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BOUNDS ON THE SUPREMA OF GAUSSIAN PROCESSES, AND

OMEGA RESULTS FOR THE SUM OF A RANDOM

MULTIPLICATIVE FUNCTION

ADAM J HARPER

Abstract. We prove new lower bounds for the upper tail probabilities of suprema

of Gaussian processes. Unlike many existing bounds, our results are not asymptotic,

but supply strong information when one is only a little into the upper tail. We present

an extended application to a Gaussian version of a random process studied by Halász.

This leads to much improved lower bound results for the sum of a random multiplica-

tive function. We further illustrate our methods by improving lower bounds for some

classical constants from extreme value theory, the Pickands constants Hα, as α → 0.

1. Introduction

Let T be a non-empty set, (Ω,F ,P) a probability space, and for each t ∈ T let

Z(t) be a random variable defined on (Ω,F ,P). Suppose that for any finite subset

{t1, t2, ..., tn} ⊆ T , the random variable (Z(t1), ..., Z(tn)) has an n-variate normal dis-

tribution. We will then say, a little loosely, that {Z(t)}t∈T is a Gaussian process with

parameter set T . We refer the reader to the book of Lifshits [9] for a general introduction

to the theory of Gaussian processes.

In this paper we will be concerned with supt∈T Z(t), and in particular with giving

lower bounds for the probability that it is quite large. Results of this type have many

applications, and the author’s interest in them stems from a number-theoretic prob-

lem that will be described later. For overviews of results in this area we refer to two

important books, by Leadbetter, Lindgren and Rootzén [7] and by Piterbarg [14].

Suppose that T is a finite set, so that supt∈T Z(t) is certainly a genuine random

variable, and

P(sup
t∈T

Z(t) > u)

is the probability that a multivariate normal random vector takes values in a certain

subset of R#T . We will also be interested in processes with infinite index sets, but will

study these by looking at suitably chosen finite subsets of points t. Unless the mean

vector and covariance matrix of {Z(t)}t∈T have special forms it is typically very difficult
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to compute the tail probability exactly. However, it turns out that as u → ∞, any

correlations amongst the Z(t) that are not perfect ±1 correlations have an increasingly

negligible effect on the tail behaviour. (This follows e.g. by the method of comparison,

which we discuss more below). In fact something like this remains valid when #T → ∞
along with u, provided that the “new” Z(t) that are introduced are not too highly

correlated. Readers familiar with e.g. Berman’s theorem (as expounded in chapter 4 of

Leadbetter, Lindgren and Rootzén [7]) should find this reasoning familiar.

Piterbarg [14] describes several asymptotic methods for analysing Gaussian processes,

including the method of comparison, Pickands’ method of double sums, and Rice-type

methods based on calculation of moments. He presents a quantitative version of the

method of comparison, in which results are formulated for fixed u; but these results

involve unspecified constants that appear to depend on {Z(t)}t∈T , so one must wait

for u to be sufficiently large (in an unspecifed sense) before they come into play1. No

quantitative formulation of the method of double sums or the method of moments

(for lower bounds) is attempted, and the general philosophy of these methods, that one

need not analyse correlations of {Z(t)}t∈T except for extremely large correlations, seems

unsuited to obtaining results for fixed u.

One can also use metric entropy/capacity methods, such as Sudakov’s minoration, to

bound E supt∈T Z(t). See section 14 of Lifshits [9]. Together with suitable concentration

inequalities, such as that of Borell/Sudakov–Tsyrelson, this yields explicit lower bounds

on P(supt∈T Z(t) > u) for fixed u. However, the lower bounds that one obtains for

E supt∈T Z(t) are typically off from the truth by a multiplicative factor, and then the

lower bounds for P(supt∈T Z(t) > u) are very far from the truth for moderately sized u.

In this paper we develop an alternative approach to lower bounding the upper tail

probability. The ingredients are an initial conditioning step, followed by a comparison

(in the sense of the method of comparison) with a “model” Gaussian process that

can be explicitly analysed. The resulting bounds are clean and can be non-trivial for

moderately sized u, which is very important in our two applications.

We begin with the following straightforward result.

Proposition 1 (Conditioning Step). Let {Z(ti)}1≤i≤n be jointly multivariate normal

random variables. Write ri,j := EZ(ti)Z(tj), and suppose that:

• (centralisation and normalisation) EZ(ti) = 0 and EZ(ti)
2 = 1 for all 1 ≤ i ≤

n;

1We present some normal comparison results in §3, and these may give an idea of the necessary size
of u. When the author tried to study our §6 example by these methods, he could only show that the
supremum there is larger than about log log x/

√
2 with high probability (by studying points t with

spacing 1/
√
log x). Our Corollary 2 establishes that this supremum is larger than about log log x with

high probability.
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• (no repeated variables) |ri,j| < 1 whenever i 6= j.

Then for any u ≥ 0 and any H ≥ 0,

P(max
1≤i≤n

Z(ti) > u) ≥ He−(u+H)2/2

√
2π

n
∑

m=1

inf
0≤h≤H

P (m, h),

where P (m, h) is

P



Vj ≤
u− rj,m(u+ h)
√

1− r2j,m

∀j ≤ m− 1



 ,

and the Vj = Vj,m are centralised, normalised, jointly multivariate normal random vari-

ables with correlations
rj,k − rj,mrk,m

√

(1− r2j,m)(1− r2k,m)
.

We give the short proof of Proposition 1 in §2. The author had a more involved proof

of (a result like) Proposition 1, based on a “reversal of roles” in the normal comparison

procedure. Since we will need some normal comparison results later, we present these

in §3 and give a very brief description of the reversal of roles approach as well.

We now turn to the problem of what we will be able to say about P (m, h). If the

correlation structure of {Z(ti)}1≤i≤m is arbitrary, the answer may be essentially nothing,

in which case our attempt to give lower bounds will be at an end. However, under some

conditions on the correlation structure we can be more optimistic, and to illustrate this

we formulate the following result.

Proposition 2 (Comparison Step). Let u ≥ 0, and suppose h is sufficiently small that

the upper bounds on the Vj in the definition of P (m, h) are non-negative. Suppose there

exist numbers cj = cj(m, h), dj = dj(m, h) > 0 such that:

(i) cj/dj is a non-decreasing sequence, 1 ≤ j ≤ m− 1;

(ii) cmin{j,k}dmax{j,k} is a strict lower bound for rj,k − rj,mrk,m, for each pair 1 ≤
j, k ≤ m− 1.

Then for any δ ≥ 0,

P (m, h) ≥
∫ B(δ)

−B(δ)

e−t2/2

√
2π

dt ·
m−1
∏

j=1

Φ





(1− δ)(u− rj,m(u+ h))
√

1− r2j,m − cjdj



 ,

where B(δ) = δ
√

dm−1

cm−1
min1≤j≤m−1

u−rj,m(u+h)

dj
, and Φ denotes the standard normal cu-

mulative distribution function.

We will prove Proposition 2 in §4, by explicitly constructing a collection of Gaussian

random variables with the lower bound correlation structure suggested by the cj, dj,
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and applying a Brownian motion maximal inequality to analyse those. The reader

might think of this procedure as pulling out some of the dependence among the Vj,

to be analysed non-trivially using the maximal inequality. By doing this we gain the

subtracted terms cjdj in the product, which will be very important, at the fairly small

cost of introducing the factor involving B(δ) (and the multiplier (1− δ)).

The reader might wonder where the numbers cj , dj are to come from, and whether

the lower bound obtained will not be hopelessly small in situations of interest. In fact

we can quickly deduce the following from Propositions 1 and 2.

Theorem 1. Let {Z(ti)}1≤i≤n be as in Proposition 1, and suppose further that the

sequence is stationary, i.e. that rj,k = r(|j − k|) for some function r. Let u ≥ 1, and

suppose that:

• r(m) is a decreasing non-negative function;

• r(1)(1 + 2u−2) is at most 1.

Then P(max1≤i≤n Z(ti) > u) is

≫ n
e−u2/2

u
min

{

1,

√

1− r(1)

u2r(1)

}

n−1
∏

j=1

Φ

(

u
√

1− r(j)

(

1 +O

(

1

u2(1− r(j))

)))

,

where the implicit constants are absolute (in particular, not depending on {Z(ti)}1≤i≤n)

and could be given explicit values.

Theorem 1 follows by choosing H = u−1, δ = min{u−2,
√

r(1)/u2(1− r(1))}, cj =

rj,m = r(|m− j|), dj = 1 − rj,m = 1 − r(|m− j|) in the preceding propositions. In this

case if we did not have cjdj in the denominators in Proposition 2, then
√

1− r(j) would

need to be replaced by
√

(1− r(j))/(1 + r(j)) in the product. We do not actually use

the theorem in this paper, as our examples require slightly different parameter choices.

However, a reader familiar with classical limit theory for suprema of stationary processes

(see e.g. chapter 4 of Leadbetter, Lindgren and Rootzén [7]) may find it instructive to

compare with those results. We may not expect to obtain precisely sharp bounds from

Theorem 1, because of the factor min{1,
√

(1− r(1))/u2r(1)}, but it will supply good

bounds provided u is large enough that the product term is ≫ 1. For given r(j) this

may be a much weaker requirement on u than in proofs of the classical results, which

rely on normal comparison inequalities.

We now move on to our two examples, which we hope will illustrate the usefulness of

Propositions 1 and 2. In the theory of Gaussian processes, much attention has been paid

to (mean zero, variance one) stationary processes whose covariance function satisfies

r(t) = 1− C|t|α + o(|t|α) as t → 0,
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where C > 0 and 0 < α ≤ 2. In particular, a 1969 theorem of Pickands [12] de-

scribes the asymptotic behaviour of suprema of such processes: if h > 0 is fixed, and if

supǫ≤t≤h r(t) < 1 for all ǫ > 0, then

lim
u→∞

eu
2/2u1−2/α

P( sup
0≤t≤h

Z(t) > u) =
hC1/αHα√

2π
,

where Hα is the so-called Pickands constant. In a second paper [13], Pickands used a

result like this to determine the limiting distribution, as T → ∞, of a scaled version

of sup0≤t≤T Z(t). The scaling in that theorem thus involves Hα. See e.g. the paper of

Shao [17] for further discussion of the role of Hα.

It appears that not very much is known about the size ofHα. Burnecki and Michna [1]

describe as “mathematical folklore” the conjecture that Hα = 1/Γ(1/α), but this is only

known for α = 1, 2. Bounds are available more generally, for example Shao [17] used a

representation of Hα in terms of a non-stationary process, and various techniques from

Gaussian process theory, to show that

(
α

4
)1/α(1− e−1/α(1 +

1

α
)) ≤ Hα ≤ α1/α(2.41

√

8.8− α log(0.4 + 2.5/α) + 0.77
√
α)2/α

when 0 < α < 1, and other bounds when 1 ≤ α ≤ 2. Dȩbicki and Kisowski [2]

subsequently improved the upper bound on the range 1 < α < 2. Dȩbicki, Michna and

Rolski [3] proved that

α

8Γ(1/α)
(
1

4
)1/α ≤ Hα, 0 < α ≤ 2,

and in a 2009 preprint Michna [10] improved this by a multiplicative factor of 2. Note

that, since Γ(1/α) ∼
√
2πα(1/eα)1/α as α → 0, this is a much stronger bound than that

of Shao [17] under that limit process.

Applying our methods, in §5 we improve the lower bound results as α → 0.

Corollary 1. Uniformly for 0 < α ≤ 2, Hα ≫ √
α(eα/2)1/α.

This differs from the conjectured value 1/Γ(1/α) by (essentially) a factor α2−1/α,

as α → 0. One could work carefully here to obtain a completely explicit result, and

thereby obtain non-trivial bounds for α away from zero as well.

For our main example, we give a detailed study of the following process:

∑

p≤x

gp
cos(t log p)

p1/2+1/ logx
, t ∈ R,

where the summation is restricted to prime numbers p, gp are independent standard

normal random variables, and x is a further (large) parameter2.

2Roughly speaking, we are interested in the supremum of this process over 1 ≤ t ≤ 2, obtaining
probability bounds that are a function of x. As x is increased, the supremum becomes stochastically
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The motivation for studying this is its connection with a number-theoretic problem

of Wintner [18]. Let ǫp be a sequence of independent Rademacher random variables, (so

that P(ǫp = 1) = P(ǫp = −1) = 1/2), and construct a “random multiplicative function”

from these, as follows:

f(n) :=

{

∏

p|n ǫp if n is squarefree

0 otherwise

We also set M(x) :=
∑

n≤x f(n). One can view f(n) as a heuristic model for some

deterministic functions occurring in number theory, such as the Möbius function, or

simply as an interesting object in its own right. In our first appendix, we reproduce

an argument of Halász [5] showing that lower bound information about the supremum

of a certain Rademacher process can be translated into lower bound information about

|M(x)|. Exploiting this connection, Halász [5] established that there exists a constant

B > 0 such that, almost surely,

M(x) 6= O(
√
xe−B

√
log log x log log log x) as x → ∞.

In §6, we use Propositions 1 and 2 to prove results like the following:

Corollary 2. As x → ∞,

P( sup
1≤t≤2(log log x)2

∑

p≤x

gp
cos(t log p)

p1/2+1/ log x
≤ log log x− log log log x+O((log log log x)3/4))

is O((log log log x)−1/2).

The exact nature of the bound O((log log log x)−1/2) is not the important feature

here: this could be improved a bit by fairly small changes to the proof, but any bound

that is o(1) would suffice for us. The crucial feature is the level log log x− log log log x+

O((log log log x)3/4)) that we know the supremum will typically exceed: standard meth-

ods3 show that the supremum is at most log log x + log log log x (say) with probability

1 − o(1), so Corollary 2 is very precise in this respect. This precision is crucial if one

wishes to deduce things about |M(x)|: indeed it is the size of the second order sub-

tracted term log log log x, together with the size of the interval over which the supremum

is taken, that determines what can be said.

Together with a suitable version of the multivariate central limit theorem, given in

our second appendix, Corollary 2 allows for a substantial improvement of Halász’s [5]

result about M(x). However, it is possible to do better still.

larger: this is because the variance increases for fixed t, but also because the correlation at nearby
values of t decreases. Ultimately, for reasons explained in §6.3, we allow the range of t to increase
slowly with x as well.
3The process is “almost” stationary, as explained in §6.1, and a simple adaptation of Rice’s formula
yields upper bounds for its supremum. See e.g. the book of Leadbetter, Lindgren and Rootzén [7] for
discussion of Rice’s formula.
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Corollary 3. Let A > 2.5, and let M(x) be the summatory function of a Rademacher

random multiplicative function, as above. It almost surely holds that

M(x) 6= O(
√
x(log log x)−A).

Corollary 2 implies Corollary 3 with the restriction A > 3, and this is proved in §6.
To prove Corollary 3 for all A > 2.5, an argument by contradiction is needed to slightly

sharpen the result of Proposition 2. This argument is rather fiddly, and for example

does not result in a direct analogue of Corollary 2. It is given in §7.
It seems extremely likely that, almost surely, M(x) 6= O(

√
x), and perhaps thatM(x)

almost surely has fluctuations of order
√
x log log x (by analogy with Kolmogorov’s Law

of the Iterated Logarithm). Indeed, M(x) might well exhibit even larger fluctuations,

since its probability distribution may have rather heavy tails : see, for example, the

author’s article [6]. However, an argument like our own, ultimately based on studying

a certain average of M(x), seems unable to detect these large but rare fluctuations.

We presented Proposition 2 in its current form, involving parameters cj, dj, δ, because

this seems both easy to appreciate, and to lead to good results in our applications.

However, as mentioned above, to prove the full version of Corollary 3 it is necessary

to slightly strengthen Proposition 2. Such a strengthening may also be possible in the

context of Corollary 1: some of the initial steps of the §7 argument transfer to that

situation, but it is not clear whether the whole argument goes through (except that it

does not trivially do so).

The author also believes that there will be other Gaussian processes to which Propo-

sitions 1 and 2 could usefully be applied, and hopes that the reader might have some

examples at hand.

2. Proof of Proposition 1

In view of the decomposition

P(max
1≤i≤n

Z(ti) > u) =

n
∑

m=1

P(Z(tm) > u, Z(tj) ≤ u ∀j ≤ m− 1),

it will suffice to show that, for any 1 ≤ m ≤ n and any H ≥ 0,

P(Z(t1), ..., Z(tm−1) ≤ u, Z(tm) > u) ≥ He−(u+H)2/2

√
2π

inf
0≤h≤H

P (m, h).

It is well known (and easy to check, by computing correlations) that Z(tm) is inde-

pendent of the collection of random variables

Z(tj)− rj,mZ(tm), 1 ≤ j ≤ m− 1.
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These have mean zero and correlations

rj,k − rj,mrk,m, 1 ≤ j, k ≤ m− 1,

and, in particular, none of them are degenerate (by assumption in Proposition 1). Thus

P(Z(t1), ..., Z(tm−1) ≤ u, Z(tm) > u) is at least
∫ u+H

u

P(Z(tj)− rj,mZ(tm) ≤ u− rj,mx ∀1 ≤ j ≤ m− 1)
e−x2/2

√
2π

dx,

from which the proposition follows.

Q.E.D.

In our applications, it will turn out that

P(Z(t1), ..., Z(tm−1) ≤ u, Z(tm) > u+H)

decreases very rapidly as H increases. Indeed, we will always choose H so that its effect

in P (m,H) is negligibly small, and therefore only really need to understand P (m, 0).

This is the point of introducing the initial decomposition of P(max1≤i≤n Z(ti) > u),

rather than trying to understand P(Z(ti) ≤ u ∀1 ≤ i ≤ n) directly by conditioning.

3. Normal comparison results

3.1. Classical comparison results. In this subsection we present the equality under-

lying normal comparison results, and state some fairly classical consequences of this. We

will use these in a few places, and hopefully they will also supply an unfamiliar reader

with some idea of how the method of comparison (as it is referred to by Piterbarg [14])

is traditionally employed. Our treatment largely follows Li and Shao [8], although we

would also like to draw attention to a 1954 paper of Plackett [15], which contains a

similar presentation of the basic comparison result4.

If ã, b̃ ∈ R
n, write ã ≤ b̃ to mean that every component of ã is at most the corre-

sponding component of b̃. We have the following identity, which is the key part of the

proofs of various normal comparison results:

Exact Formula 1 (Following Li and Shao, and others). Let X̃ = (X1, ..., Xn) and

W̃ = (W1, ...,Wn) be centralised and normalised n-variate normal vectors, with non-

singular covariance matrices Var(X̃) = (Cov(Xi, Xj))1≤i,j≤n = (r
(1)
i,j ) and Var(W̃ ) =

(r
(0)
i,j ) respectively. Let ũ ∈ R

n. Then

P(X̃ ≤ ũ)− P(W̃ ≤ ũ) =

4Plackett was interested in the numerical approximation of multivariate normal probabilities, but some
later comparison results are readily obtained from his paper. Unfortunately this work does not seem
to be very widely known.
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=
∑

1≤i<j≤n

(r
(1)
i,j − r

(0)
i,j )

∫ 1

0

φ(ui, uj; r
(h)
i,j )P(Z̃

(h) ≤ ũ|Z(h)
i = ui, Z

(h)
j = uj)dh,

where Z̃(h) = (Z
(h)
1 , ..., Z

(h)
n ) is multivariate normal with covariance matrix

(r
(h)
i,j ) := hVar(X̃) + (1− h)Var(W̃ ),

and φ(x, y; r) denotes the standard bivariate normal density with correlation r, viz.

1

2π
√
1− r2

e−(x2−2rxy+y2)/2(1−r2).

To prove the formula one writes

P(X̃ ≤ ũ)− P(W̃ ≤ u) =

∫ 1

0

d

dh
P(Z̃(h) ≤ ũ)dh,

observing that

d

dh
P(Z̃(h) ≤ ũ) =

∑

1≤i<j≤n

∂

∂r
(h)
i,j

P(Z̃(h) ≤ ũ)
∂r

(h)
i,j

∂h
=

∑

1≤i<j≤n

(r
(1)
i,j − r

(0)
i,j )

∫ ũ

−∞

∂2fh
∂yi∂yj

dỹ.

Here fh is the density function of Z̃(h), the range of integration has its obvious meaning,

and the second equality uses the fact that

∂fh

∂r
(h)
i,j

=
∂2fh
∂yi∂yj

,

which follows by expressing the multivariate normal density in terms of its characteristic

function.

Exact Formula 1 provides rigorous support for the intuitive idea that distributions

with “nearby” covariance matrices may have like behaviour. The inequalities that we

derive next may express this in a more striking way: they are a composite of results of

Li and Shao [8] and of Leadbetter, Lindgren and Rootzén [7], although in most respects

are unchanged from bounds of Slepian (1962), Berman (1964, 1971), and Cramér (1967).

Comparison Inequality 1 (Following Leadbetter, Lindgren and Rootzén, and Li and

Shao). If X̃, W̃ , ũ are as in Exact Formula 1, and 1 denotes the indicator function, then

each of the following is an upper bound for P(X̃ ≤ ũ)− P(W̃ ≤ ũ).

(i)

1

2π

∑

1≤i<j≤n

1
r
(1)
i,j >r

(0)
i,j

∫ r
(1)
i,j

r
(0)
i,j

1√
1− t2

e−(u2
i+u2

j )/2(1+|t|)dt

(ii)

1

2π

∑

1≤i<j≤n

1
r
(1)
i,j >r

(0)
i,j
(arcsin(r

(1)
i,j )− arcsin(r

(0)
i,j ))e

−(u2
i+u2

j )/2(1+max{|r(1)i,j |,|r
(0)
i,j |})
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(iii)

2

π

∑

1≤i<j≤n

1
r
(1)
i,j >r

(0)
i,j

(1 + max{|r(1)i,j |, |r
(0)
i,j |})3/2

(u2
i + u2

j)
√

1−max{|r(1)i,j |, |r
(0)
i,j |}

e−(u2
i+u2

j )/2(1+max{|r(1)i,j |,|r
(0)
i,j |})

To obtain the first bound, we overestimate the conditional probability in Exact For-

mula 1 trivially by 1 and insert the definition of φ(ui, uj; r
(h)
i,j ), observing that

∫ 1

0

e−(u2
i−2r

(h)
i,j uiuj+u2

j )/2(1−(r
(h)
i,j )2)

√

1− (r
(h)
i,j )

2

dh ≤
∫ 1

0

1
√

1− (r
(h)
i,j )

2

e−(u2
i+u2

j )/2(1+|r(h)i,j |)dh

=
1

r
(1)
i,j − r

(0)
i,j

∫ r
(1)
i,j

r
(0)
i,j

1√
1− t2

e−(u2
i+u2

j )/2(1+|t|)dt.

For the second bound, we overestimate the exponential by e−(u2
i+u2

j )/2(1+max{|r(1)i,j |,|r
(0)
i,j |}),

and then evaluate the integral over t. Alternatively, by making a substitution x =
√

(1− t)/(1 + t) we find that for any 0 ≤ a ≤ b < 1, and any K ≥ 0,

∫ b

a

1√
1− t2

e−K/(1+t)dt = 2e−K/2

∫

√
(1−a)/(1+a)

√
(1−b)/(1+b)

1

1 + x2
e−Kx2/2dx

≤ (1 + b)3/2√
1− bK

e−K/2

∫

√
(1−a)/(1+a)

√
(1−b)/(1+b)

Kxe−Kx2/2dx.

Since this integral is at most e−K(1−b)/2(1+b), the third bound follows directly.

As Leadbetter, Lindgren and Rootzén [7] point out, the assumption that X̃ and W̃

are non-singular is not necessary for the above bounds, as one may pass to that case by

making arbitrarily small changes to the entries of the covariance matrices, and the first

bound (from which we derived the others) is a continuous function of those entries.

Typically, one would apply Comparison Inequality 1 by observing that the covariance

matrix of X̃ “looks rather like” the covariance matrix of a well understood multivariate

normal distribution, e.g. that it looks like the identity matrix. See the paper of Li and

Shao [8] for some examples. If the entries of the covariance matrices are sufficiently close

together, or if one can afford to choose the entries of ũ very large, then Comparison

Inequality 1 can supply strong information.

We finish with a well known qualitative consequence of Comparison Inequality 1.

Comparison Inequality 2. Let X̃ = (X1, ..., Xn) and W̃ = (W1, ...,Wn) be centralised

and normalised n-variate normal vectors, with covariance matrices Var(X̃) = (r
(1)
i,j ) and

Var(W̃ ) = (r
(0)
i,j ) respectively. Let ũ ∈ R

n. If r
(1)
i,j ≤ r

(0)
i,j for each 1 ≤ i, j ≤ n, then

P(X̃ ≤ ũ) ≤ P(W̃ ≤ ũ).
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The special case of this result where ũ = (u, u, ..., u), for some u ∈ R, is usually

referred to as Slepian’s lemma.

3.2. Reversal of roles. As promised in the introduction, we now give a very brief

description of the reversal of roles argument that originally served in place of Propo-

sition 1. For the applications in this paper, Proposition 1 entirely supersedes such an

argument, but it is possible that it may be useful in other contexts.

We aim to give an estimate for

P(Z(tm) > u, Z(tj) ≤ u ∀j ≤ m− 1),

under the conditions of Proposition 1. Our idea is to apply the methodology of Exact

Formula 1, but viewing the sum of integrals that arises as a main term for subsequent

analysis, and the subtracted probability as an error term. Thus we do not choose W̃ to

have a standard distribution, but so that this subtracted probability is zero.

More concretely, we let A1, ..., Am be a collection of N(0, 1) random variables, all

independent of one another and of the Z(ti). Let ǫ > 0, and define

Xi = Wi :=
Z(ti) + ǫAi√

1 + ǫ2
, 1 ≤ i ≤ m−1; Xm :=

Z(tm) + ǫAm√
1 + ǫ2

; Wm :=
Z(tm−1) + ǫAm√

1 + ǫ2
.

Precisely analogously to Exact Formula 1, and adopting the same notation r
(h)
i,j as there,

we find that

P(X1, ..., Xm−1 ≤ u,Xm > u)− P(W1, ...,Wm−1 ≤ u,Wm > u)

= −
∑

1≤i≤m−1

(r
(1)
i,m − r

(0)
i,m)

∫ 1

0

φ(u, u; r
(h)
i,m)P(Z̃

(h) ≤ ũ|Z(h)
i = u, Z(h)

m = u)dh

= −
∑

1≤i≤m−1

ri,m − ri,m−1

1 + ǫ2

∫ 1

0

φ(u, u;
hri,m + (1− h)ri,m−1

1 + ǫ2
)P (i, h, ǫ)dh,

say. We need the ǫ perturbations here to ensure that we work with non-singular mul-

tivariate normal distributions. However, at the end of the argument we can let ǫ → 0,

whereby we will have compared P(Z(tm) > u, Z(tj) ≤ u ∀j ≤ m− 1) with

P(Z(t1), ..., Z(tm−1) ≤ u, Z(tm−1) > u) = 0.

It is less straightforward to analyse P (i, h, ǫ) for 1 ≤ i ≤ m−2 than to analyse P (m−
1, h, ǫ), and to give lower bounds one can replace those probabilities by 1ri,m>ri,m−1

. In

our examples these other terms give a lower order contribution, but this need not always

be so. However, to analyse P (m− 1, h, ǫ) one can note (as did Li and Shao [8]) that for

any 1 ≤ i ≤ m− 1, the collection of random variables

Y
(h)
j := Z

(h)
j −

(

r
(h)
j,i − r

(h)
i,mr

(h)
j,m

1− (r
(h)
i,m)

2

)

Z
(h)
i −

(

r
(h)
j,m − r

(h)
i,mr

(h)
j,i

1− (r
(h)
i,m)

2

)

Z(h)
m
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= Z
(1)
j −

(

r
(1)
j,i − r

(h)
i,mr

(h)
j,m

1− (r
(h)
i,m)

2

)

Z
(1)
i −

(

r
(h)
j,m − r

(h)
i,mr

(1)
j,i

1− (r
(h)
i,m)

2

)

Z(h)
m , 1 ≤ j ≤ m− 1, j 6= i

is independent of {Z(h)
i , Z

(h)
m }. In our examples this leads, after some slightly fiddly

manipulations, to a probability estimate much like Proposition 1. (For, in our examples,

Z(tm−1) and Z(tm) are always very highly correlated, and so P (m−1, h, ǫ) is essentially

the same as the simple conditional probability in the proof of Proposition 1.)

4. Proof of Proposition 2

In view of Comparison Inequality 2, and assumption (ii) in the statement of Propo-

sition 2, we may proceed on the assumption that for 1 ≤ j, k ≤ m− 1 and j 6= k, EVjVk

is equal to
cmin{j,k}dmax{j,k}

√

(1− r2j,m)(1− r2k,m)
.

The key to the proof is the explicit construction of such random variables from a col-

lection of independent normal random variables.

Let Y1, ..., Yn, Z1, ..., Zn be independent standard normal random variables, and for

1 ≤ i ≤ n let αi, βi be real numbers satisfying

β2
i

∑

j≤i

α2
j < 1.

Then the random variables

Xi := βi

∑

j≤i

αjYj +

√

1− β2
i

∑

j≤i

α2
jZi

are again jointly multivariate normal, have zero means and unit variances, and satisfy

EXiXj = βiβj

∑

k≤min{i,j}
α2
k, i 6= j.

We also note that if u1, ..., un are any real numbers, if βi > 0 ∀1 ≤ i ≤ n, and if δ ∈ R,

then

P(Xi ≤ ui ∀1 ≤ i ≤ n) = P



Zi ≤
ui − βi

∑

j≤i αjYj
√

1− β2
i

∑

j≤i α
2
j

∀1 ≤ i ≤ n





≥ P(
∑

j≤i

αjYj ≤
δui

βi
∀1 ≤ i ≤ n)

n
∏

i=1

Φ





ui(1− δ)
√

1− β2
i

∑

j≤i α
2
j



 .
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We now set n = m− 1, and define real numbers αi, βi by

βi :=
di

√

1− r2i,m

,
∑

j≤i

α2
j :=

ci
di
, 1 ≤ i ≤ m− 1.

The conditions on ci, di in Proposition 2 ensure that we can define αi, βi in this way, and

that they satisfy the various hypotheses above. The reader may also check that the Xi

have the correlation structure that we wanted, and that the product term in the previous

paragraph is as in Proposition 2 (when ui is taken as (u − ri,m(u + h))/
√

1− r2i,m). It

remains to give a suitable lower bound for P(
∑

j≤i αjYj ≤ δui

βi
∀1 ≤ i ≤ m− 1).

It should not come as a surprise that the behaviour of partial sums of independent

normal random variables is rather well understood. For example, writing {Wt}t≥0 for

the standard Brownian motion, (see e.g. chapter 5 of Lifshits [9] for much discussion

of this process), one has the following neat result, which we quote from chapter 13.4 of

Grimmett and Stirzaker [4]: if t ≥ 0, then

max
0≤s≤t

Ws
d
= |Wt| d

= |N(0, t)|.

This is useful to us because (
∑

j≤i αjYj)1≤i≤m−1
d
= (W∑

j≤i α
2
j
)1≤i≤m−1, so that

P(
∑

j≤i

αjYj ≤
δui

βi

∀1 ≤ i ≤ m− 1) ≥ Φ(B)− Φ(−B),

where

B =
δ

√

∑

j≤m−1 α
2
j

min
1≤i≤m−1

ui

βi

= δ

√

dm−1

cm−1

min
1≤i≤m−1

u− ri,m(u+ h)

di
,

as claimed in Proposition 2.

Q.E.D.

The proof just given divided naturally into two parts: first we constructed the Xj

to explicitly model the Vj, allowing us to extract some of their dependence in the

manageable form of the Yj; and then we analysed the Yj using a result about Brownian

motion. Both of these steps could conceivably be improved, potentially leading to a

better lower bound for P (m, h).

In the analysis of the Yj, we used a fact about the probability that a Brownian

motion remains below a constant level for a period of “time” t. We could have used

results about the probability that it remains below, for example, a sloping line, allowing

some flexibility in the upper bounds that we ask for. However, in our applications

these probabilities are never particularly small, and the author doubts that a more

complicated approach would be advantageous in many situations.
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It appears to the author that the modelling part of the argument is weaker. Thus,

in our examples, our lower bound cmin{j,k}dmax{j,k} for rj,k − rj,mrk,m is not very tight

when j and k are close together. An alternative way to think about this is to note that

we can replace the independent Zj in our construction by any standard normal Aj with

EAjAk ≤ rj,k − rj,mrk,m − cmin{j,k}dmax{j,k}
√

(1− r2j,m − cjdj)(1− r2k,m − ckdk)
.

The correlation bound here looks complicated, but this may be somewhat illusory; for

example, if we were able to make the choices cj = rj,m, dj = 1 − rj,m, as for certain

stationary processes, we would want

EAjAk ≤
rj,k − rmin{j,k},m

√

(1− rj,m)(1− rk,m)
.

These quantities are not likely to be easier to work with than the correlations rj,k of our

original random variables. However, to prove Proposition 2 we need upper bounds for

upper tail probabilities (which then lower bound the probability that none of the Aj are

too big), and these may be easier to come by than lower bounds, for example by using

Rice’s formula as part of a first moment argument. Another approach to improving

Proposition 2 along these lines is worked out in §7.

5. Application to estimating Pickands’ constants

Suppose that t1 < t2 < ... < tM is a set of equally spaced real numbers. Suppose,

moreover, that {Z(ti)}1≤i≤M is a mean zero, variance one, stationary Gaussian process,

with decreasing covariance function r(t), t ≥ 0. If a > 0, then (the proof of) Proposition

1 implies that

P( max
1≤i≤M

Z(ti) > u) ≥ MP(Z(tM ) > u, Z(tj) ≤ u ∀j < M)

≥ Me−u2/2

√
2πu

· ae−a−a2/2u2

inf
0≤h≤a/u

P (M,h).

In a paper from 1996, Shao [17] considers a (mean zero, variance one) stationary

Gaussian process indexed by the half-line [0,∞), with covariance function

r(t) =
1

2
(eαt/2 + e−αt/2 − (et/2 − e−t/2)α), t ≥ 0.
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Such a process exists for each fixed 0 < α < 2. As t → 0, we see (as did Shao [17]) that

r(t) = 1− tα/2 +O(t2). We also note that, for t > 0,

r′(t) =
α

4
(eαt/2 − e−αt/2 − (et/2 + e−t/2)(et/2 − e−t/2)α−1)

=
α

4
(eαt/2 − e−αt/2 − eαt/2(1 + e−t)(1− e−t)α−1)

≤ α

4
(eαt/2 − e−αt/2 − eαt/2(1− e−2t))

< 0.

In proving Corollary 1, we shall assume that α is smaller than a certain fixed positive

constant, which could be found explicitly if desired and should certainly be less than

1. There is no loss in doing this, because Hα ≫ 1 for α larger than such a constant.

To prove the corollary, we will study Shao’s stationary process at the sample points

ti = i/M . Making the simple choice a = 1 in the above discussion, we have

Hα ≫ 21/α lim
u→∞

(Mu−2/α inf
0≤h≤1/u

P (M,h)),

and we will investigate the largest value of M , depending on u and α, for which we

can show that inf0≤h≤1/u P (M,h) ≫ 1. Note that a large value of M corresponds to a

close packing of sample points in the interval [0, 1]. The reader should also note that

there is nothing intrinsically asymptotic about most of our calculations, although we

are interested in letting u → ∞ to compare with Pickands’ theorem.

We want to apply Proposition 2, and can do so with the natural choices

cj = r((M − j)/M), dj = 1− r((M − j)/M), 1 ≤ j ≤ M − 1,

since r(t) is decreasing and positive. Thus P (M,h) is at least

(Φ(B)− Φ(−B))
M−1
∏

j=1

Φ

(

(1 +O(
1

u2(1− r(j/M))
))u(1− δ)

√

1− r(j/M)

)

= (Φ(B)− Φ(−B))
M−1
∏

j=1

Φ

(

(1 +O(
Mα

u2jα
))(1− δ)

√

u2(jα/2Mα +O(j2/M2))

)

,

where B = B(δ) is as in Proposition 2, and δ will be chosen later in terms of α.

Together with the known and conjectured bounds for Pickands’ constants, this suggests

taking M = [(bu2α/2)1/α], where now we investigate how large b may be chosen. For

definiteness in our calculations, we declare that we shall certainly have 1 ≤ b ≤ 10 (and

of course our conclusion will be that taking b as e/2 is permissible).

First we note that the part of the product over j > M1/4 is 1 + o(1) as u → ∞. For,

since r(t) is decreasing and α, δ are small, each of those terms is at least

Φ((1 + O(α))u(1− δ)
√

1− r(M−3/4)) ≥ Φ((1/2)
√

u2(M−3α/4/2 +O(M−3/2))).
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If u is large enough, this is

≥ 1− e−(1/8)u2(M−3α/4/2+O(M−3/2)) ≥ 1− e−
√
u,

and clearly (1− e−
√
u)M is 1 + o(1) as u → ∞ with α fixed.

When j ≤ M1/4, provided that u is large enough in terms of α ≤ 1 we see

u2j2/M2 ≤ u2M−3/2 = O(u−1α−3/2), and Mα/u2jα = O(α/jα).

Since for x ≥ 2, say, we have Φ(x) ≥ 1 − x−1e−x2/2 ≥ e−2x−1e−x2/2
, the part of the

product over j ≤ M1/4 is at least e−f(b,δ,α,u), where

f(b, δ, α, u) = O(
∑

j≤M1/4

e−(1−δ)2jα/2bα
√
bα/(1− δ)jα/2).

Note that, since we assume that α and δ are small, the arguments of Φ in the product

are all at least 2. Now

∑

j≤M1/4

e−(1−δ)2jα/2bα ≤
∫ M1/4

0

e−(1−δ)2tα/2bαdt

=
2b

(1− δ)2

∫ (1−δ)2Mα/4/2bα

0

(

2bαy

(1− δ)2

)1/α−1

e−ydy

≤
(

2b

(1− δ)2

)1/α

α1/α−1Γ(1/α).

In view of Stirling’s formula, the right hand side is asymptotic to
√

2π/α(2b/e(1−δ)2)1/α

as α → 0, so is at most 4α−1/2(2b/e(1− δ)2)1/α, say, when α is small.

Finally, observe that

B(δ) = δ
√

(1− r(1/M))/r(1/M)u(1 +O(1/u2(1− r(1/M)))) ≫ δ/
√
α,

provided that u is large enough in terms of α. If we make the choice δ = α, then b

can be chosen as large as e/2 whilst still ensuring that f(b, δ, α, u) = O(1). Corollary 1

follows from making these choices.

6. Application to a number-theoretic process

6.1. Preliminary calculations. Before we can apply Propositions 1 and 2 to our sec-

ond example, we must reduce to studying a finite set of sample points t, and determine

the covariance structure of the corresponding random variables. As might be expected,

variants of some of these calculations appear in Halász’s paper [5], although we need to

be more precise in several places.

It is useful initially to ignore the contribution from “very small” primes to our random

sums. Let y be a parameter, later to be chosen as a suitable function of x. It is immediate
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that if s, t ∈ R, then

E(
∑

y≤p≤x

gp
cos(t log p)

p1/2+1/ log x
·
∑

y≤p≤x

gp
cos(s log p)

p1/2+1/ log x
) =

∑

y≤p≤x

cos(t log p) cos(s log p)

p1+2/ log x

=
1

2

∑

y≤p≤x

cos((t+ s) log p) + cos((t− s) log p)

p1+2/ log x
.

For t ∈ R, we let Zy(t) denote the normalised random variable
∑

y≤p≤x gp cos(t log p)/p
1/2+1/ log x

√

∑

y≤p≤x cos
2(t log p)/p1+2/ log x

=

∑

y≤p≤x gp cos(t log p)/p
1/2+1/ log x

√

∑

y≤p≤x 1/2p
1+2/ log x +

∑

y≤p≤x cos(2t log p)/2p
1+2/ log x

.

By a strong form of the prime number theorem (see e.g. chapter 6 of Montgomery

and Vaughan [11]) we have

π(z) := #{p ≤ z : p is prime} =

∫ z

2

du

log u
+O(ze−d

√
log z), z ≥ 2,

where d > 0 is a certain constant. Then if z ≤ x,

∑

p≤z

1

p1+2/ log x
=

∫ z

2

1

u1+2/ log x
dπ(u) =

∫ z

2

u−2/ log x

u log u
du+ c(x) +O(e−d

√
log z)

= log log z +O(1),

where c(x) depends on x only. Moreover, if α 6= 0,

∑

y≤p≤x

cos(α log p)

p1+2/ log x
=

∫ x

y

cos(α log u)u−2/ log x

u log u
du+O((1 + |α|)e−d

√
log y)

=

∫ log x

log y

cos(αu)

u
du+

∫ log x

log y

cos(αu)

u
(e−2u/ log x − 1)du+

+O((1 + |α|)e−d
√
log y)

=

∫ α log x

α log y

cosu

u
du+O(

1

α log x
) +O((1 + |α|)e−d

√
log y),

where the third equality follows using integration by parts, since d
du
((e−2u/ log x−1)/u) =

O(1/ log2 x) for log y ≤ u ≤ log x. We deduce that if s, t ≥ 1, and s 6= t, then

EZy(t)Zy(s) =

∫ |t−s| log x
|t−s| log y

cos u
u

du+O( 1
(t+s) log y

) +O( 1
|t−s| log x) +O((t+ s)e−d

√
log y)

∫ x

y
du

u1+2/ log x log u
+O( 1

log y
) +O((t+ s)e−d

√
log y)

.

We now set out the specific situation to which our Gaussian process results will be

applied. Let E ≥ 1 be a further parameter, (to be chosen later as a function of x), and

for n ∈ N ∪ {0} and M ≤ log x/E introduce the sets

Tn = Tn,x,E,M := {2n+ 1 + iE/ log x : 1 ≤ i ≤ M} ⊆ [2n+ 1, 2n+ 2].
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We seek lower bound information about max0≤n≤B supt∈Tn Zy(t), for certain B.

At this point the reader may be rather appalled by the number of parameters around,

so we hasten to point out that most of these will “select themselves” in due course, and

can essentially be ignored. The sets Tn are sufficiently separated that the behaviour of

Zy(t) on different sets is roughly independent (see §6.3). Moreover, up to error terms

the correlation EZy(t)Zy(s) depends on s, t through |t − s| only (i.e. our process is

approximately stationary). Thus we focus on understanding supt∈T0 Zy(t), and defer

thinking about larger values of n until we put our results together in §6.3.
The parameter E controls the spacing of sample points within their blocks Tn, and

in §6.2 it will be chosen as small as possible such that we obtain good probability

lower bounds from Proposition 2. We declare for now that we shall certainly have

E ≤ e
√
log log x, say. We would like to take M as large as possible, but to simplify our

calculations we choose M = [log x/KE log y], where K is an absolute constant that

forces EZy(t)Zy(s) ≥ 1/ log log x, say, for t, s ∈ T0 (see below). The parameter y is

present to get rid of “beginning of series” effects, in particular ensuring that we have

enough independence of Zy(t) over different blocks Tn. It will be selected in §6.3, but
we declare for now that we shall certainly have log x ≤ y ≤ e(log log x)

100
.

In the above set-up, if s, t ∈ T0 are distinct then

EZy(t)Zy(s) =

∫ log x

|t−s| log y
cosu
u

du+O( 1
|t−s| log x)

∫ x

y
du

u1+2/ log x log u

+O

(

1

log y log log x

)

=

∫ 1

|t−s| log y
cosu
u

du
∫ x

y
du

u1+2/ log x logu

+O

(

1

log log x

)

=
log(1/|t− s| log y)
log log x− log log y

+O

(

1

log log x

)

.

6.2. Implementation of Propositions 1 and 2. We order the points of T0 in the

obvious and natural way, writing ti = 1 + iE/ log x, 1 ≤ i ≤ M . We aim to show

that the maximum of our original random sum is about log log x, and the standard

deviations that we normalised by are about
√

(log log x− log log y)/2, so we take u =
√

2(log log x− log log y). Then

u(1− rm−1,m) = Θ(logE/
√

log log x− log log y) = Θ(logE/u),

so we can safely make the canonical choice H = 1/u in Proposition 1.
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We now seek to apply Proposition 2 to give a lower bound for P (m, h), where 1 ≤
m ≤ M and h ≤ H . Let j < k ≤ m− 1. If |j − k| ≤ log1/3 x then

rj,k = 1− log(|j − k|E)

log log x− log log y
+O

(

1

log log x

)

≥ max{1/2, rj,m}+O

(

1

log log x

)

≥ rj,m +O

(

rj,m
log log x

)

.

In fact this is also true when |j − k| > log1/3 x: since
∫ log x

α log y
(cosu/u)du is a decreasing

function of 0 < α ≤ 1/ log y, we have

rj,k =

∫ log x

|j−k|E log y/ log x
cosu
u

du+O( 1
|j−k|E)

∫ x

y
du

u1+2/ log x log u

+O

(

1

log y log log x

)

≥ rj,m +O

(

1

log y log log x

)

,

and rj,m ≥ 1/ log log x ≥ 1/ log y because m ≤ M . This means that it is legitimate to

choose

cj = 1− log(m− j)E +O(1)

log log x− log log y
, dj =

log(m− j)E +O(1)

log log x− log log y
, 1 ≤ j, k ≤ m− 1

in Proposition 2. Setting δ = 1/ log log x, to match the size of the other “big Oh” term,

we discover that

B(1/ log log x) = Θ

(

u
√
logE

(log log x)3/2

)

= Θ

( √
logE

log log x

)

.

It follows from all of this that

P (m, h) ≫
√
logE

log log x

m−1
∏

j=1

Φ

(

(1 +O(
1

log(m− j)E
))
√

2 log(m− j)E

)

≫
√
logE

log log x
e
−Θ(

∑m−1
j=1

1

(m−j)E
√

log(m−j)E
)
,

provided always that E is larger than an absolute constant. Making the choice E =√
log log x, the exponential becomes Θ(1), and we find P (m, h) ≫

√
log log log x/ log log x.

Plugging this lower bound into Proposition 1, it follows immediately that

P(sup
t∈T0

Zy(t) >
√

2(log log x− log log y)) ≫ M
√
log log log xe−u2/2

u log log x

≫
√
log log log x

(log log x)2
.

6.3. Exploitation of the lower bound. The lower bound obtained at the end of §6.2
is useful raw information about {Zy(t)}t∈T0 . However, in order to deduce results about

the summatory function M(x) of a random multiplicative function, (as described in the
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introduction), we need to be able to say that the supremum is large with probability

close to 1.

To do this, our idea is to “sample the supremum several times independently”: since

the probability that the supremum is large is not too small, if we sample a few times it is

very likely that we will obtain a large value. Although we do not have lots of independent

copies of {Zy(t)}, we can achieve something like this by considering {Zy(t)}t∈Tn for

different n. If Be−d
√
log y ≤ 1

log y
, say, then for distinct 1 ≤ s, t ≤ 2B + 2 we have

EZy(t)Zy(s) =

∫ log x

|t−s| log y
cosu
u

du+O( 1
|t−s| log x)

∫ x

y
du

u1+2/ log x logu

+O

(

1

log y log log x

)

,

as at the end of §6.1. For such s, t with |s − t| ≥ 1, the calculations in §6.1 supply a

more precise result, namely that

EZy(t)Zy(s) = O

(

1

|t− s| log y log log x +
(t+ s)e−d

√
log y

log log x

)

.

Thus, by the second part of Comparison Inequality 1,

|P( max
0≤n≤B

sup
t∈Tn

Zy(t) ≤
√

2(log log x− log log y))−
∏

0≤n≤B

P(sup
t∈Tn

Zy(t) ≤
√

2(log log x− log log y))|

≪ log2 y

log2 x

∑

0≤i<j≤B

∑

1≤k,l≤M

|EZy(2i+ 1 + kE/ log x)Zy(2j + 1 + lE/ log x)|

≪ log2 yM2

log2 x log log x

∑

0≤i<j≤B

(

1

|i− j| log y + (i+ j)e−d
√
log y

)

≪ 1

(log log x)2

(

B logB

log y
+B3e−d

√
log y

)

.

We have seen that, at the level of precision required in §6.2, the correlation struc-

ture of {Zy(t)}t∈Tn is the same for each 0 ≤ n ≤ B. Thus our calculations concern-

ing supt∈T0 Zy(t) go through for supt∈Tn Zy(t) as well, and P(max0≤n≤B supt∈Tn Zy(t) ≤
√

2(log log x− log log y)) is

≪ 1

(log log x)2

(

B logB

log y
+B3e−d

√
log y

)

+ e−Θ((B+1)
√
log log log x/(log log x)2).

The right hand side is O(e−Θ(
√
log log log x)) if we take B = (log log x)2, and y ≥ log x.

For our application to M(x), we need a version of the above result in which Zy(t) is

replaced by
∑

y≤p≤x f(p) cos(t log p)/p
1/2+1/ log x

√

∑

y≤p≤x cos
2(t log p)/p1+2/ log x

,
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with f(p) independent Rademacher random variables. This can be achieved using a

multivariate central limit theorem, as explained in our second appendix, at the cost of

replacing
√

2(log log x− log log y) by
√

2(log log x− log log y)− 1. In the application

of the central limit theorem, we need y to be at least a certain power of log x, say

y = log8 x. This choice is also permissible for all of the preceding calculations.

Finally note that for fixed t ∈ R,

E(
∑

p<y

gp cos(t log p)

p1/2+1/ log x
)2 = E(

∑

p<y

f(p) cos(t log p)

p1/2+1/ logx
)2 = O(log log y) = O(log log log x) as x → ∞,

as in §6.1. Applying Chebychev’s inequality to this estimate, it follows that

P(|
∑

p<y

gp cos(t log p)

p1/2+1/ log x
| > (log log log x)3/4) = O((log log log x)−1/2),

similarly if the gp are replaced by Rademacher random variables f(p). The behaviour

of these sums is independent of the behaviour of the sums over y ≤ p ≤ x, so that

Corollary 2 quickly follows from our bounds.

As discussed in our first appendix, the tail sum
∑

p>x f(p) cos(t log p)/p
1/2+1/ log x is

almost surely convergent, and in fact it converges in square mean, so that

E(
∑

p>x

f(p) cos(t log p)

p1/2+1/ log x
)2 ≤

∑

p>x

1

p1+2/ log x
= O(

∫ ∞

x

du

u1+2/ log x log u
) = O(1).

We temporarily set d(x) := inf1≤t≤2(log logx)2

√

E(
∑

y≤p≤x f(p) cos(t log p)/p
1/2+1/ log x)2,

so that d(x) =
√

(log log x− log log y)/2 +O(1) by the calculations in §6.1. Applying

Chebychev’s inequality again, together with the Rademacher version of our estimate for

Zy(t), we find that

P(
1

d(x)
sup

1≤t≤2(log log x)2

∑

p

f(p) cos(t log p)

p1/2+1/ log x
≤
√

2(log log x− log log y)− 1+
(log log log x)3/4

d(x)
)

is O((log log log x)−1/2). Then applying the First Borel–Cantelli Lemma, one quickly

deduces that: for any fixed A > 3, there almost surely exists a sequence (xk), tending

to infinity, with

sup
1≤t≤2(log log xk)2

∑

p

f(p) cos(t log p)

p1/2+1/ log xk
− 2 log log log xk ≥ log log xk − A log log log xk.

By the argument in our first appendix, (and specifically by Supplementary Lemma 1

from that appendix), this implies Corollary 3 for A > 3.
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7. Refinement of Proposition 2 for the random multiplicative

functions application

As discussed at the end of §4, Proposition 2 may be refined in that the product term

can be replaced by any lower bound for

P



Aj ≤
(1− δ)(u− rj,m(u+ h))
√

1− r2j,m − cjdj
∀1 ≤ j ≤ m− 1



 ,

for any standard normal random variables Aj satisfying

EAjAk ≤ rj,k − rj,mrk,m − cmin{j,k}dmax{j,k}
√

(1− r2j,m − cjdj)(1− r2k,m − ckdk)
.

It will be convenient to write U(j, k) for this upper bound on the permissible correlations.

By assumption about the numbers cj , dj, we always have U(j, k) ≥ 0.

In our application to random multiplicative functions, U(j, k) is at least

rj,k − 1
√

(1− r2j,m − cjdj)(1− r2k,m − ckdk)
+

1− rj,m
√

(1− r2j,m − cjdj)(1− r2k,m − ckdk)

=
− log |j − k|E +O(1)

√

(log |j −m|E +O(1))(log |k −m|E +O(1))
+

log |j −m|E +O(1)
√

(log |j −m|E +O(1))(log |k −m|E +O(1))
,

for 1 ≤ j < k ≤ m−1. It seems sensible to consider intervals Li/E < |m− j|, |m−k| ≤
Li+1/E, (with L ≤ 2 a parameter to be chosen), on which we see

U(j, k) ≥ 1− log(|j − k|E)

i logL
+O

(

1

i logL

)

.

In the random multiplicative functions example, the upper bound (1− δ)(u− rj,m(u+

h))/
√

1− r2j,m − cjdj for the Aj on such an interval is at least (1+O(1/i logL))
√
2i logL.

So considering intervals independently, we can replace the product in Proposition 2 by

[log(Em)/ logL]
∏

i=0,

Li≥E/2

P(Aj ≤ (1− c

i logL
)
√

2i logL ∀Li/E < |m− j| ≤ Li+1/E),

where c is an absolute constant, and Aj are any standard normal random variables

whose correlations are bounded as described.

The crucial point is that on each interval, and up to the “big Oh” term, the bound on

U(j, k) corresponds to a stationary correlation structure that we can hope to understand.

Indeed, it is essentially a re-scaled version of the original correlation structure of our

random multiplicative functions process.

Using these ideas, we shall establish the following result:
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Proposition 3. If E is a sufficiently large constant, then the following is true. Let

{Zy(t)}t∈T0 = {Zx
y (t)}t∈T0 be the Gaussian process described in §6.1, for such a choice

of E. Let ǫ(x) be any function tending to zero as x → ∞. Then for some sequence of

x, tending to infinity, we have

P(sup
t∈T0

Zy(t) >
√

2(log log x− log log y)) ≥ ǫ(x)
√
logE

E(log log x)3/2
.

Here we include a superscript x to explicitly record that Zy(t) = Zx
y (t) depends on

x, and we remind the reader that we had y = log8 x.

Recall from §6.1 that

EZx
y (1+

jE

log x
)Zx

y (1+
kE

log x
) = 1− log(|j − k|E) +O(1)

log log x− log log y
, 1 ≤ j, k ≤ log x

KE log y
, j 6= k.

When Li is larger than an absolute constant, we can choose x(i) ∈ R such that
√

2(log log x(i)− log log y(i)) = (1− c

i logL
)
√

2i logL.

Here we write y(i) = y(x(i)) = log8 x(i). Then if C ∈ N is larger than an absolute

constant, and we take L = 1 + 1/KC3, we have

EZ
x(i)
y(i) (1 +

jCE

log x(i)
)Z

x(i)
y(i) (1 +

kCE

log x(i)
) = 1− log(|j − k|E) + logC +O(1)

(1− c/(i logL))2i logL
≤ U(j, k),

where U(j, k) denotes the bound for interval i. This only makes sense if jC, kC ≤
log x(i)/KE log y(i), but that will hold for example if j, k ≤ Li/KEC2. Then if i is

sufficiently large that
[

Li+1

E

]

−
[

Li

E

]

≤
[

Li

KEC2

]

,

we can say P(Aj ≤ (1− c
i logL

)
√
2i logL ∀Li/E < |m− j| ≤ Li+1/E) is at least

P(sup
t∈T0

Z
x(i)
y(i) (t) ≤

√

2(log log x(i)− log log y(i))).

Notice that, for our fixed choice of L, the various requirements for i to be “sufficiently

large” will all be satisfied if i ≥ iE +D, where iE is least for which Li ≥ E/2, and D is

an absolute constant. Thus the product term in Proposition 2 may be replaced by

[LD]
∏

j=1

Φ

(

(1 +O(
1

log jE
))
√

2 log jE

)
[ log(Em)

logL
]

∏

i=iE+D

P(sup
t∈T0

Z
x(i)
y(i) (t) ≤

√

2(log log x(i)− log log y(i))).

We also note that, obviously, x(i) tends to infinity with i.

Now suppose that the proposition failed, so for all sufficiently large x the tail prob-

ability was smaller than required. Then for all i from some point onwards we would
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have

P(sup
t∈T0

Z
x(i)
y(i) (t) ≤

√

2(log log x(i)− log log y(i))) ≥ 1− 1

(log log x(i))3/2

≥ 1−O

(

1

(i logL)3/2

)

,

so the product term in Proposition 2 could be replaced by a positive constant. But then

the argument of §6.2 would supply that

P(sup
t∈T0

Zy(t) >
√

2(log log x− log log y)) ≫
√
logE

E(log log x)3/2
,

which is a contradiction for x sufficiently large.

Q.E.D.

Armed with Proposition 3, we can repeat the argument of §6.3 with E chosen to be a

large constant (rather than
√
log log x), and B then chosen as (log log x)3/2 log log log x,

say (rather than (log log x)2). The reader should note that there is a subtlety involved,

as this requires lower bounds for

P(sup
t∈Tn

Zy(t) >
√

2(log log x− log log y)), 0 ≤ n ≤ B,

whilst Proposition 3 concerns supt∈T0 Zy(t) only. However, modifying the choice of E

and K by some multiplicative constants in the definition of Tn, n 6= 0, so that E is

larger but EK remains the same, we can arrange using Comparison Inequality 2 that

P(sup
t∈Tn

Zy(t) >
√

2(log log x− log log y)) ≥ P(sup
t∈T0

Zy(t) >
√

2(log log x− log log y)).

We also only have probability bounds for a sequence of x tending to infinity, rather than

all x, but we do not require that in §6.3. Corollary 3 follows from these considerations.

Appendix A. Random multiplicative functions and Rademacher

processes

In this appendix we sketch the connection between the summatory function M(x)

of a random multiplicative function (as defined in the introduction), and a certain

Rademacher random process. The argument we give is essentially that of Halász [5].

In view of Wintner’s [18] result that for each ǫ > 0, M(x) = O(x1/2+ǫ) almost surely,

we know that the Dirichlet series

F (s) :=

∞
∑

n=1

f(n)

ns
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is almost surely convergent in the half plane ℜ(s) > 1/2, and then satisfies

F (s) = s

∫ ∞

1

M(z)

zs+1
dz.

On the other hand, writing ζ(s) :=
∑

n 1/n
s,ℜ(s) > 1 for the Riemann zeta function,

we have the Euler product identity

F (s) =
∏

p

(1 +
f(p)

ps
) = e

∑
p f(p)/ps−

∑
p 1/2p2s+

∑
k≥3

∑
p(−1)k+1f(p)k/kpks

= e
∑

p f(p)/ps−log ζ(2s)/2+
∑

k≥2

∑
p 1/2kp

2ks+
∑

k≥3

∑
p(−1)k+1f(p)k/kpks.

This is certainly valid when ℜ(s) > 1, and almost surely extends to ℜ(s) > 1/2 in view

of Kolmogorov’s Three Series theorem5 and the identity theorem of complex analysis.

Thus in the domain 1/2 < σ < 1, 1 ≤ t ≤ 2, say, we almost surely have

e
∑

p f(p) cos(t log p)/pσ ≪
∫ ∞

1

|M(z)|
zσ+1

dz ≤ sup
z≥1

|M(z)|
√

z(σ − 1/2)
+ sup

z≥z0

|M(z)|√
z(σ − 1/2)

,

where the second inequality follows by splitting the integral at z0 := e1/
√

σ−1/2. Taking

σ = 1/2 + 1/ logx, where x ≥ 2 is a parameter, we find that

e
∑

p f(p) cos(t log p)/p1/2+1/ log x ≪
√

log x sup
z≥1

|M(z)|√
z

+ log x sup
z≥e

√
log x

|M(z)|√
z

, 1 ≤ t ≤ 2.

For the proof of Corollary 3, we need a version of the preceding inequality that is valid

for a larger range of t. Using the estimate | log ζ(σ+it)| ≤ log log |t|+O(1), σ ≥ 1, |t| ≥ 2,

which is contained in e.g. Theorem 6.7 of Montgomery and Vaughan [11], we can say

that for t ≥ 1,

e
∑

p f(p) cos(t log p)/p1/2+1/ log x−log t−log log(t+2)/2 ≪
√

log x sup
z≥1

|M(z)|√
z

+ log x sup
z≥e

√
log x

|M(z)|√
z

.

This immediately implies the following result:

Supplementary Lemma 1. Let g(z) be a decreasing function. If, with positive prob-

ability, we have M(z) = O(
√
zg(z)) as z → ∞, then with positive probability we have

sup
t≥1

e
∑

p f(p) cos(t log p)/p1/2+1/ log x−log t−log log(t+2)/2 = O(g(1)
√

log x+ g(e
√
log x) log x)

for all x ≥ 2.

Since Halász’s paper [5] seems to be difficult to get hold of, it is perhaps worthwhile

to briefly discuss Halász’s [5] own use of the foregoing argument. He shows that there

5This implies that
∑

p
f(p)/ps converges almost surely when ℜ(s) > 1/2. We then use the standard

fact, proved using partial summation, that a Dirichlet series is a holomorphic function strictly to the
right of its abscissa of convergence.
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almost surely exist sequences of real numbers xk, tending to infinity, and of sets Sk ⊆
[1, 2], of measure > 1/ log xk, and of sets Bk ⊆ [1, 2], of measure ≤ 1/ log xk, such that

∑

p≤xk

f(p)
cos(t log p)√

p
≥ log log xk −

√

29 log log xk log log log xk ∀t ∈ Sk,

∑

p≤xk

f(p)
cos(t log p)√

p
−
∑

p

f(p)
cos(t log p)

p1/2+1/ log xk
= O(

√

log log xk) ∀t ∈ [1, 2]\Bk.

In particular, there almost surely exists a sequence xk such that

sup
t∈[1,2]

∑

p

f(p)
cos(t log p)

p1/2+1/ log xk
≥ log log xk −

√

29 log log xk log log log xk −O(
√

log log xk),

which is enough to imply the omega result for M(x) attributed to Halász in the intro-

duction.

Very roughly, Halász [5] investigates the process
∑

p≤x f(p)
cos(t log p)√

p
, t ∈ [1, 2] by

estimating moments of the counting function
∫ 2

1

1∑
p≤x f(p) cos(t log p)/

√
p≥Mdt,

where M is a parameter. However, the details are rather complicated, as it is actually

necessary to split the sum over p into several ranges, and then reduce the range of

integration to progressively smaller random subsets of [1, 2]. This splitting is, in a

sense, quite natural, as the parts of the sum taken over large primes are less correlated at

nearby values of t (see §6.1). On the other hand, the splitting causes an accumulation of

error terms in the analysis, one from each range of summation. The iterative approach

is also highly reliant on being presented with the process as a random sum over p,

whereas (at least if the f(p) were independent Gaussians) one might just as well be

given a description of the process only in terms of its covariance structure.

Appendix B. A multivariate central limit theorem

In this appendix we discuss a multivariate central limit theorem of Reinert and

Röllin [16]. We view this as a “universality result”, which sometimes lets us transfer

conclusions about suprema of Gaussian processes to conclusions about the suprema of

corresponding Rademacher processes. Reinert and Röllin’s [16] approach is based on

Stein’s method of exchangeable pairs.

Suppose that T is a finite set, and that αi(t) ∈ R for 1 ≤ i ≤ n and t ∈ T . Suppose

also that (ǫi)
n
i=1 is a sequence of independent Rademacher random variables, and that

(gi)
n
i=1 is a sequence of independent standard normal random variables. We wish to
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approximate the (joint) distribution of {Xt}t∈T by that of {Yt}t∈T , where

Xt :=

n
∑

i=1

αi(t)ǫi, Yt :=

n
∑

i=1

αi(t)gi.

In the typical way, we construct random variables X ′
t such that ((Xt)t∈T , (X

′
t)t∈T )

is an exchangeable pair of vectors. (That is, such that the law of this tuple is the

same as the law of ((X ′
t)t∈T , (Xt)t∈T ).) Let I be a random variable having the discrete

uniform distribution on {1, 2, ..., n}, independently of everything else; and let (ǫ′i)
n
i=1

be an independent copy of (ǫi)
n
i=1. We define X ′

t as follows: conditional on the event

{I = i}, set
X ′

t = Xt − αi(t)ǫi + αi(t)ǫ
′
i, t ∈ T .

The reader may check that the exchangeability property does then hold, together with

the following regression property:

E(X ′
t −Xt|(Xs)s∈T ) = −1

n
Xt.

With a view to applying Theorem 2.1 of Reinert and Röllin [16], we calculate two

further quantities:

E((X ′
t−Xt)(X

′
s−Xs)|(Xu)u∈T ) =

1

n

n
∑

i=1

αi(t)αi(s)E((ǫ
′
i−ǫi)

2|(Xu)u∈T ) =
2

n

n
∑

i=1

αi(t)αi(s);

E|(X ′
t−Xt)(X

′
s−Xs)(X

′
u−Xu)| =

1

n

n
∑

i=1

|αi(t)αi(s)αi(u)|E|ǫ′i−ǫi|3 =
4

n

n
∑

i=1

|αi(t)αi(s)αi(u)|.

The reader should notice that, whilst we did not use the fact that the ǫi are Rademacher

random variables up until this point, in the first calculation it allows us to conclude that

the left hand side is deterministic. This means that one of the error terms in Reinert

and Röllin’s [16] theorem is identically zero; indeed, if h : R#T → R is a three times

differentiable function, and if the covariance matrix of (Xt)t∈T is non-singular, their

theorem implies that

|Eh((Xt)t∈T )− Eh((Yt)t∈T )| ≤
1

3
sup

s,t,u∈T ,x̃∈R#T

∣

∣

∣

∣

∂3h(x̃)

∂xs∂xt∂xu

∣

∣

∣

∣

∑

s,t,u∈T

n
∑

i=1

|αi(s)αi(t)αi(u)|.

The condition that the covariance matrix should be non-singular is evidently unneces-

sary here (at least if h is bounded, say), since we can ensure this by introducing #T
dummy random variables whose coefficients αi(t) have absolute value at most δ, and

then let δ → 0.

Specialising to our random multiplicative functions application, we would like to

choose h to be the indicator function of a box in R
#T , but this would not satisfy the three

times differentiability condition. Reinert and Röllin devote a section of their paper [16]
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to this “unsmoothing” problem, but the results they obtain are rather involved, and in

this case we can easily overcome the difficulty directly. Let s : R → [0, 1] be a three

times differentiable function satisfying

s(z) =

{

1 if z ≤
√

2(log log x− log log y)− 1,

0 if z ≥
√

2(log log x− log log y).

The interval on which s(z) must transition from 1 to 0 has length Θ(1/
√
log log x), so we

can find such a function whose derivatives satisfy |s(r)(z)| = O((log log x)r/2), 0 ≤ r ≤ 3,

z ∈ R. Setting h((xt)t∈T ) =
∏

t∈T s(xt), we conclude that

P(max
t∈T

Xt ≤
√

2(log log x− log log y)− 1)

≤ P(max
t∈T

Yt ≤
√

2(log log x− log log y)) +O((log log x)3/2(#T )3
n
∑

i=1

max
t∈T

|αi(t)|3).

The reader may check that in the random multiplicative functions case, the error term

on the right has order at most

(#T )3
∑

y≤p≤x

1

p3/2
≪ (#T )3√

y log y
.

We have #T = (B+1)M ≪ (log log x)2 log x, so this is o(1) as x → ∞ provided that y

is at least log8 x, say. The multivariate central limit theorem has supplied an extremely

good bound, presumably because any individual ǫp (or gp) has a very tiny impact on

the random multiplicative function processes.
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[16] G. Reinert, A. Röllin. Multivariate Normal Approximation with Stein’s Method of Exchangeable

Pairs under a General Linearity Condition. Annals of Probability, 37, no. 6, pp 2150-2173. 2009

[17] Q.M. Shao. Bounds and estimators of a basic constant in extreme value theory of Gaussian pro-

cesses. Statistica Sinica, 6, pp 245-257. 1996

[18] A. Wintner. Random factorizations and Riemann’s hypothesis. Duke Mathematical Journal, 11,

no. 2, pp 267-275. 1944

Department of Pure Mathematics and Mathematical Statistics, Wilberforce Road,

Cambridge CB3 0WA, England

E-mail address : A.J.Harper@dpmms.cam.ac.uk


	1. Introduction
	2. Proof of Proposition 1
	3. Normal comparison results
	3.1. Classical comparison results
	3.2. Reversal of roles

	4. Proof of Proposition 2
	5. Application to estimating Pickands' constants
	6. Application to a number-theoretic process
	6.1. Preliminary calculations
	6.2. Implementation of Propositions 1 and 2
	6.3. Exploitation of the lower bound

	7. Refinement of Proposition 2 for the random multiplicative functions application
	Appendix A. Random multiplicative functions and Rademacher processes
	Appendix B. A multivariate central limit theorem
	References

