27

+
8λz31
3

+
20µz31

9
+

10z41
9

+ 8λz41 +
40µz41

9
+

10µ2z41
9

+
4z51
9

+ 8λz51 +
40µz51

9
+ 8λµz51 +

40µ2z51
9

+
2z61
27

+
4µz71
9

+ 8λµ2z71 +
40µ3z71

9
+

10µ2z81
9

+8λµ2z81 +
40µ3z81

9
+

40µ3z91
27

+
8λµ3z91

3
+

20µ4z91
9

+
10µ4z101

9
+

4µ5z101
9

+
4µ5z111

9
+

2µ6z121
27

)

,

where z = 1/z1 We have the discriminant of the right hand side for x′
2(x

′
3, resp.):

{

D0 = 256λ3z9(µ3 + 3µ2z + 3µz2 + 3µ2z2 + z3 + 27λz3 + 6µz3 + 3z4 + 3µz4 + 3z5 + z6),

D∞ = 256λ3z91(1 + 3z1 + 3z21 + 3µz21 + z31 + 27λz31 + 6µz31 + 3µz41 + 3µ2z41 + 3µ2z51 + µ3z61).

From these data, we obtain the required statement.

2 Lattices for Fj

In this section, we determine the lattice structure of a generic member of Fj (j = 1, 2, 3).

For a general K3 surface S, H2(S,Z) is a free Z-module of rank 22. The intersection form of H2(S,Z)

is given by

E8(−1)⊕ E8(−1)⊕ U ⊕ U ⊕ U,

where

E8(−1) =

























−2 1
1 −2 1

1 −2 1
1 −2 1

1 −2 1 1
1 −2 0
1 0 −2 1

1 −2

























,

U =

(

0 1
1 0

)

.

Let NS(S) denote the sublattice in H2(S,Z) generated by the divisors on S. It is called the Néron-Severi

lattice. The rank of H2(S,Z) is called the Picard number. We call the orthogonal complement of NS(S)

in H2(S,Z) the transcendental lattice. We note that the Picard number is equal to dimQ(NS(S)⊗Z Q).

Theorem 2.1. Let j ∈ {1, 2, 3}. The Picard number of a generic member of the family Fj is equal to

18.

As a principle, we obtain the above theorem by the method exposed in the section 2 of the article [Na].

Because we shall have the lattice L1 (L2, L3, resp.) in (2.3) ((2.10),(2.15), resp.) for F1 (F2,F3, resp.),

we have rank(NS(Sj(λ, µ))) ≥ 18. Let j ∈ {1, 2, 3}. Take (λ0, µ0) ∈ Λj . Take a small neighborhood δ of

(λ0, µ0) in Λj so that we have a local trivialization

τ : {Sj(λ, µ)|(λ, µ) ∈ δ} → Sj(λ0, µ0)× δ.
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We note that τ may preserves the lattice Lj . Let ωj(λ, µ) be the unique holomorphic 2-form on the K3

surface Sj(λ, µ) up to a constant factor. By using the pairing

〈·, ·〉 : H2(Sj(λ0, µ0),C)×H2(Sj(λ0, µ0)) → C,

we define a period Φ(λ0, µ0) ∈ P21(C) of Sj(λ0, µ0) given by 〈ωj(λ0, µ0), γk〉 (k = 1, · · · , 22) for a fixed

basis {γ1 · · · , γ22} of H2(Sj(λ0, µ0),Z). We have a natural extension Φ(λ, µ) for (λ, µ) ∈ δ by using

〈ω(λ, µ), τ−1
∗ (γk)〉 (k = 1, · · · , 22). Then we can define a local period map

Φδ : δ → P21(C).

It is sufficient to have that Φδ is injective on δ to prove rank(NS(Sj(λ, µ))) = 18 for generic (λ, µ) ∈ Λj.

In this situation, we have dim(Φδ(δ)) = 2. It implies rank(NS(Sj(λ, µ))
⊥) = 4 for generic (λ, µ) ∈ Λj.

But, to assure this assertion, we need a delicate observation exposed in the argument to obtain Theorem

2.2 in [Na].

We have the following fact for the elliptic fibration of Sj(λ, µ) stated in Section 1 by the same argument

to prove Lemma 1.1 in [Na].

Fact 2.1. Let j ∈ {1, 2, 3} and (λ1, µ1), (λ2, µ2) ∈ Λj. Two elliptic surfaces (Sj(λ1, π1,P
1(C))) and

(Sj(λ2, π2,P
1(C))) are isomorphic as elliptic surfaces if and only if (λ1, µ1) = (λ2, µ2).

Also, we have the following fact.

Fact 2.2. ([Na] Lemma 2.1) Let S be a K3 surface with elliptic fibration π : S → P1(C), and let F be

a fixed general fibre. Then π is the unique elliptic fibration up to Aut(P1(C)) which has F as a general

fibre.

Because we established Fact 2.1 and Fact 2.2, by the same argument to obtain Proposition 2.1 in

[Na], we have the same marked K3 surfaces Sj(λ1, µ1) and Sj(λ2, µ2) if and only if (λ1, µ1) = (λ2, µ2).

According to the Torelli type theorem for K3 surfaces, we obtain that Φδ is injective.

We need explicit lattice structures of the Néron-Severi lattices and the transcendental lattices for

further study.

In the article [Na] we could determine the explicit Néron-Severi lattice for the polytope P5 in a naive

way, for we have det(NS(S(λ, µ))) = −5 which does not contain any square factor.

However, it is much more difficult to determine the explicit Néron-Severi lattice for the polytopes

Pj (j = 1, 2, 3), for det(NS(Sj(λ, µ))) = −9 = −32. In this section, we prove the following theorem.

Theorem 2.2. For a generic point (λ, µ) ∈ Λj (j = 1, 2, 3), we have the intersection matrices of Néron-

Severi lattices NS and the transcendental lattices Tr as in Table 2.

Family F1 F2 F3

NS E8(−1) ⊕ E8(−1)⊕

(

0 3
3 0

)

E8(−1) ⊕E8(−1)⊕

(

0 3
3 2

)

E8(−1) ⊕ E8(−1)⊕

(

0 3
3 −2

)

Tr A1 := U ⊕
(

0 3
3 0

)

A2 := U ⊕
(

0 3
3 −2

)

A3 := U ⊕
(

0 3
3 2

)

Table 2.

Remark 2.1. K. Koike [Koi] has made a research on the families of K3 surfaces derived from the

dual polytopes of 3 dimensional Fano polytopes. The polytopes P2 and P3 in our notation are the Fano

polytopes. Due to Koike we have Néron-Severi lattices for the dual polytopes P ◦
2 and P ◦

3 (given by Table

3).
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Dual Polytope P ◦
2 P ◦

3

Néron-Severi lattice

(

0 3
3 −2

) (

0 3
3 2

)

Table 3.

By comparing Table 3 and Table 2, we can assure the mirror symmetry conjecture for the reflexive

polytopes P2 and P3.

2.1 The Mordell-Weil lattices

Let us recall the theory of Mordell-Weil lattices due to T. Shioda. For detail, see [Sh1] and [Sh2].

Let S be a compact complex surface and C be a algebraic curve. Let π : S → C be an elliptic fibration

with sections. For generic v ∈ C, the fibre π−1(v) is an elliptic curve. In the following we assume that the

elliptic fibre π : S → C has singular fibres. C(C) denotes the algebraic function field on C. If C = P1(C),

the field C(C) is isomorphic to the rational function field C(t).

In this article, (·) denotes the intersection number and E(C(C)) denotes the Mordell-Weil group of

sections of π : S → C. For all P ∈ E(C(C)) and v ∈ C, we have (P · π−1(v)) = 1. Note that the section

P intersects an irreducible component with multiplicity 1 of every fibre π−1(v). Let O be the zero of the

group E(C(C)). The section O is given by the set of the points at infinity on every generic fibre.

Set

R = {v ∈ C|π−1(C) is a singular fibre of π}.

For all v ∈ R we have

π−1(v) = Θv,0 +

mv−1
∑

j=1

µv,jΘv,j, (2.1)

where mv is the number of irreducible components of π−1(v), Θv,j (j = 0, · · · ,mv − 1) are irreducible

components with multiplicity µv,j of π−1(v), and Θv,0 is the component with Θv,0 ∩O 6= φ.

Let F be a generic fibre of π. Set

T = 〈F,O,Θv,j |v ∈ R, 1 ≤ j ≤ mv − 1〉Z ⊂ NS(S).

We call T the trivial lattice for π. For P ∈ E(C(C)), (P ) ∈ NS(S) denotes the corresponding element.

Theorem 2.3. (T. Shioda [Sh1] (see also [Sh2] Theorem (3·10))) (1) The Mordell-Weil group E(C(C))

is a finitely generated Abelian group.

(2) The Néron-Severi group NS(S) is a finitely generated Abelian group and torsion free.

(3) We have the isomorphism of groups E(C(C)) ≃ NS(S)/T given by

P 7→ (P ) mod T.

We set T̂ = (T ⊗Z Q) ∩ NS(S) for the trivial lattice T .

Corollary 2.1. ([Sh1], see also [Sh2] Proposition (3·11)) (1) We have

rank(E(C(C))) = rank(NS(S))− 2−
∑

v∈R

(mv − 1).

(2) We have

E(C(C))tor ≃ T̂ /T,

where E(C(C))tor is the torsion part of E(C(C)).
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Set

E(C(C))0 = {P ∈ E(C(C))|P ∩Θv,0 6= φ for all v ∈ R}.

We have

E(C(C))0 ⊂ E(C(C))/E(C(C))tor (2.2)

(see [Sh1], see also [Sh2] Section 5).

Let v ∈ R. Under the notation (2.1), we set

(π−1(v))♯ =
⋃

0≤j≤mv−1, µv,j=1

Θ♯
v,j ,

where Θ♯
v,j = Θv,j − {singular points of π−1(v)}. Set m(1)

v = ♯{j|0 ≤ j ≤ mv − 1, µv,j = 1}.

Theorem 2.4. ([Ne], [Kod], see also [Sh2] Section 7) Let v ∈ R. The set (π−1(v))♯ has a canonical group

structure.

Remark 2.2. Especially, for the singular fibre π−1(v) of type Ib (b ≥ 1),

(π−1(v))♯ ≃ C× × (Z/bZ).

For the singular fibre π−1(v) of type I∗b (b ≥ 0),

(π−1(v))♯ ≃
{

C× (Z/4Z) (b ∈ 2Z+ 1),

C× (Z/2Z)2 (b ∈ 2Z).

For each v ∈ C, we introduce the map

spv : E(C(C)) → (π−1(v))♯ : P 7→ P ∩ π−1(v).

Note that

P ∩ π−1(v) = (x, a) ∈
(

C×

C

)

× {finite group}

(see [Sh2] Section 7). We call spv the specialization map.

Theorem 2.5. ([Sh2] Section 7) For all v ∈ C, the specialization map

spv : P 7→ (x, a) ∈
(

C×

C

)

× {finite group}

is a homomorphism of groups.

Remark 2.3. Especially for the singular fibre π−1(v) of type Ib (I∗b , resp.), the projection of spv

E(C(C)) → (Z/bZ) ((Z/4Z) or (Z/2Z)2, resp.)

is a homomorphism of groups.

2.2 F1

The elliptic fibration given by (1.4) is described in Figure 1.
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Figure 1.

The trivial lattice for this fibration is

T1 = 〈a1, a2, a3, a4, a′4, a′3, a′2, a′1, c1, b1, b2, b3, c2, c3, O, F 〉Z.

Let P be the section in (1.5). P ∩ a3 6= φ at x1 = 0 and P ∩ c2 6= φ at x1 = ∞. Set

L1 = 〈P, T1〉Z. (2.3)

This is a subgroup of NS(S1(λ, µ)). We have det(L1) = −9. According to Theorem 2.1 and Theorem 2.3

(3), we obtain NS(S1(λ, µ)) ⊗Z Q = L1 ⊗Z Q, and we obtain also

NS(S1(λ, µ)) = (〈P 〉Q ∩ NS(S1(λ, µ))) + T̂1 (2.4)

for generic (λ, µ) ∈ Λ1. We have

[NS(S1(λ, µ)) : L1] = 1 or [NS(S1(λ, µ)) : L1] = 3. (2.5)

In the following, we prove

[NS(S1(λ, µ)) : L1] = 1.

Lemma 2.1. For generic (λ, µ) ∈ Λ1, we have T̂1 = T1.

Proof. From (2.4) and (2.5) it is necessary that T̂1 = T1 or [T̂1 : T1] = 3. We assume [T̂1 : T1] = 3. Then,

according to Corollary 2.1 (2),

E(C(x1))tor ≃ T̂1/T1 ≃ Z/3Z. (2.6)

Therefore there exists S0 ∈ E(C(x1))tor such that 3S0 = O. By Remark 2.3 and (2.2), we can assume

that S0 ∩ a3 6= φ at x1 = 0 and S0 ∩ c0 6= φ at x1 = ∞. Put (S0 · O) = k ∈ Z. Set T̃1 = 〈T1, S0〉Z. By

calculating the intersection matrix, we have

det(T̃1) = −72(1 + k + k2) 6= 0. (2.7)

On the other hand, due to (2.6), we have rank(T̃1) = 17 . So it follows det(T̃1) = 0. This contradicts

(2.7).
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By the above lamma, we have

NS(S1(λ, µ)) = (〈P 〉Q ∩NS(S1(λ, µ))) + T1. (2.8)

Lemma 2.2. For generic (λ, µ) ∈ Λ1, we have NS(S1(λ, µ)) = L1.

Proof. It is sufficient to prove [NS(S1(λ, µ)) : L1] = 1. We assume [NS(S1(λ, µ)) : L1] = 3. By (2.8) there

exists R ∈ E(C(x1)) such that 3R = P . According to Remark 2.3,

(R · c3) = 1, at x1 = ∞

and






























(R · a1) = 1,

or

(R · a4) = 1,

or

(R · a7) = 1,

at x1 = 0.

We can assume (R · O) = 0, for P in (1.5) does not intersect O. By the addition theorem for elliptic

curves, we have 2P and we can check 2P does not intersect O. So, we assume (R · P ) = 0 also. Set

L̃1 = 〈L1, R〉Z. By calculating the intersection matrix, we have

det(L̃1) =











12 (if (R · a1) = 1),

−30 (if (R · a4) = 1),

6 (if (R · a7) = 1).

(2.9)

On the other hand, we have rank(L̃1) = 18 from Theorem 2.1. Hence, we obtain det(L̃1) = 0. This

contradicts (2.9). Therefore, we have [NS(S1(λ, µ)) : L1] = 1.

Lemma 2.3. The lattice L1 is isomorphic to the lattice given by the intersection matrix









E8(−1)
E8(−1)

0 3
3 0









,

and its orthogonal complement is given by the intersection matrix

A1 =









0 1
1 0

0 3
3 0









.
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Proof. We obtain the corresponding intersection matrix M1 for the lattice L1:

































































−2 1
1 −2 1

1 −2 1 1
1 −2 1

1 −2 1
1 −2 1

1 −2 1
1 −2

−2 1
1 −2 1

1 −2 1
1 −2 1

1 −2 1 1
1 −2 0 1
1 0 −2

−2 0 1
1 1 0 −2 1

1 1 0

































































.

Let U1 be the unimodular matrix

































































1 11 8 91
1 22 16 182

1 33 24 273
1 26 19 214

1 19 14 155
1 12 9 96

1 5 4 37
−2 −1 −22

1 2 2 18
1 4 4 36

1 6 6 54
1 8 8 72

1 10 10 90
1 7 7 63

1 5 5 45
−1 1 −1 0

1 18 13 150
−1 −4 −5 −36

































































.

We have
tU1M1U1 = E8(−1)⊕ E8(−1)⊕

(

0 3
3 0

)

.

Therefore we obtain Theorem 2.2 for F1.

2.3 F2

The elliptic fibration given by (1.7) is described in Figure 2.
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The trivial lattice for this fibration is

T2 = 〈a1, a2, a3, a4, a5, a′5, a′4, a′3, a′2, a′1, c1, b0, b1, c2, c3, O, F 〉Z.

Let P be the section in (1.8). Note P ∩ a4 6= φ and P ∩ c2 6= φ. Set

L2 = 〈P, T2〉Z. (2.10)

This is a subgroup of NS(S2(λ, µ)). We have det(L2) = −9. As in the case F1, so we obtain

NS(S2(λ, µ)) = (〈P 〉Q ∩ NS(S2(λ, µ))) + T̂2

for generic (λ, µ) ∈ Λ2. We have

[NS(S2(λ, µ)) : L2] = 1 or [NS(S2(λ, µ)) : L2] = 3. (2.11)

In the following, we prove [NS(S2(λ, µ)) : L2] = 1.

Lemma 2.4. For generic (λ, µ) ∈ Λ2, we have T̂2 = T2.

Proof. By a direct calculation, we have det(T2) = −44. From (2.11), we have T̂2 = T2.

Therefore we obtain

NS(S2(λ, µ)) = (〈P 〉Q ∩NS(S2(λ, µ))) + T2. (2.12)

Lemma 2.5. For generic (λ, µ) ∈ Λ2, we have NS(S2(λ, µ)) = L2.

Proof. We assume [NS(S2(λ, µ)) : L2] = 3. From (2.12) there exists R ∈ E(C(y)) such that 3R = P .

According to Remark 2.3, we obtain (R · a4) = 1 and (R · c3) = 1. Because the section P in (1.8) and the

section 2P do not intersect O, we have (R · O) = 0 and (R · P ) = 0. Set L̃2 = 〈L2, R〉Z. Calculating its

intersection matrix, we have det(L̃2) = −38. As in the proof of Lemma 2.2, this contradicts to Theorem

2.1.

Lemma 2.6. The lattice L2 is isomorphic to the lattice given by the following intersection matrix








E8(−1)
E8(−1)

0 3
3 2









,
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and its orthogonal complement is given by the intersection matrix

A2 =









0 1
1 0

0 3
3 −2









.

Proof. We obtain the corresponding intersection matrix M2 for L2:
































































−2 1
1 −2 1

1 −2 1
1 −2 1 1

1 −2 1
1 −2 1

1 −2 1
1 −2 1

1 −2 1
1 −2

−2 1
1 −2 1

1 −2 1 1
1 −2 0 1
1 0 −2

−2 0 1
1 1 0 −2 1

1 1 0

































































.

Let U2 be the unimodular matrix
































































5 1 0 56 27
4 −2 0 13 6

1 15 3 0 162 80
1 26 8 0 311 154

13 1 0 120 60
1 10 0 0 100 50

1 8 0 0 80 40
1 6 0 0 60 30

1 4 0 0 40 20
1 2 0 0 20 10

1 12 6 0 170 84
1 24 12 0 340 168

1 36 18 0 510 252
1 30 15 0 425 210

1 18 9 0 255 126
−4 0 1 −28 −14

1 24 12 0 340 168
−8 1 0 −56 −28

































































.

We have
tU2M2U2 = E8(−1)⊕ E8(−1)⊕

(

0 3
3 2

)

.

Therefore, we obtain Theorem 2.2 for F2.

2.4 F3

The elliptic fibration given by (1.10) is described in Figure 3.
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The trivial lattice for this fibration is

T3 = 〈a1, a2, a3, a4, a′0, a′4, a′3, a′2, a′1, c1, b0, b1, b2, c2, c3, O, F 〉Z.

Let P be the section in (1.11). Set

L′
3 = 〈P, T3〉Z.

This is a subgroup of NS(S3(λ, µ)) and we have det(L′
3) = −36. Moreover, the section O′ in (1.11) is a

2-torsion section for this elliptic fibretion. Due to Corollary 2.1, [T̂3 : T3] is divided by 2. Hence, we have

[NS(S3(λ, µ)) : L
′
3] = 2 or [NS(S3(λ, µ)) : L

′
3] = 6. (2.13)

Lemma 2.7. For generic (λ, µ) ∈ Λ3, we have [T̂3 : T3] = 2.

Proof. We have det(T3) = −40. From (2.13), we obtain [T̂3 : T3] = 2.

Lemma 2.8. For generic (λ, µ) ∈ Λ3, we have [NS(S3(λ, µ)) : L
′
3] = 2.

Proof. We shall show that [NS(S3(λ, µ)) : L
′
3] = 2. We assume [NS(S3(λ, µ)) : L

′
3] = 6. From Lemma 2.7,

there exists R ∈ E(C(x1)) such that 3R = P . According to Remark 2.3, it is necessary that (R · c2) = 1

and (R ·a4) = 1. Also we have (R ·O) = 0, for P in (1.11) does not intersect O. Moreover we can assume

that (R ·P ) = 0 or 1, for the section 2P does not intersect O at x1 6= ∞. Set L̃′
3 = 〈L′

3, R〉Z. Calculating
the intersection matrix, we have

det(L̃′
3) =

{

−16 (if (R · P ) = 0)

−112 (if (R · P ) = 1)
. (2.14)

On the other hand, Theorem 2.1 implies that rank(L̃3) = 18 and det(L̃3) = 0. This is a contradiction to

(2.14).

Due to the above lemma, we have

|det(NS(S3(λ, µ)))| = 9

for generic (λ, µ) ∈ Λ3.

To determine the explicit lattice structure for F3 we use another elliptic fibration defined by (1.13).

This fibration is described in Figure 4.
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Let P0 and Q0 be the sections in (1.14) for this elliptic fibration.

Set

L3 = 〈d1, d2, d3, d4, d′4, d′3, d′2, d′1, e1, e2, e3, e4, e′3, e′2, , P0, Q0, O, F 〉Z. (2.15)

We have L3 ⊗Z Q = NS(S3(λ, µ))⊗Z Q for generic (λ, µ) ∈ Λ3 and det(L′
3) = −9. Therefore we have

L3 = NS(S3(λ, µ))

for generic (λ, µ) ∈ Λ3.

Lemma 2.9. The lattice L3 is isomorphic to the lattice given by the intersection matrix









E8(−1)
E8(−1)

0 3
3 −2









,

and its orthogonal complement is given by the intersection matrix

A3 =









0 1
1 0

0 3
3 2









.
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Proof. We obtain the corresponding intersection matrix M3 for the lattice L3:
































































−2 1
1 −2 1

1 −2 1 1
1 −2 1

1 −2 1
1 −2 1 1

1 −2 1
1 −2

−2 1
1 −2 1

1 −2 1 1
1 −2 0

0 −2 1 1
1 −2 0

0 −2 0 1
1 1 0 −2 1

1 1 −2 1
1 1 1 0

































































.

Let U3 be the unimodular matrix
































































1 28 5 468
1 56 10 936

1 84 15 1404
27 5 432
21 1 4 378
15 1 3 324
10 1 2 216
5 1 1 108

1 34 6 576
1 68 12 1152

1 102 18 1728
1 51 9 864

−1 1 36
−1 1 0 18
1 0 35

1 85 15 1440
−1 1 0 54
−16 −3 −252

































































.

We have
tU3M3U3 = E8(−1)⊕ E8(−1)⊕

(

0 3
3 −2

)

.

Therefore, we obtain Theorem 2.2 for F3.

3 Period differential equations

In this section, we determine the system of period differential equations and its projective monodromy

group for the family Fj (j = 1, 2, 3).

Set










F1(x, y, z) = xyz(x+ y + z + 1) + λx+ µy, (λ, µ) ∈ Λ1,

F2(x, y, z) = xyz(x+ y + z + 1) + λx+ µ, (λ, µ) ∈ Λ2,

F3(x, y, z) = xyz(x+ y + z + 1) + λz + µxy, (λ, µ) ∈ Λ3.
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The unique holomorphic 2-form on the K3 surface Sj(λ, µ) ∈ Λj (j = 1, 2, 3) is given by

ωj =
dz ∧ dx

∂Fj/∂y

up to a constant factor.

First, we consider a period of Sj(λ, µ) (j = 1, 2, 3).

Theorem 3.1. We can find a 2-cycle Γj (j = 1, 2, 3) so that we have the following power series expansion

of the period

∫∫

Γj

ωj which is valid in a sufficiently small neighborhood of (λ, µ) = (0, 0).

(1) (A period for F1) We have a period of S1(λ, µ):

η1(λ, µ) =

∫∫

Γ1

ω1 = (2πi)2
∑ (3m+ 3n)!

(n!)2(m!)2(m+ n)!
λnµm. (3.1)

(2) (A period for F2) We have a period of S2(λ, µ):

η2(λ, µ) =

∫∫

Γ2

ω2 = (2πi)2
∞
∑

n,m=0

(−1)n
(4m+ 3n)!

(m!)2n!((m+ n)!)2
λnµm. (3.2)

(3) (A period for F3) We have a period of S3(λ, µ):

η3(λ, µ) =

∫∫

Γ3

ω3 = (2πi)2
∞
∑

n,m=0

(−1)n
(3m+ 2n)!

(m!)2(n!)3
λnµm. (3.3)

Proof. Let j ∈ {1, 2, 3}. By the same argument in the proof of Theorem 3.1 of the article [Na], we can

choose a certain 2-cycle Γj on Sj(λ, µ) so that the period integral

∫∫

Γj

ωj is given by a power series of

(λ, µ).

Remark 3.1. In the case P1, our period is reduced to the Appell F4(see [Koi] ):

η1(λ, µ) = F4

(1

3
,
2

3
, 1, 1; 27λ, 27µ

)

= F
(1

3
,
2

3
, 1;x

)

F
(1

3
,
2

3
, 1, ; y

)

,

where F is the Gauss hypergeometric function and x(1 − y) = 27λ, y(1− x) = 27µ.

Secondary, we apply the theory of the GKZ hypergeometric functions to obtain the system of differ-

ential equations whose solution is the period integral in Theorem 3.1. In the following, set

θλ = λ
∂

∂λ
, θµ = µ

∂

∂µ
.

Proposition 3.1. (1) (The GKZ system of equations for F1) Set

{

L
(1)
1 = λθ2µ − µθ2λ,

L
(1)
2 = λ(3θλ + 3θµ)(3θλ + 3θµ − 1)(3θλ + 3θµ − 2).

(3.4)

It holds

L
(1)
1 η1(λ, µ) = L

(1)
2 η1(λ, µ) = 0.

(2) (The GKZ system of equations for F2) Set

{

L
(2)
1 = λθ2µ + µθλ(3θλ + 4θµ + 1),

L
(2)
2 = θλ(θλ + θµ)

2 + λ(3θλ + 4θµ + 1)(3θλ + 4θµ + 2)(3θλ + 4θµ + 3).
(3.5)

It holds

L
(2)
1 η2(λ, µ) = L

(2)
2 η2(λ, µ) = 0.
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(3) (The GKZ system of equations for F3) Set

{

L
(3)
1 = θ2λ − µ(3θλ + 2θµ + 1)(3θλ + 2θµ + 2),

L
(3)
2 = θ3λ + λ(3θλ + 2θµ + 1)(3θλ + 2θµ + 2)(3θλ + 2θµ + 3).

(3.6)

It holds

L
(3)
1 η3(λ, µ) = L

(3)
2 η3(λ, µ) = 0.

Proof. Set

A1 =









1 1 1 1 1 1
0 1 0 0 −1 0
0 0 1 0 0 −1
0 0 0 1 −1 −1









, A2 =









1 1 1 1 1 1
0 1 0 0 0 −1
0 0 1 0 −1 −1
0 0 0 1 −1 −1









, A3 =









1 1 1 1 1 1
0 1 0 0 −1 0
0 0 1 0 −1 0
0 0 0 1 0 −1









,

and

β =









−1
0
0
0









.

Let j ∈ {1, 2, 3}. From the matrix Aj and the vector β, we have the system of the GKZ system of

equations concerned with the period ηj(λ, µ) in Theorem 3.1. For detail, see the proof of Proposition 3.1

in [Na].

Each system in the above proposition has the 6-dimensional space of solutions. On the other hand,

Theorem 2.1 says that the rank of transcendental lattice for Fj is 4. It implies that there are the system

of period differential equations for the family Fj (j = 1, 2, 3) with the 4-dimensional space of solutions.

Theorem 3.2. (1) (The period differential equation for F1) Set

{

L
(1)
1 = λθ2µ + µθλ(3θλ + 4θµ + 1),

L
(1)
3 = λθλ(3θλ + 2θµ) + µθλ(1 − θλ) + 9λ2(3θλ + 4θµ + 1)(3θλ + 4θµ + 2).

(3.7)

It holds

L
(1)
1 η1(λ, µ) = L

(1)
3 η1(λ, µ) = 0.

The space of solutions of the system L
(1)
1 u = L

(1)
3 u = 0 is 4-dimensional.

(2) (The period differential equation for F2) Set

{

L
(2)
1 = λθ2µ + µθλ(3θλ + 4θµ + 1),

L
(2)
3 = λθλ(3θλ + 2θµ) + µθλ(1 − θλ) + 9λ2(3θλ + 4θµ + 1)(3θλ + 4θµ + 2).

(3.8)

It holds

L
(2)
1 η2(λ, µ) = L

(2)
3 η2(λ, µ) = 0.

The space of solutions of the system L
(2)
1 u = L

(2)
3 u = 0 is 4-dimensional.

(3) (The period differential equation for F3) Set

{

L
(3)
1 = θ2λ − µ(3θλ + 2θµ + 1)(3θλ + 2θµ + 2),

L
(3)
3 = θλ(3θλ − 2θµ) + 9λ(3θλ + 2θµ + 1)(3θλ + 2θµ + 2) + 4µθλ(3θλ + 2θµ + 1).

(3.9)

It holds

L
(3)
1 η3(λ, µ) = L

(3)
3 η3(λ, µ) = 0.

The space of solutions of the system L
(3)
1 u = L

(3)
3 u = 0 is 4-dimensional.
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Proof. We determine these systems by the method of indeterminate coefficients. For detail, see the proof

of Theorem 3.2 in [Na].

In the following we prove that those spaces of solutions is 4-dimensional.

(1) Set ϕ =t (1, θλ, θµ, θ
2
λ). We obtain the corresponding Pfaffian system Ω1 = A1dλ + B1dµ with

dϕ = Ω1ϕ by the following way. Setting

t1 = 729λ2 − 54λ(27µ− 1) + (1 + 27µ)2,

we have

A1 =









0 1 0 0
0 0 0 1

−1/9 −1/2 −1/2 −(1 + 27λ+ 27µ)/(54λ)
a11/t1 a12/(2t1) a23/(2t1) a24/(2t1)









,

with


















a11 = 3λ(1− 27λ+ 27µ),

a12 = 3λ(5− 351λ+ 135µ),

a13 = 27λ(1− 3λ+ 27µ),

a14 = 3(−729λ2 + (1 + 27µ)2),

and

B1 =









0 0 1 0
−1/9 −1/2 −1/2 −(1 + 27λ+ 27µ)/(54λ)
0 0 0 µ/λ

b11/t1 b12/(2t1) b13/(2t1) b14/(2t1)









,

with


















b11 = 3λ(1 + 27λ− 27µ),

b12 = 27λ(1 + 27λ− 3µ),

b13 = 3λ(5 + 135λ− 351µ),

b14 = (1 + 27λ)2 + 108(27λ− 1)µ− 3645µ2.

We have dΩ1 = Ω1 ∧ Ω1. Therefore the system L
(1)
1 u = L

(1)
3 u = 0 has the 4-dimensional space of

solutions.

(2) Set ϕ =t (1, θλ, θµ, θ
2
λ). We obtain the corresponding Pfaffian system Ω2 = A2dλ + B2dµ with

dϕ = Ω2ϕ as the following way. Setting
{

t2 = λ2(1 + 27λ)2 − 2λµ(1 + 189λ) + (1 + 576λ)µ2 − 256µ3,

s2 = 1 + 108λ− 288µ,

we have

A2 =









0 1 0 0
0 0 0 1

a11/s2 a12/(2λs2) a13/(s2) a14/(2λs2)
a21/(t2s2) a22/(t2s2) a23/(t2s2) a24/(t2s2)









,

with


































































a11 = −9λ,

a12 = −(81λ2 + µ− 144λµ),

a13 = −54λ,

a14 = −3λ(1 + 27λ− 144µ) + µ,

a21 = −6λ3(1 + 1458λ2 − 2592λµ+ 6µ(−55 + 4608µ)),

a22 = −3λ2(11 + 54λ(5 + 351λ)) + λ(1 + 4λ(61 + 810λ(5 + 72λ)))µ+ 64(17 + 2808λ)µ3

−147456µ4 − 2(1 + 9λ(53 + 32λ(131 + 864λ)))µ2,

a23 = −8λ3((2 − 27λ)2 + 9(−133 + 2160λ)µ+ 82944µ2),

a24 = 3r2s2 + 162λr2 − 3λs2(λ + 81λ2 + 1458λ3 − 378λµ+ µ(−1 + 288µ)),
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and

B2 =









0 0 1 0
b11/s2 b12/(2λs2) b13/s2 b14/(2λs2)
b21/(s2) b22/(λ

2s2) b23/s2 b24/(λ
2s2)

b31/(t2s2) b32/(2λt2s2) b33/(t2s2) b34/(2λt2s2)









,

with






























































































































b11 = −9λ,

b12 = −(81λ2 + µ− 144λµ),

b13 = −54λ,

b14 = −3λ(1 + 27λ− 144µ) + µ,

b21 = 36µ,

b22 = µ(λ(−1 + 54λ) + 2µ),

b23 = 216µ,

b24 = (3(1− 54λ)λ− 2µ)µ,

b31 = 3λ(81λ3(1 + 27λ) + λ(−1 + 36λ)(−5 + 108λ)µ+ 3(−1 + 32λ)(1 + 432λ)µ2 + 768µ3,

b32 = 2187λ5(1 + 27λ)− (1 + 192λ(11 + 1164λ))µ3 + 256(1 + 864λ)µ4

−λ2(2 + 27λ(4 + 9λ(77 + 864λ)))µ+ λ(5 + λ(1279 + 864λ(85 + 864λ)))µ2,

b33 = 2λ(3λ2(1 + 27λ)(−1 + 135λ) + 2λ(23 + 54λ(−11 + 972λ))µ

+9(−3 + 64λ)(1 + 432λ)µ2 + 6912µ3,

b34 = −(−81λ4(1 + 27λ)2 + λ2(−7 + 9λ(−58 + 27λ(−125 + 3456λ)))µ

+λ(8 + 9λ(425 + 24192λ))µ2 − (1 + 3456λ(1 + 162λ))µ3 + 256(1 + 1440λ)µ4.

We see dΩ2 = Ω2 ∧Ω2. Therefore the system L1u = L3u = 0 has the 4-dimensional solution space.

(3) Set ϕ =t (1, θλ, θµ, θ
2
λ). We obtain the corresponding Pfaffian system Ω3 = A3dλ + B3dµ with

dϕ = Ω3ϕ as the following way. Setting

{

t3 = 729λ2 − (4µ− 1)3 + 54λ(1 + 12µ),

s3 = −54λ+ (1− 4µ)2,

we have

A3 =









0 1 0 0
0 0 0 1

a11/s3 a12/(2s3) a13/s3 a14/(2s3)
a21/(t3s3) a22/(t3s3) a23/(t3s3) a24/(t3s3)









,

with


























































a11 = 9λ,

a12 = 81λ+ 4(1− 4µ)µ,

a13 = 27λ,

a14 = 3 + 81λ− 48µ2,

a21 = −2λ(−2187λ2 + 27λ(4µ− 9)(4µ− 1)− (−1 + 4µ)3(3 + 8µ)),

a22 = 3λ(9477λ2 + (1− 4µ)2(−11 + 4µ(−9 + 16µ))− 27λ(25 + 4µ(−31 + 40µ))),

a23 = 2λ(729λ2 + (−1 + 4µ)3(11 + 16µ) + 27λ(−1 + 4µ)(19 + 20µ)),

a24 = 81λ(−2 + 27λ+ 8µ)(1 + 27λ− 16µ2),

and

B3 =









0 0 1 0
b11/s3 b12/(2s3) b13/s3 b14/(2s3)
b21/s3 b22/s3 b23/s3 b24/s3

b31/(t3s3) b32/(2t3s3) b33/(t3s3) b34/(2t3s3)









,

22



with































































































b11 = 9λ,

b12 = 81λ+ 4(1− 4µ)µ,

b13 = 27λ,

b14 = 3 + 81λ− 48µ2,

b21 = −2µ(−1 + 4µ),

b22 = −3µ(−3 + 4µ),

b23 = −6µ(−1 + 4µ),

b24 = 9µ(3 + 4µ),

b31 = −3λ(2187λ2 + 32(1− 4µ)2µ(1 + µ) + 27λ(3 + 16µ(2 + µ)))

b32 = −9λ(6561λ2 − 81λ(−3 + 4µ)(1 + 8µ) + 4µ(−1 + 4µ)(−33 + 4µ(−3 + 16µ))),

b33 = −3λ(3645λ2 + 2(1− 4µ)2(1 + 16µ(3 + 2µ)) + 27λ(7 + 16µ(5 + 9µ))),

b34 = −r3s3 + r3(−8 + 351λ+ 32µ) + s3(9(729λ
2 + (1− 4µ)2 + 54λ(1 + 8µ)).

We have dΩ3 = Ω3∧Ω3. So the system L
(3)
1 u = L

(3)
3 u = 0 has the 4-dimensional space of solutions.

Remark 3.2. From the Puffian systems in the above proof, we obtain the singular locus of the system

(3.7):

λ = 0, µ = 0, 729λ2 − 54λ(27µ− 1) + (1 + 27µ)2 = 0,

the singular locus of the system (3.8):

λ = 0, µ = 0, λ2(1 + 27λ)2 − 2λµ(1 + 189λ) + (1 + 576λ)µ2 − 256µ3 = 0,

and the singular locus of the system (3.9):

λ = 0, µ = 0, 729λ2 − (4µ− 1)3 + 54λ(1 + 12µ) = 0.

Omitting these locus from C2 we have the domain Λj (j = 1, 2, 3) in (1.6), (1.9) and (1.12).

Finally, we determine the projective monodromy groups.

Let j ∈ {1, 2, 3}. For generic (λ, µ) ∈ Λj, we can take a basis {γ5, · · · , γ22} of NS(Sj(λ, µ)) such that

the intersection matrix (γk ·γl)5≤k,l≤22 is equal to the matrix in Theorem 2.2. This basis is extended to a

basis {γ1, · · · , γ4, γ5, · · · , γ22} ofH2(Sj(λ, µ)). Let {γ∗
1 , · · · , γ∗

22} be its dual basis (namely (γk ·γ∗
j ) = δk,l).

By Theorem 2.2, we have (γ∗
k · γ∗

l ) = Aj .

Using this basis {γ1, · · · , γ22}, we define the local period map as in the beginning of Section 2.

Moreover, we define the multivalued period map

Φj : Λj → P3(C)

by the analytic continuation of the local period map along any arc in Λj .

Set

Dj = {ξ ∈ P3(C)|ξAj
tξ = 0, ξAj

t̄ξ > 0}.

By the Riemann-Hodge relation, we have Φj(Λj) ⊂ Dj .

The fundamental group π1(Λj , ∗) acts on Φj(Λj) by the analytic continuation of the local period map.

This action induces a group of projective linear transformations which is a subgroup of PGL(4,Z). We

call it the projective monodromy group of the multivalued period map Φj .

Note that Dj is composed of two connected components: Dj = D+
j ∪ D−

j . Set PO(Aj ,Z) = {g ∈
GL(4,Z)|gAj

tg = Aj}. It acts on Dj by tξ 7→ gtξ (ξ ∈ Dj , g ∈ PO(Aj ,Z)). Let PO+(Aj ,Z) be the

subgroup of PO(Aj ,Z) given by {g ∈ PO(Aj ,Z)|g(D+
j ) = D+

j }.
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Theorem 3.3. Let j ∈ {1, 2, 3}. The projective monodromy group of the period differential equation for

the family Fj is equal to PO+(Aj ,Z).

Proof. Because the projective monodromy group Gj of the multivalued period map Φj is equal to that of

the period differential equation for Fj , we determine Gj . It is obvious Gj ⊂ PO+(Aj ,Z). However, we

need a delicate observation to prove the converse PO+(Aj ,Z) ⊂ Gj . For precise argument, see Section 4

in [Na].
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