
ar
X

iv
:1

01
2.

02
91

v1
  [

m
at

h.
D

G
] 

 1
 D

ec
 2

01
0

RESULTS ON COUPLED RICCI AND HARMONIC MAP FLOWS

MICHAEL BRADFORD WILLIAMS

Abstract. We explore Ricci flow coupled with harmonic map flow, both as
it arises naturally in certain bundle constructions related to Ricci flow and
as a geometric flow in its own right. In the first case, we generalize a theo-
rem of Knopf that demonstrates convergence and stability of certain locally
R
N -invariant Ricci flow solutions. In the second case, we prove a version of

Hamilton’s compactness theorem for the coupled flow, and then generalize it
to the category of étale Riemannian groupoids. We also provide a detailed
example of solutions to the flow on the Lie group Nil3.
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1. Introduction

The harmonic map flow for maps between Riemannian manifolds, introduced by
Eells and Sampson [5], was one of the first geometric flows and pioneered the use of
parabolic pde in solving geometric problems. Given (M, g) and (N , h) and a map
φ0 between them, it is

(1.1)

∂

∂t
φ = τg,hφ,

φ(0) = φ0,
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2 M. B. WILLIAMS

where τg,hφ is the tension field of φ. The Ricci flow, though weakly parabolic,
is similar in spirit: both flows attempt to improve certain objects via a heat-type
flow. These flows are also related beyond formal similarities. For example, the
DeTurck trick, which modifies Ricci flow by diffeomorphisms to make it strictly
parabolic, was used to prove short-time existence and uniqueness of Ricci flow on
closed manifolds in [4]. Hamilton subsequently observed that these diffeomorphisms
actually solve a harmonic map flow [8].

In [14], Lott studied Ricci flow on manifolds that are twisted principal bundles
and where the solutions are locally invariant under the action of the structure
group. This construction is used to obtain information on collapse under Ricci flow
of three-dimensional manifolds. A special case of this construction appears in [13],
where the manifolds have the structure of a flat RN -vector bundle and their study
is motivated by structure that appears in examples of expanding Ricci solitons. It
turns out that solitons in this context naturally involve harmonic maps, and the
Ricci flow can be interpreted as a coupling of Ricci flow and harmonic map flow
(see Proposition 2.5 below). This observation is a new phenomenon, distinct from
the DeTurck trick.

Of course, one can also study the coupling of these two flows as a subject of
independent interest. The case where the target manifold for the harmonic map
flow is a subset of the real line was considered by List in [12]. This coupling has
relevance to general relativity and solutions of the Einstein equations. The case
of arbitrary target manifolds was subsequently studied by Müller in [17] under the
name (RH)α flow (although we will replace α with c). This flow has a number of
nice properties and can be better behaved than the Ricci or harmonic map flow
taken separately.

1.1. Summary of results. In [10], Knopf proved convergence and stability of
certain Ricci flow solutions in Lott’s twisted principal bundle context, where the
dimension of the total space is three. In Section 2, we review the necessary con-
structions and extend the result to arbitrary dimension in some cases. See Equation
(2.2) for the locally R

N -invariant Ricci flow system.

Theorem 1.2. Let g = (g,A,G) be a locally R
N -invariant metric on a product

R
N × B, where B is compact and orientable. Suppose that A vanishes and G is

constant, and that either

(i) g has constant sectional curvature −1/2(n− 1), or
(ii) B = S2 and g has constant positive sectional curvature.

Then for any ρ ∈ (0, 1), there exists θ ∈ (ρ, 1) such that the following holds.
There exists a (1 + θ) little-Hölder neighborhood U of g such that for all initial

data g̃(0) ∈ U , the unique solution g̃(t) of rescaled locally R
N -invariant Ricci flow

exists for all t ≥ 0 and converges exponentially fast in the (2 + ρ)-Hölder norm to
a limit metric g∞ = (g∞, A∞, G∞) such that A∞ vanishes, G∞ is constant, and

in case (i), g∞ is hyperbolic, and
in case (ii), g∞ has constant positive sectional curvature.

In Section 3, we consider the general coupling of Ricci and harmonic map flows,
and prove a version of Hamilton’s compactness theorem in this context. We also
prove a version of the theorem for étale Riemannian groupoids, a setting which
is well-suited for discussion of convergence of solutions under the flow, especially
when collapse is involved. See Equation (3.2) for the (RH)c flow.
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Theorem 1.3. Let {(Mn
k , gk(t), φk(t), Ok)} be a sequence of complete, pointed

(RH)c flow solutions, with 0, t ∈ (α, ω), c(t) non-increasing, and φk(t) mapping
Mk into a closed Riemannian manifold (N , h), such that

(a) the geometry is uniformly bounded: for all k,

sup
(x,t)∈Mk×(α,ω)

|Rmk |k ≤ C1

for some C1 independent of k;
(b) the initial injectivity radii are uniformly bounded below: for all k,

injgk(0)(Ok) ≥ ι0 > 0,

for some ι0 independent of k.

Then there is a subsequence such that
(
Mk, gk(t), φk(t), Ok

)
−→

(
M∞, g∞(t), φ∞(t), O∞

)
,

where the limit is also a pointed, complete, (RH)c flow solution.
If we do not assume any injectivity radius bound, then we have convergence to

(
G∞, g∞(t), φ∞(t), O∞

)
,

a complete, pointed, n-dimensional, étale Riemannian groupoid with map φ∞ on
the base.

We conclude with a detailed example of (RH)c solutions on the Lie group Nil3,
where the metrics are left-invariant and the map is a harmonic real-valued function.
The behavior of these solutions depends strongly on the coupling function, although
it is similar to that of Ricci flow solutions if the function decays fast enough as
t→ ∞.

2. Locally R
N -invariant Ricci flow

2.1. Setup. The manifolds that we will consider in this section have a special

bundle structure. Let B be a connected, oriented, compact manifold, and let E
p
−→ B

be a flat R
N -vector bundle. We consider M to be a principal RN -bundle over B,

twisted by E . That is, there exists a smooth map

E ×B M =
⋃

b∈B

Eb ×Mb −→ M

that, over each point b ∈ B, gives a free and transitive action that is consistent
with the flat connection on E . This means that if U ⊂ B is such that EU → U is
trivializiable, then π−1(U) has a free R

N action. Let M have a connection A such
that A|π−1(U) is an R

N -valued connection. If we assume that M also has a flat

connection itself, then A is an R
N -valued 1-form.

We will use this bundle structure to describe local coordinates for M. Let
U ⊆ B be an open set such that EU → U is trivializable and has a local section
σ : U → π−1(U). Additonally, let ρ : Rn → U be a parametrization of U , with coor-
dinates xα, and let ei be a basis for R

N . Then we obtain coordinates (xα, xi) on
π−1(U) via

R
n × R

N −→ π−1(U)

(xα, xi) 7−→ (xiei) · σ
(
ρ(xα)

)

where · denotes the free R
N -action described above.
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Let g be a Riemannian metric on M such that the RN -action is a local isometry.
With respect to the coordinates above, one may write

g =
n∑

α,β=1

gαβ dx
α dxβ +

N∑

i,j=1

Gij

(
dxi +

∑n
α=1A

i
α dx

α
)(
dxj +

∑n
β=1A

j
β , dx

β
)

= gαβ dx
α dxβ +Gij(dx

i +Ai
α dx

α)(dxj +Aj
β , dx

β).

(2.1)

We will write this informally as g = (g,A,G), where g(b) = gαβ(b) dx
α dxβ is locally

a Riemannian metric on U ⊂ B, A(b) = Ai
α(b) dx

α is locally the pullback by σ of a
connection on π−1(U) → U , and G(b) = Gij(b) dx

i dxj is an inner product on the
fiber Mb.

2.2. The rescaled flow. In [14], Lott considered metrics of the form (2.1) that
evolve under Ricci flow, which are called locally R

N -invariant solutions. He showed
that the Ricci flow equation for (M,g) becomes three equations: one for each of g, A,
and G (see [14, Equation (4.10)]). To study the asymptotic stabilty of this system,
Knopf transformed it into an equivalent one that has legitimate fixed points (see
[10, Equation (1.3)]). Let s(t) be a function and c a constant. Then the transformed
system is 1

∂

∂t
gαβ = −2Rαβ +

1

2
GikGjℓ∇αGij∇βGkℓ + gγδGij(dA)

i
αγ(dA)

j
βδ − sgαβ ,

(2.2a)

∂

∂t
Ai

α = −(δdA)iα + gβγGij∇γGjk(dA)
k
βα −

1 + c

2
sAi

α,

(2.2b)

∂

∂t
Gij = ∆Gij − gαβGkℓ∇αGik∇

βGℓj −
1

2
gαγgβδGikGjℓ(dA)

k
αβ(dA)

ℓ
γδ + csGij .

(2.2c)

We call this system a rescaled locally R
N -invariant Ricci flow.

The case where the bundle connection is flat (i.e., A vanishes) was studied in
[13], in the context of structures that arise from certain expanding Ricci solitons
on low-dimensional manifolds. There and in the more general setting, certain Ricci
flow solutions give rise to a (twisted) harmonic map G : B → SL(N,R)/ SO(N)
(the target being the space of symmetric positive-definite bilinear forms of fixed
determinant) together with a “soliton-like” equation relating the metrics g and G.
These are the harmonic-Einstein equations.

We will need a byproduct of this fact. Write SN = SL(N,R)/ SO(N). The
tangent space TGSN at G ∈ SN consists of symmetric bilinear forms with no trace.
There is a Riemannian metric on TGSN defined by

(2.3) gG(X,Y ) = tr(G−1XG−1Y ) = GijXjkG
kℓYℓi.

1Here ∇α = ∂
∂xα , (dA)iαβ = ∇αA

i
β − ∇βA

i
α, (δdA)iα = −gβγ

∇
γ(dA)iβα, and ∆Gij =

gαβ∇α∇βGij = gαβ( ∂2

∂xα∂xβ Gij −Γγ
αβ

∂
∂xγ Gij), where Γ represents the Christoffel symbols of g.
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The tension field of G : B → SN , with respect to the metrics g and g, has compo-
nents

(2.4) τg,g(G)ij = ∆Gij + gαβ
N∑

p<q
r<s

(SNΓ ◦G)ijpq,rs∇αGpq∇βGrs.

The reader is invited to compare this definition to the general formulation in (3.1)
below.

Proposition 2.5. The evolution equation for G from (2.2) is a modified harmonic
map flow for G : B → SN . More precisely,

∂

∂t
Gij = τg(t),g(G)ij −

1

2
gαγgβδGikGjℓ(dA)

k
αβ(dA)

ℓ
γδ + csGij .

Proof. What we are really claiming is that

(2.6) ∆Gij − gαβGkℓ∇αGik∇βGℓj = τg,g(G)ij .

The map G has energy

E(G) =
1

2

∫

B

gαβ tr(G−1∇αG
−1∇βG) dV.

In [13, Proposition 4.17] it is shown that the variational equation of this energy is
precisely

∆Gij − gαβGkℓ∇αGik∇βGℓj = 0.

It follows from general harmonic map theory that, as it came from the variation of
the energy of a map, the quantity on the left must be the tension field τg(t),g(G)
from (2.4). �

Remark 2.7. It is possible to verify equation (2.6) directly with a (lengthy) com-
putation.

Now, we want to describe the fixed points of (2.2), with the proper choices of s
and c. There are two cases that we will consider.

Lemma 2.8. Let (RN × B,g(t)) be a Riemannian product that solves (2.2), such
that (B, g) is nonflat and Einstein. Choose coordinates so that G is constant,
A = 0, and g(t) = −Kt g(−K), where K = ±1 is the Einstein constant such that
2Rc[g(−K)] = Kg(−K). (Note that g(t) exists for t < 0 if K = 1 and for t > 0
if K = −1.) The choices s = −K and c = 0 make g(0) a stationary solution for
(2.2).

With these choices, we call (2.2) the K-rescaled locally R
N -invariant Ricci flow

system.
Next, given any smooth function f : B → R, we define

∮

B

f dµ =

∫
B
f dµ∫

B
dµ

.

Let V (t) denote the volume of (B, g(t)) and define

r = R−
1

4
|∇G|2 −

1

2
|dA|2 ,

where everything is computed with respect to g. Because

dV

dt
= −

∫

B

r dµ−
n

2
sV (t),
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it follows that V is fixed if and only if

(2.9) s = −
2

n

∮

B

r dµ.

Lemma 2.10. Let (RN ×B,g(t)) be a Riemannian product that solves (2.2), such
that (B, g) is Einstein. Choose coordinates such that G is constant and A = 0.
For any t0 in its time domain of existence, taking c = 0 and s as in (2.9) makes
g(0) = (σ−1(t0)g(t0), 0, G) into a stationary solution of (2.2) for any choice of
positive antiderivative σ(t) of s.

With these choices, we call (2.2) the volume-rescaled locally R
N -invariant Ricci

flow system.
In this section, we prove the following results that imply convergence in the

little-Hölder spaces as defined in [10]. It is a generalization of [10, Theorems 1 &
2].

Theorem 2.11. Let g = (g,A,G) be a locally R
N -invariant metric of the form

(2.1) on a product R
N × B, where B is compact and orientable. Suppose that A

vanishes and G is constant, and that either

(i) g has constant sectional curvature −1/2(n− 1), or
(ii) B = S2 and g has constant positive sectional curvature.

Then for any ρ ∈ (0, 1), there exists θ ∈ (ρ, 1) such that the following holds.
There exists a (1 + θ) little-Hölder neighborhood U of g such that for all initial

data g̃(0) ∈ U , the unique solution g̃(τ) of (2.2) exists for all t ≥ 0 and converges
exponentially fast in the (2+ρ)-Hölder norm to a limit metric g∞ = (g∞, A∞, G∞)
such that A∞ vanishes, G∞ is constant, and

in case (i), with choices of c and s as in Lemma 2.8, g∞ is hyperbolic, and
in case (ii), with choices of c and s as in Lemma 2.10, g∞ has constant
positive sectional curvature.

2.3. Linearization at a stationary solution of rescaled flow. Consider a fixed
point of the flow (2.2) on a Riemannian product (RN ×B,g). From Lemmas (2.8)
and (2.10), we can assume that g is Einstein with 2Rc(g) = Kg, A is identically
zero, and G is constant. Also, c = 0 and s is a (known) function.

To analyze the stability near a fixed point, we must compute the linearization
of the flow. Write g0 = (g0, 0, G0) for such a fixed point. Let

(2.12) g̃(ǫ) =
(
g̃(ǫ), Ã(ǫ), G̃(ǫ)

)

be a variation of g such that

(2.13) g̃(0) = g0,
∂

∂ǫ

∣∣∣
ǫ=0

g̃ = h = (h,B, F ).

Let ∆ℓ denote the Lichnerowicz Laplacian acting on symmetric (2, 0)-tensor fields.
In coordinates,

(2.14) ∆ℓhij = ∆hij + 2Ripqjh
pq −Rk

i hkj −Rk
j hik.

Also, let H = trg h and H0 = trg0 h.
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Lemma 2.15. The linearization of (2.2) at a fixed point g0 = (g0, 0, G0) with
2Rc = Kg0 and G0 constant acts on h = (h,B, F ) by

∂

∂t
hαβ = ∆ℓhαβ +∇α(δh)β +∇β(δh)α +∇α∇βH0 +X,(2.16a)

∂

∂t
Bi

α = −(δdB)iα + kBi
α,(2.16b)

∂

∂t
Fij = ∆Fij ,(2.16c)

where

X =

{
Khαβ in case (i)

2K(hαβ − 1
n (g0)αβ

∮
B H0 dµ) in case (ii)

and

k =

{
K
2 in case (i)

K in case (ii)
.

Proof. With a variation of g as in (2.12) and (2.13), we must compute

∂

∂ǫ

∣∣∣
ǫ=0

(
∂

∂t
g̃(ǫ)

)
.

Here and in the next lemma, we will use standard variational formulas for geometric
objects like g−1, Γ, Rc, R, dµ, and

∮
R dµ. See [3, Section 3.1], for example.

Considering the first equation, we have

∂

∂t
hαβ = ∆ℓhαβ +∇α(δh)β +∇β(δh)α +∇α∇βH0 −

∂

∂ǫ

∣∣∣
ǫ=0

(sg̃αβ) .

In case (i),
∂

∂ǫ

∣∣∣
ǫ=0

(sg̃αβ) = Khαβ,

and in case (ii),

∂

∂ǫ

∣∣∣
ǫ=0

(sg̃αβ) =
∂

∂ǫ

∣∣∣
ǫ=0

(
2

n
g̃αβ

∮

B

r̃ dµ̃

)

= 2K

(
hαβ −

1

n
(g0)αβ

∮

B

H0 dµ0

)
.

For the second equation, we have

∂

∂t
Bi

α = −(δdB)iα +
∂

∂ǫ

∣∣∣
ǫ=0

(
1

2
sÃi

α

)
.

In case (i),

∂

∂ǫ

∣∣∣
ǫ=0

(
1

2
sÃi

α

)
=
K

2
Bi

α,

and in case (ii),

∂

∂ǫ

∣∣∣
ǫ=0

(
1

2
sÃi

α

)
=

∂

∂ǫ

∣∣∣
ǫ=0

(
1

n
Ãi

α

∮

B

r̃ dµ̃

)

= KBi
α.

Here, we use that r = nK when g0 is Einstein.
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For the third equation, we use Proposition 2.5 to write

∂

∂τ
Gij = τg(t),g(G)ij −

1

2
gαγgβδGikGjℓ(dA)

k
αβ(dA)

ℓ
γδ,

where the first term is the tension field from (2.4). Then it is easy to see that

∂

∂ǫ

∣∣∣
ǫ=0

Fij = ∆Fij ,

as desired. �

As in [10], we use the DeTurck trick to make the linear (2.2) system strictly
parabolic. That is, to each equation in (2.2) we add a term consisting of the Lie
derivative of the metric with respect to a carefully chosen family of vector fields
W (t). To this end, fix a background connection Γ and define

W γ = gαβ(Γγ
αβ − Γγ

αβ), γ = 1, . . . , n(2.17a)

(W♭)k = (δA)k, k = 1, . . . , N.(2.17b)

Let ψt be diffeomorphisms generated by W (t), with initial condition ψ0 = id.
The one-parameter family of metrics ψ∗

t g(t) is the solution of the rescaled R
N -

invariant Ricci–DeTurck flow. We now take Γ to be the Levi-Civita connection
of the stationary solution around which we linearize. Observe that a stationary
solution g0 = (g0, 0, G0) of (2.2) with 2Rc = Kg0 and G0 constant is then also a
stationary solution of the rescaled Ricci–DeTurck flow.

Lemma 2.18. The linearization of (2.2) at a fixed point g0 = (g0, 0, G0) with
2Rc = Kg0 is the autonomous, self-adjoint, strictly parabolic system

∂

∂t




h
B
F



 = L




h
B
F



 =




L2h
L1B
L0H



 ,

where

L0 = ∆,(2.19)

L1 =

{
∆1 +

K
2 id in case (i)

∆1 +K id in case (ii)
.(2.20)

L2 =

{
∆ℓ +K id in case (i)

∆ℓ +Φ in case (ii)
(2.21)

Here −∆1 = dδ+ δd denotes the Hodge–de Rham Laplacian acting on 1-forms, and

Φ(h) = 2K

(
h−

1

n
g0

∮

B

H0 dµ

)
.

Proof. The normalized Ricci-DeTurck flow is obtained by subtracting a Lie deriv-
ative from the right side of (2.2):

∂

∂t
g = −2Rc[g]− LWg,

so we must compute the linearization of this Lie derivative, as in Lemma 2.15.
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First, since W γ is defined the same way as it was in [10, Equations (3.6), (4.4)],
the components of the form (LWg)αβ are unchanged from that paper. This means
that when computing its ǫ-derivative, we get

∂

∂ǫ

∣∣∣
ǫ=0

(LWg)αβ = ∆ℓhαβ +∇α(δh)β +∇β(δh)α +∇α∇βH0.

Subtracting this from (2.16a) gives (2.21).
Next, we have

(LWg)αi = (dδA)iα,

and so
∂

∂ǫ

∣∣∣
ǫ=0

(LW g̃)αi = (dδB)iα.

Subtracting this from (2.16b) gives (2.20).
Finally, we have

(LWg)ij = 0,

and so
∂

∂ǫ

∣∣∣
ǫ=0

(LW g̃)ij = 0.

Subtracting this from (2.16c) gives (2.19). �

Now assume that g0 = (g0, 0, G0) is a fixed point of the rescaled R
N -invariant

Ricci–DeTurck flow with G0 constant and g0 a metric of constant sectional curva-
ture. In case (i), sect[g0] = −1/2(n−1) < 0, and in case (ii), sect[g0] = (n−1)k > 0.
In case (ii), by passing to a covering space if necessary, we may assume that Bn is

the round n-sphere of radius
√
1/k.

Recall that a linear operator L is weakly (strictly) stable if its spectrum is confined
to the half plane Re z ≤ 0 (and is uniformly bounded away from the imaginary axis).

Because L is diagonal, we can determine its stability by examining its component
operators. The conclusions we obtain here will hold below when we extend L to a
complex-valued operator on a larger domain in which smooth representatives are
dense.

Lemma 2.22. Let g0 = (g0, 0, G0) be a metric of the form (2.1) such that G0 is
constant and g0 has constant sectional curvature. Then the linear system (2.19)-
(2.21) has the following stability properties:

The operator L0 is weakly stable.
The operator L1 is strictly stable.
If n = 2, then the operator L2 is weakly stable.
Let n ≥ 3. In case (i), the operator L2 is strictly stable. In case (ii), the operator

L2 is unstable.

Proof. It is well-known that L0 = ∆, the Laplacian acting on (2, 0)-forms, is weakly
stable. The statements about L2 and L3 carry over directly from Lemmas 5 and 7
in [10]. �

We now turn to the proof of the the main theorem. See [10, Section 2] for
summary of the machinery that is used in the proof.

Proof of Theorem 2.11. Following [10], the proof consists of four step. First, one
must show that the complexified operator is sectorial. This depends only on Lemma
2.22, which has the same conclusion as [10, Lemmas 5 & 7]. Therefore, there is no
modification to this step.
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Second, one applies Simonett’s theorem from [19]. This is valid by Step 1, and
[10, Lemma 2]. Since that Lemma was stated in the full generality of our context,
there is no modification to this step.

Third, one proves the uniqueness of a smooth center manifold consisting of fixed
points of the flow (2.2). Since fixed points of this flow still coincide with those of
the rescaled Ricci-DeTurck flow, there is no modification.

Fourth, one proves convergence of the metric. In both cases (i) and (ii), the
arguments involved do not depend on the dimension N , so there is no modification.

�

3. A compactness theorem

In this section, we consider the Ricci flow coupled with the harmonic map flow,
or the (RH)c flow. We prove a version of Hamilton’s Compactness Theorem for a
class of such flows. This is first done in the category of smooth manifolds, where
we assume uniform bounds on the curvatures and injectivity radii. We also prove
a version in the category of étale Riemannian groupoids, where no information
about the injectivity radii is needed. The compactness theorems presented here
(like Hamilton’s) provide subsequential convergence in general; in cases where sta-
bility theorems like those above apply, this can be improved to genuine asymptotic
convergence. Let us recall the setup for the coupled flow in question.

3.1. Definitions. Let (M, g) be a closed Riemannian manifold, with (N , h) a
closed target manifold. Let φ : M → N be a smooth map. The Levi-Civita co-
variant derivative ∇TM of the metric g on M induces a covariant derivative ∇T∗M

on the cotangent bundle, which satisfies

∇T∗M
X ω(Y ) = X

(
ω(Y )

)
− ω

(
∇TM

X Y
)
.

By requiring a product rule and compatibility with the metric, we also have con-
variant derivatives on all tensor bundles

T p
q (M) = (TM)⊗p ⊗ (T ∗M)⊗q.

The Levi-Civita covariant derivative ∇TN of the metric h on N induces a covariant
derivative ∇φ∗TN on the pull-back bundle φ∗TN → M, given by

∇φ∗TN
X φ∗Y = φ∗

(
∇TN

φ∗XY
)
,

for X ∈ T (M) and Y ∈ T (N ). As before, we get a covariant derivative on all
tensor bundles over M of the form

T p
q (M)⊗ T r

s (φ
∗N ) = (TM)⊗p ⊗ (T ∗M)⊗q ⊗ (φ∗TN )⊗r ⊗ (φ∗T ∗N )⊗s.

We refer to them simply as ∇. In local coordinates,

∇φ = φ∗ = ∂iφ
λ dxi ⊗ ∂λ|φ ∈ Γ(T ∗M⊗ φ∗TN ).

Similarly, if we write N∇ for ∇TN , we have

∇2φ =
(
∂i∂jφ

λ − Γk
ij∂kφ

λ + (NΓ ◦ φ)λµν∂iφ
µφνj

)
dxi ⊗ dxj ⊗ ∂λ|φ

∈ Γ(T ∗M⊗ T ∗M⊗ φ∗TN ).

Additionally

∇φ⊗∇φ = hλµ∂iφ
λ∂jφ

µ dxi ⊗ dxj
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and is a symmetric (2, 0)-tensor on M, and we define

S = Rc−c∇φ⊗∇φ

where c = c(t) ≥ 0 is a coupling function. Finally, the tension field of φ with
respect to g and h was defined in (2.4), but the general description is

(3.1) τg,hφ = trg ∇
2φ.

Now, the flow for initial data (M, g0, φ0) is the system

(3.2)

∂

∂t
g = −2S = −2Rc+2c∇φ⊗∇φ

∂

∂t
φ = τg,hφ

(
g(0), φ(0)

)
= (g0, φ0)

For short, call this the (RH)c flow. We will assume that c(t) is non-increasing.
As written here, this flow was introduced in [17] and is a generalization of one

studied in [12]. Indeed, the latter considers the case when φ is a real-valued function.

Definition 3.3. A family {(Mn, g(t), φ(t), O)} of complete, pointed Riemannian
manifolds with maps

φ(t) : M −→ N

that solves the system (3.2) with coupling function c(t), for t ∈ (α, ω), is a complete,
pointed (RH)c flow solution.

Example 3.4. Consider the special case of the twisted bundle construction, seen
in [13]. Let M be an R

N -vector bundle with flat connection, flat metric G on the
fibers, and Riemannian base (B, g). In the notion of Section 2, write the metric on
M as g = (g, 0, G). Then the fiber metrics constitute a map

G : B −→ SL(N,R)/ SO(N).

From [13, Equation (4.10)], Ricci flow on M becomes the pair of equations

∂

∂t
gαβ = −2Rαβ +

1

2
Gij∇αGjkG

kℓ∇βGℓi

∂

∂t
Gij = gαβ∇α∇βGij − gαβ∇αGikG

kl∇βGℓi.

But with the metric g on SL(N,R)/ SO(N) as in (2.3), we see that

1

2
Gij∇αGjkG

kℓ∇βGℓi =
1

4
(∇G⊗∇G)αβ ,

and Proposition 2.5 says that

gαβ∇α∇βGij − gαβ∇αGikG
kl∇βGℓi = τg,gG.

This means Ricci flow on M is precisely (RH)c flow on B, with target manifold
(SL(N,R)/ SO(N), g), maps G, and c = 1/4.

This gives many examples of (RH)c flow solutions. For instance, the homo-
geneous spaces in [13] that admit expanding Ricci solitons all have the bundle
structure just described, so those Ricci flow solutions are (RH)c solutions.

Definition 3.5. A sequence {Mn
k , gk(t), φk(t), Ok)} of complete, pointed (RH)c

flow solutions converges to (Mn
∞, g∞(t), φ∞(t), O∞) for t ∈ (α, ω) if there exists

• an exhaustion {Uk} of M∞ by open sets with O∞ ∈ Uk for all k, and
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• a family of diffeomorphisms {Ψk : Uk → Vk ⊂ Mk} with Ψk(O∞) = Ok

such that (
Uk × (α, ω),Ψ∗

k

(
gk(t)|Vk

+ dt2
)
,Ψ∗

kφk|Vk

)

converges uniformly in C∞ on compact sets to
(
Mn

∞ × (α, ω), g∞(t) + dt2, φ∞(t)
)
.

Here, dt2 is the standard metric on (α, ω) ⊂ R.

We mention that we will use abbreviated notation for geometric objects asso-
ciated with metric gk(t). For example, Rck(t) means Rc[gk(t)], and ∇k refers to
the Levi-Civita covariant derivative corresponding to the metric gk(t). Also, an
undecorated ∇ will refer to the Levi-Civita covariant derivative corresponding to a
background metric.

3.2. Statement of the theorem. The original version of this theorem appears
in [7] in the context Ricci flow, and was generalized to the groupoid setting in
[13]. Such theorems are crucial in the study of geometric flows, especially regarding
singularity models. For example, one often wishes to construct sequences of rescaled
solutions to investigate the behavior at a singular time (possibly T = +∞), and it
is helpful to be able to extract convergent subsequences.

Theorem 3.6. Let {(Mn
k , gk(t), φk(t), Ok)} be a sequence of complete, pointed

(RH)c flow solutions, with 0, t ∈ (α, ω) and c(t) non-increasing, such that

(a) the geometry is uniformly bounded: for all k,

sup
(x,t)∈Mk×(α,ω)

|Rmk |k ≤ C1

for some C1 independent of k;
(b) the initial injectivity radii are uniformly bounded below: for all k,

injgk(0)(Ok) ≥ ι0 > 0,

for some ι0 independent of k.

Then there is a subsequence such that
(
Mk, gk(t), φk(t), Ok

)
−→

(
M∞, g∞(t), φ∞(t), O∞

)
,

where the limit is also a pointed, complete, (RH)c flow solution.
If we do not assume a bound on he injectivity radius bound, then we have con-

vergence to (
G∞, g∞(t), φ∞(t), O∞

)
,

a complete, pointed, n-dimensional, étale Riemannian groupoid with map φ∞ on
the base.

The idea of the proof is the same as in [7], and subsequently [12], although we
follow the exposition found in [2, Chapter 3]. Briefly, the main ingredients are
derivative estimates to bound the curvature and the derivatives of the map φ, a
general compactness theorem of Hamilton, a technical lemma, and corollary of the
Arzela-Ascoli theorem. Of course, many facts about the (RH)c flow, found in [17],
are used along the way.
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Example 3.7. Here is a way to obtain sequences of (RH)c flow solutions like
those considered in the compactness theorem. To be clear about the dependence
on the coupling constant, let us write a solution of the (RH)c flow as a triple(
g(t), φ(t), c(t)

)
. We can obtain a family of (RH)c flow solutions by performing a

blowdown, a technique used extensively in [13] and [14]. For s ∈ (0,∞), define

(
gs(t), φs(t), cs(t)

)
=

(
1

s
g(st),

1

s
φ(st), s2c(st)

)
.

Now we see that

∂

∂t
gs(t) =

(
∂

∂t
g

)
(st) and

∂

∂t
φs(t) =

(
∂

∂t
φ

)
(st),

and

S[gs(t), φs(t), cs(t)] = −2Rc[gs(t)] + 2cs(t)∇φs(t)⊗∇φs(t)

= −2Rc[g(st)] + 2c(st)∇φ(st) ⊗∇φ(st)

= S[g(st), φ(st), c(st)],

τgs(t),hφs(t) = trgs(t) ∇
2φs(t)

= trg(st) ∇
2φ(st)

= τg(st),hφ(st).

Therefore, for each s, the blowdown gives another (RH)c solution. It is common
to replace the continuous parameter s with a sequence {sj} converging to infinity.

3.3. Two lemmas. In this section we prove two lemmas that will be used in the
proof of Theorem 3.6. The first is an analogue of [7, Lemma 2.4], [2, Lemma 3.11],
and [12, Lemma 7.6].

Lemma 3.8. Let (Mn, g) be a Riemannian manifold, with K ⊂ M compact. Let
{(gk(t), φk(t))} be a sequence of solutions to the (RH)c flow, defined on K× [β, ψ],
where t0 ∈ [β, ψ]. Suppose the following hold.

The metrics gk(t0) are uniformly equivalent to g on K. That is, for all
x ∈ K, V ∈ TxM, and k, there is C <∞ such that

(3.9) C−1g(V, V ) ≤ gk(t0)(V, V ) ≤ Cg(V, V ).

The covariant derivatives of gk(t0) and φk with respect to g are uniformly
bounded on K. That is, for all p ≥ 0, there exist Cp, C

′
p such that

(3.10) max
x∈K

|∇p+1gk(t0)| ≤ Cp <∞,

(3.11) max
x∈K

|∇pφk(t0)| ≤ C′
p <∞.

The covariant derivatives of Rmk and φk with respect to gk(t) are uniformly
bounded on K × [β, ψ]. That is, for all p ≥ 0, there exist C′′

p , C
′′′
p such that

(3.12) max
x∈K

|∇p
k Rmk |k ≤ C′′

p <∞,

(3.13) max
x∈K

|∇p
kφk|k ≤ C′′′

p <∞.

Then the following hold.
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The metrics gk(t) are uniformly equivalent to g on K× [β, ψ]. That is, for
all x ∈ K, V ∈ TxM, k, there exists B > 0 such that

(3.14) B−1g(V, V ) ≤ gk(t)(V, V ) ≤ Bg(V, V ).

The time and covariant derivatives with respect to g of gk(t) and φk(t)
are uniformly bounded on K × [β, ψ]. That is, for all p and q, there exist

C̃p,q, D̃p,q such that

(3.15) max
x∈K

∣∣∣∣
∂q

∂tq
∇pgk(t)

∣∣∣∣ ≤ C̃p,q <∞,

(3.16) max
x∈K

∣∣∣∣
∂q

∂tq
∇pφk(t)

∣∣∣∣ ≤ D̃p,q <∞.

Proof. First, note that throughout the proof we will follow standard practice in
not indexing constants, and will often use the same symbol (e.g., C) for different
constants within a sequence of inequalities.

To prove (a), we have

∂

∂t
gk(t) = −2Sk(t) = −2Rck(t) + 2c(t)∇kφk(t)⊗∇kφk(t),

so that for V ∈ TM,
∣∣∣∣
∂

∂t
gk(t)(V, V )

∣∣∣∣ = | − 2Rck(t)(V, V ) + 2c(t)∇kφk(t)⊗∇kφk(t)(V, V )|

≤ 2|Rck(t)||V |2k + 2|c(t)||∇kφk(t)|
2|V |2k

≤ C′|V |2k

= C′gk(t)(V, V ).

This implies

|∂t log gk(t)(V, V )| =

∣∣∣∣
∂tgk(t)(V, V )

gk(t)(V, V )

∣∣∣∣ ≤ C′,

and thus for any t1 ∈ [β, ψ], we have
∫ t1

t0

|∂t log gk(t)(V, V )| dt ≤ C′|t1 − t0|.

This gives

C′|t1 − t0| ≥

∫ t1

t0

|∂t log gk(t)(V, V )| dt

≥

∣∣∣∣
∫ t1

t0

∂t log gk(t)(V, V ) dt

∣∣∣∣

=

∣∣∣∣log
gk(t1)(V, V )

gk(t0)(V, V )

∣∣∣∣ .

Expanding this gives

−C′|t1 − t0| ≤ log
gk(t1)(V, V )

gk(t0)(V, V )
≤ C′|t1 − t0|,

and exponentiating gives

exp(−C′|t1 − t0|)gk(t0)(V, V ) ≤ gk(t1) ≤ exp(C′|t1 − t0|)gk(t0)(V, V ).
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Combining this with the original hypotheses, we get

C−1 exp(−C′|t1 − t0|)g(V, V ) ≤ gk(t1) ≤ C exp(C′|t1 − t0|)g(V, V ).

Since t1 was arbitrary, and since C exp(C′|t1 − t0|) ≤ C exp(C′|ψ − β|) = B, this
completes the proof of (a).

Next, we prove (3.15) and (3.16). Observe that

(3.17)

∣∣∣∣
∂q

∂tq
∇pgk(t)

∣∣∣∣ =
∣∣∣∣∇

p ∂
q−1

∂tq−1

∂

∂t
gk(t)

∣∣∣∣ = 2

∣∣∣∣∇
p ∂

q−1

∂tq−1
Sk(t)

∣∣∣∣ ,

(3.18)

∣∣∣∣
∂q

∂tq
∇pφk(t)

∣∣∣∣ =
∣∣∣∣∇

p ∂
q−1

∂tq−1

∂

∂t
φk(t)

∣∣∣∣ =
∣∣∣∣∇

p ∂
q−1

∂tq−1
τgkφk(t)

∣∣∣∣ .

Recall that ∇ is the Levi-Civita covariant derivative corresponding to the back-
ground metric g. In general,

Sij = Rij − c∇iφ∇jφ,

(τg,hφ)
λ = gij∇i∇jφ

λ,

and we have the following evolution equations for S and τg,hφ:

∂

∂t
Sij = ∆ℓSij + 2c τg,hφ∇i∇jφ− ċ∇iφ∇jφ

∂

∂t
τg,hφ = −gikgjlSkl(∇i∇jφ) + gij

(
∆(∇iφ∇jφ)− 2∇p∇iφ∇p∇jφ

−Rip∇pφ∇jφ−Rjp∇pφ∇iφ+ 2
〈
NRm(∇iφ,∇pφ)∇pφ,∇jφ

〉 )
.

To bound (3.17) and (3.18), we need to consider the evolution equations for all
quantities involved, which appear in [17]:

• Christoffel symbols:

∂

∂t
Γp
ij = −gpq(∇iRjq +∇jRiq −∇qRij − 2c∇i∇jφ∇qφ)

• Riemann:
∂

∂t
Rijkℓ = ∇i∇kRjℓ −∇i∇ℓRjk −∇j∇kRiℓ +∇j∇ℓRik −RijqℓRkq −RijkqRℓq

+ 2c
(
∇i∇kφ∇j∇ℓφ−∇i∇ℓφ∇j∇kφ−

〈
NRm(∇iφ,∇jφ)∇kφ,∇ℓφ

〉 )
.

• Ricci:
∂

∂t
Rij = ∆ℓRij − 2RiqRjq + 2RipjqRpq + 2c τg,hφ∇i∇jφ− 2c∇p∇iφ∇p∇jφ

+ 2cRpijq∇pφ∇qφ+ 2c
〈
NRm(∇iφ,∇pφ)∇pφ,∇jφ

〉
.

In these equations, we used
〈
NRm(∇iφ,∇jφ)∇jφ,∇iφ

〉
:= NRκµλν∇iφ

κ∇jφ
µ∇iφ

λ∇jφ
ν ,

and k was a coordinate index, not a sequence index.
The types of terms that will appear in the expansions of (3.17) and (3.18) there-

fore involve factors containing

(3.19) Sk,Rck,Rmk,∇kφk, τgk,hφk,
NRm,

as well as time and covariant derivatives, whose norms we must show are bounded.
Note that we can ingore the geometric factors coming from the manifold N , since
those quantities are bounded by compactness of N and by the chain rule.
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Now, let us consider the case p = 1, q = 0 for (3.15) and (3.16). As in the proof
of Lemma 3.11 in [2], we have

(3.20)
1

2
|∇gk(t)|k ≤ |Γk − Γ|k ≤

3

2
|∇gk(t)|k.

That is, up to lowering/raising indices, the tensors∇gk(t) and Γk−Γ are equivalent.
Using the evolution of the Christoffel symbols, an estimation in normal coodinates
gives

∣∣∣∣
∂

∂t
(Γk − Γ)

∣∣∣∣
2

k

≤ 12|∇k Rck |
2
k + 8c|∇2

kφk|
2
k|∇kφk|

2
k ≤ C.

We can show that |Γk − Γ|k is bounded by integrating the above inequality:

C|t1 − t0| ≥

∫ t1

t0

|∂t(Γk(t)− Γ)|k dt

≥

∣∣∣∣
∫ t1

t0

∂t(Γk(t)− Γ) dt

∣∣∣∣
k

≥ |Γk(t1)− Γ|k − |Γk(t0)− Γ|k.

Since t1 is arbitrary, we see that

|Γk(t)− Γ|k ≤ C|t− t0|+ |Γk(t0)− Γ|k

≤ C|t− t0|+
3

2
|∇gk(t0)|k

≤ C|t− t0|+
3

2
B|∇gk(t0)|

≤ C.

From this and (3.14) it follows that

|∇gk(t)| ≤ C|∇gk(t)|k

≤ C|Γk(t)− Γ|k

≤ C,

and we also have

|∇φk(t)| ≤ C|∇φk(t)|k

≤ C (|(∇−∇k)φk(t)|k + |∇kφk(t)|k)

≤ C (|Γk(t)− Γ|k|φk(t)|+ |∇kφk(t)|k)

≤ C.

This completes the case for p = 1, q = 0.
The general case will follow once we bound the norms of the quantities listed in

(3.19) and their deriviatives. For this we need several preliminary bounds:

|∇pSk(t)| ≤ C|∇pgk(t)| + C′,(3.21)

|∇pφk(t)| ≤ C′′,(3.22)

|∇pgk(t)| ≤ C′′′.(3.23)
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We prove these by induction. Consider (3.21). Since S = Rc−c∇φ⊗∇φ, we have

|Sk|k = |Rck −c∇kφk ⊗∇kφk|k

≤ |Rck |k + c|∇kφk|
2
k

≤ C,

and

|∇kSk|k = |∇k Rck −∇k(c∇kφk ⊗∇kφk)|k

= |∇k Rck −ċ∇kφk ⊗∇kφk − c∇k(∇kφk ⊗∇kφk)|k

≤ |∇k Rck |k + |ċ||∇kφk ⊗∇kφk|k + 2c|∇2
kφk ⊗∇kφk|k

≤ C′
1 + |ċ||∇kφk|

2
k + 2c|∇2

kφk|k|∇kφk|k

≤ C.

Now, we can use this to see that

|∇Sk| ≤ C|∇Sk|k

≤ C|(∇−∇k)Sk|k +B3/2|∇kSk|k

≤ C|Γk − Γ|k|Sk|k +B3/2|∇kSk|k

≤ C,

so the base case is complete.
Assume that (3.21) holds for all p < N , and then consider p = N , for N ≥ 2.

Using the difference of powers formula, we have

|∇NSk| =

∣∣∣∣∣

N∑

i=1

∇N−i(∇−∇k)∇
i−1
k Sk +∇N

k Sk

∣∣∣∣∣

≤
N∑

i=1

|∇N−i(∇−∇k)∇
i−1
k Sk|+ |∇N

k Sk|.

The goal now is to show that we can bound |∇N−i(∇− ∇k)∇
i−1
k Sk|. Recall that

∇ − ∇k = Γ − Γk is a sum of terms of the form ∇gk. In what follows, we will
informally write this as

∑
∇gk.

Now, suppose i = 1. Then using the product rule repeatedly, we have

|∇N−1(∇−∇k)Sk| = |∇N−1(
∑

∇gk)Sk|

=

∣∣∣∣∣∣

N−1∑

j=0

(
N − 1

j

)
∇N−1−j(

∑
∇gk)∇

jSk

∣∣∣∣∣∣

≤
N−1∑

j=0

(
N − 1

j

)∑
|∇N−jgk||∇

jSk|.

Each term here is bounded by inductive hypothsis.
Similarly, for 2 ≤ i ≤ N , we have

|∇N−i(∇−∇k)∇
i−1
k Sk| ≤

N−i∑

j=0

(
N − i

j

)∑
|∇N−i−j+1gk||∇

j∇i−1
k Sk|.
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We need to estimate the last factor. In general we have

|∇j∇i
kSk| = |[(∇−∇k) +∇k]

j∇i
kSk|

=

∣∣∣∣∣

j∑

l=0

(
j

l

)
(∇−∇k)

j−l∇l
k∇

i
kSk

∣∣∣∣∣

≤

j∑

l=0

(
j

l

)
|∇ −∇k|

j−l|∇l+i
k Sk|

≤

j∑

l=0

(
j

l

)∑
|∇gk|

j−l|∇l+i
k Sk|.

This is also bounded by inductive hypothesis. Putting it all together (the assump-
tions of the lemma, the inductive hypotheses, equivalence of the norms) we have
the desired bounds.

The same method can be used to verify (3.22).
For (3.23), we have

∂

∂t
∇Ngk(t) = ∇N ∂

∂t
gk(t) = −2∇NSk(t).

This implies

∂

∂t
|∇Ngk|

2 = 2

〈
∂

∂t
∇Ngk,∇

Ngk

〉

≤

∣∣∣∣
∂

∂t
∇Ngk(t)

∣∣∣∣
2

+ |∇Ngk(t)|
2

= 4|∇NSk|
2 + |∇Ngk(t)|

2

≤ C|∇Ngk|
2 +D

We can integrate this differential inequality to get

|∇Ngk(t)|
2 ≤ C,

as desired.
Using the arguments above, one can show that

|∇p∇q
k Rck |, |∇

p∇q
k Rmk |, |∇

p∇q
kRk|, |∇

p∇q
kSk|, |∇

p∇q
kφk|

are bounded, independent of k.
Finally, we note that τgk,hφk and its derivatives have bounded norm. This follows

from τg,hφ = gij∇i∇jφ.
All terms are thus bounded, and we conclude that (3.17) and (3.18) are as

well. �

The second lemma, which is a corollary of the Arzela-Ascoli theorem is a modi-
fication of [2, Corollary 3.15].

Lemma 3.24. Let (Mn, g) be a Riemannian manifold, with K ⊂ M compact and
p ∈ Z

≥0. Suppose {(gk, φk)} is a sequence of Riemannian metrics on K and maps
K → N , where N is some fixed target manifold, such that

sup
0≤α≤p+1

max
x∈K

|∇αgk| ≤ C1 <∞,
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sup
0≤α≤p+1

max
x∈K

|∇αφk| ≤ C2 <∞.

Addionally, suppose that there exists δ > 0 such that |V |k ≥ δ|V | for all V ∈ TM.
Then there exists a subsequence {(gkj ,φkj

)}, a Riemannian metric g∞ on K, and a
smooth map φ∞ : K → N such that (gkj

, φkj
) → (g∞, φ∞) in Cp as k → ∞.

Proof. The existence of the subsequence will follow from the Arzela-Ascoli theorem,
so we need to show that the collection of component functions {(gk)ab} ∪ {(φk)λ}
is an equibounded and equicontinuous family. Equiboundedness follows from the
hypotheses.

Now, in a fixed coordinate chart, by writing

∇a(gk)bc = ∂a(gk)bc − Γd
ab(gk)dc − Γd

ac(gk)bd

we see that bounds on |∇gk| give bounds on |∂a(gk)bc|. Similarly,

|∇a(φk)
λ| = |∂a(φk)

λ|

is assumed to be bounded. Now, the mean value theorem for functions of several
variables implies that

|(gk)bc(y)− (gk)bc(x)| ≤ C1 diam(K),

for all x, y ∈ K and all indices b, c, and similarly for components of φk. This means
the family {(gk)ab} ∪ {(φk)λ} is equicontinuous in the chart. Since K is compact,
we can take finitely many charts to see that there is a finite uniform bound. Now
apply the Arzela-Ascoli theorem to obtain the limits g∞ and φ∞. The bounds on
the metrics imply that g∞ is also a metric, and clearly φ∞ is smooth.

We have only demonstrated subsequential convergence in C0. For Cp conver-
gence, repeat the same arguments starting with covariant derivatives of gk and φk,
obtaining bounds on the higher partial derivatives. �

3.4. The proof of the theorem. We will need a result of Hamilton, Theorem 2.3
in [7], which he used to prove the original compactness theorem for Ricci flow.

Theorem 3.25. Let {(Mn
k , gk, Ok)} be a sequence of pointed, complete, Riemann-

ian manifolds such that

(a) the geometry is uniformly bounded:

|∇p
k Rmk |k ≤ Cp

on Mk, for all p ≥ 0, all k, for Cp independent of k;
(b) the injectivity radii are uniformly bounded below:

injk(Ok) ≥ ι0 0,

for some ι0 independent of k.

Then there is a subsequence such that

(Mk, gk, Ok) −→ (M∞, g∞, O∞),

where the limit is also a pointed, complete, Riemannian manifold.

We will also need the derivative estimate for the curvature and the map, Theorem
6.10 in [17]. This is a version of the Bernstein-Bando-Shi estimates for Ricci flow
(see [3, Section 7.1] for exposition).
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Theorem 3.26. Let (Mn, g(t), φ(t)) solve the (RH)c flow for t ∈ [0, ω) and c(t)
non-increasing. Assume 0 < c ≤ c(t) ≤ c < ∞ for all t, and that ω < ∞. Suppose
that the curvature is uniformly bounded:

sup
M×[0,ω)

|Rm | ≤ R0.

Then there exists a constant C = C(c, c, R0, T,m,N) <∞ such that

sup
M×(0,ω)

|∇φ|2 ≤
C

t
,

sup
M×(0,ω)

(
|Rm |2 + |∇2φ|2

)
≤
C2

t2
.

Moreover, there exist constants Cp depending on p, c, m and N such that

sup
M×(0,ω)

(
|∇p Rm |2 + |∇p+2φ|2

)
≤ Cp

(
C

t

)p+2

.

Now we prove the theorem, in the presense of a bound on the injectivity radius.
The proof of the groupoid statement will appear in the next subsection.

Proof of Theorem 3.6. First, note that we may use a diagonalization argument, as
in [7, Section 2], to show that we can assume that the interval of existence of the
solutions is finite in length, that is,

−∞ < α < ω <∞.

Since we are assuming that the curvatures are uniformly bounded, Theorem
3.26 applies to give uniform bounds on the derivatives of the curvatures and on the
derivatives of the maps φk. With the former, and with the injectivity radius bound,
we can use Theorem 3.25 to get pointed subsequential convergence of the metrics
at a single time, say 0 ∈ (α, ω):

(
Mk, gk(0), Ok

)
→

(
M∞, g∞, O∞

)
.

The limit is a complete, pointed Riemannian manifold.
Unpacking this convergence, we have the existence of

• an exhaustion {Uk} of M∞ by open sets with O∞ ∈ Uk for all k, and
• a family of diffeomorphisms {Ψk : Uk → Vk ⊂ Mk} with Ψk(O∞) = Ok

such that (
Uk,Ψ

∗
kgk(0)|Vk

)
−→ (Mn

∞, g∞)

uniformly in C∞ on compact sets.
The metrics and maps we are now interested in are ḡk(t) = Ψ∗

kgk(t) and φ̄k(t) =
Ψ∗

kφk(t).
Now we see that the hypotheses of the Lemma 3.8 are satisfied. For any com-

pact K ⊂ M∞ and [β, ψ] ⊂ [α, ω] containing 0, the collection {(ḡk(t), φ̄k(t))} is a
sequence of (RH)c solutions on K × [β, ψ]. Let g∞ be the background metric and
t0 = 0.

The uniform convergence implies that the ḡk(0) are uniformly equivalent to g∞,
and that the needed bounds hold. For example, using the equivalence of metrics
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and convergence at one time, we see that

|∇p
∞φ̄k(0)|∞ ≤ C|∇p

∞φ̄k(0)|ḡk(0)

≤ C|∇p
ḡk(0)

φ̄k(0)|ḡk(0)

≤ C|∇p
gk(0)

φk(0)|gk(0)

≤ C,

for large enough k.
By the lemma, we conclude that ḡk(t) are uniformly equivalent to g∞ on K ×

[β, ψ], and that the time and space derivatives of ḡk(t) and φ̄k(t) are uniformly
bounded with respect to g∞.

Now, the conditions of Lemma 3.24 are exactly satisfied by the implications of
Lemma 3.8, so we have the desired subsequential convergence. Our limit solution
is defined by

g∞(t) = lim
k→∞

ḡk(t), φ∞(t) = lim
k→∞

φ̄k(t).

Finally, since all derivatives of the metric and the of map converge, the appro-
priate tensors converge, so that the limit is a metric/smooth map solving (RH)c
flow. �

3.5. The flow on groupoids. In [13] and [14], Lott initiated the use of Riemann-
ian groupoids in understanding the convergence of Ricci flow solutions, especially
in the presense of collapsing. This idea has also been used in [6]. We will not review
groupoid theory, as the souces above do this well. We will, however, mention two
other general references. A comprehensive guide to the subject, with an emphasis
on differential geometry, is a book by Mackenzie [15]. A more concise introduction,
with an emphasis on foliation theory, is a book by Moerdijk and Mrčun [16].

A Lie groupoid G ⇉ B is Riemannian if the base B has a G-invariant metric
g. That is, if U ⊂ B is open, σ : U → G is any local bisection, and t : G → B is the
target map, then (t ◦ σ)∗g = g. From this, we can construct the Ricci tensor Rc[g],
which is a symmetric (2, 0)-tensor on B, and which is G-invariant in the same sense
as g. Therefore it makes sense to consider the Ricci flow on this groupoid:

∂

∂t
g = −2Rc .

Let (N , h) be another Riemannian manifold, thought of as a trivial groupoid,
and consider φ : B → N such that ∇φ ⊗ ∇φ is a G-invariant (2, 0)-tensor on B.
Additionally, the tension field τg,hφ of φ is well-defined in the usual Riemannian
manifold sense. Therefore, we have a well-defined coupling of Ricci flow and har-
monic map flow:

∂

∂t
g = −2Rc+2c∇φ⊗∇φ

∂

∂t
φ = τg,hφ

where c(t) is a non-negative coupling function.
To use this approach to understand limits and convergence of (RH)c flow on Rie-

mannian manifolds, we show how this groupoid setting can arise from the manifold
setting. Let (M, g) and (N , h) be complete Riemannian manifolds, and φ : M → N
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a smooth map. Select {pi}i∈I ⊂ M such that U = {Ui}i∈I is an open cover of M,
where the Ui are such that exppi

(0) = pi ∈ Ui, and

exppi
|Bri

(0) : Bri(0) −→ Ui

is a diffeomorphism, for some sufficiently small ri > 0. Put the metric (exppi
)∗g on

each Bri(0). Call U an open exponential cover of M.
As in [13, Example 5.7], from this we form a Riemannian groupoid GU ⇉ BU ,

which is isometrically equivalent to the trivial groupoid (M, g). Set

BU =
⊔

i∈I

Bri(0) = {(i, v) | i ∈ I, v ∈ Bri(0)},

GU =
⊔

i,j∈I

{(vi, vj) ∈ Bri(0)×Brj (0) | exppi
(vi) = exppj

(vj)}.

We will write elements of BU as vi = (i, v) and arrows as (vi, vj). Note that we
always have vi = exp−1

pi
(x) for some x ∈ Ui.

The structure maps of this groupoid are defined as follows:

• source: s(vi, vj) = vi
• target: t(vi, vj) = vj
• unit: u(vi) = (vi, vi)
• inverse: (vi, vj)

−1 = (vj , vi)
• composition: (vj , vk) · (vi, vj) = (vi, vk)

Call the étale Riemannian groupoid GU ⇉ BU the Riemannian exponential
groupoid with respect to the open cover U of M.

Proposition 3.27. The (RH)c flow on a manifold (M, g, φ) and target manifold
(N , h) becomes (RH)c flow on the n-dimensional Riemannian exponential groupoid
(GU ⇉ BU , g, φ) associated to an open exponential cover U of M.

Proof. The map φ : M → N induces a Lie groupoid morphism φ = (φ0, φ1) from
GU ⇉ BU to the trivial groupoid N ⇉ N . It is defined by

φ0(vi) = φ(exppi
(vi)),

φ1(vi, vj) = φ(exppi
(vi)) = φ(exppj

(vj)).

Thus we can write φ0 = φ1 = exp∗ φ for these induced maps. Note also that we
could have defined them as

φ0(vi) = φ0(exp
−1
pi

(x)) = φ(x),

φ1(vi, vj) = φ1(exp
−1
pi

(x), exp−1
pj

(x)) = φ(x).

It is easy to check that these maps are compatible with the structure maps of
both groupoids. That is, the following diagram is commutative.

GU

s,t

��

φ1
// N

s,t

��

BU

u

OO

φ0
// N

u

OO

The main question is the G-invariance of ∇φ0 ⊗ ∇φ0. Let Ui ⊂ M have co-
ordinates (xi), and let a neighborhood Vi of φ(pi) have coordinates (yα). Then
Bri(0) ⊂ BU has coordinates (zi), where

zi = exp∗pi
xi = xi ◦ exppi

,
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and a coframe on TBRi
(0) is dzi, where

dzi = exp∗pi
dxi = d(xi ◦ exppi

).

To understand invariance, we must understand bisections of GU ⇉ BU . Let σ be
a bisection, say

σ : Bri(0) −→ GU

vi 7−→
(
σ1(vi), σ2(vi)

)

Since it is a bisection, we have s◦σ = idBU , and this implies σ1 = idBU . Therefore
we write

σ(vi) =
(
vi, σ̃(vi)

)
,

where σ̃(vi) satisfies

exppi
σ̃(vi) = exppi

(vi).

Now we see that

(t ◦ σ)(vi) = t
(
vi, σ̃(vi)

)
= σ̃(vi),

or t ◦ σ = σ̃.
Now, the induced map φ0 : BU → N has pushforward

(φ0)∗ ∈ Γ(T ∗BU ⊗ (φ0)
∗TN ),

so

(φ0)∗ =
∂φα0
∂xi

dxi ⊗

(
∂

∂yα

)

φ0

= dφα0 ⊗

(
∂

∂yα

)

φ0

.

In any Bri(0), we have

(t ◦ σ)∗dφα0 = d(φα0 ◦ t ◦ σ)

= d(φα ◦ exppi
◦σ̃)

= d(φα ◦ exppi
)

= dφα0 .

If f0 : Bri(0) → R is smooth, locally it is of the form f0 = f ◦ exppi
for some

f : Ui → R. Then

(t ◦ σ)∗

(
∂

∂yα

)

φ0

f0 = σ̃∗

(
∂

∂yα

)

φ0

f0

= ∂α(f0 ◦ σ̃)

= ∂α(f ◦ exppi
◦σ̃)

= ∂α(f ◦ exppi
)

=

(
∂

∂yα

)

φ0

f0.

From this, we conclude that ∇φ0(φ0)∗ is a GM -invariant tensor.
In general, a metric h on TN induces a metric hφ on the pull-back bundle φ∗TN ,

given by

hφ(ξ, η) = h(φ∗ξ, φ∗η),

for all ξ, η ∈ TM. In this way, we get a metric on (φ0)
∗TN , and it is GU -invariant:

(t ◦ σ)∗hφ0
(ξ, η) = hφ0

(ξ, η).
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Thus ∇φ0 ⊗∇φ0 is a (2, 0)-tensor on BU :

∇φ0 ⊗∇φ0 = (hφ0
)λµ∂iφ

λ
0∂jφ

µ
0 dz

i ⊗ dzj.

It is therefore GU -invariant, and the (RH)c flow makes sense on GU ⇉ BU . �

This proposition shows that this framework is at least non-vacuous. Before
completing the proof of Theorem 3.6, we need a definition and a result of Lott.

Definition 3.28. Let {(Gk ⇉ Bk, gk, φk, Oxk
)} be a sequence of pointed, n-di-

mensional Riemannian groupoids with maps into some fixed Riemannian manifold
(N , h). Let {(G∞ ⇉ B∞, g∞, φ∞, Ox∞

)} be a pointed Riemannian groupoid with
map φ∞ : B∞ → N . Let J1 be the groupoid of 1-jets of local diffeomorphisms of
B∞. We say that

(Gk ⇉ Bk, gk, φk, Oxk
) −→ (G∞ ⇉ B∞, g∞, φ∞, Ox∞

)

in the pointed smooth topology if for all R > 0, the following hold.

• There are pointed diffeomorphisms Ψk,R : BR(Ox∞
) → BR(Oxk

), defined
for large k, so that

Ψ∗
k,Rgk|BR(Oxi

) −→ g∞|BR(Ox∞
).

Ψ∗
k,Rφk|BR(Oxi

) −→ φ∞|BR(Ox∞
).

• After conjugating by Ψk,R, the images of

s−1
k

(
BR/2(Oxk

)
)
∩ t−1

k

(
BR/2(Oxk

)
)

converge in J1 in the Hausdorff sense to the image of

s−1
∞

(
BR/2(Ox∞

)
)
∩ t−1

∞

(
BR/2(Ox∞

)
)

in J1.

The following is [13, Proposition 5.8].

Theorem 3.29. Let {(Mk, gk, Ok)} be a sequence of pointed complete n-dimen-
sional Riemannian manifolds. Suppose that for each p ≥ 0 and r > 0, there is some
Cp,r <∞ such that for all k,

max
BR(Oi)

|∇p Rmk |∞ ≤ Cp,r.

Then there is a subsequence of {(Mk, Ok)} that converges to some pointed n-dimen-
sional Riemannian groupoid (G∞ ⇉ B∞, g∞, Ox∞

) in the pointed smooth topology.

Now we can complete the proof.

Proof of Theorem 3.6. As Lott mentions, there is very little difference between the
proofs of Hamilton’s original theorem and [13, Theorem 5.12]. The same is true
here. Namely, using Theorem 3.26, we obtain uniform bounds on the derivatives of
the curvatures, which allow us to use Theorem 3.29. This is a version of Theorem
3.25 for groupoids, and gives subsequential convergence at one time to a pointed
Riemannian groupoid.

To extend this to the whole time interval, we apply Lemma 3.8 and a version of
3.24, which gives another convergent subsequence. Hence we get a limiting metric
and map, which together solve (RH)c flow on M. �
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Remark 3.30. As in [13, Section 5], Theorem 3.6 implies that the space of pointed n-
dimensional (RH)c flow solutions with supt t|Rm[g(t)]|∞ < C is relatively compact
among all (RH)c solutions on étale Riemannian groupoids. Let Sn,C be the closure
of this space. It is easy to see that the blowdown procedure from Example 3.7 defines
an R

+-action on the compact space Sn,C .

4. A detailed example of (RH)c flow

We conclude with an example of (RH)c flow on the three-dimensional nilpotent
Lie group Nil3, and compare the asympotics of the solutions with those for Ricci
flow.

Consider

Nil3 ∼=








1 x z
0 1 y
0 0 1





∣∣∣∣∣∣
x, y, z ∈ R



 ⊂ SL3 R.

The obvious diffeomorphism with R
3 provides global coordinates (x, y, z) in which

the group multiplication is

(x, y, z) · (z′, y′, z′) = (x+ x′, y + y′, z + z′ + xy′).

There is a frame of left-invariant vector fields,

F1 =
∂

∂x
, F2 =

∂

∂y
+ x

∂

∂z
, F3 =

∂

∂z
,

and the only nontrivial Lie bracket relation is

[F1, F2] = F3.

The dual coframe is

θ1 = dx, θ2 = dy, θ3 = dz − xdy.

A family of left-invariant metrics on Nil3 is given by

(4.1) g(t) = A(t) θ1 ⊗ θ1 +B(t) θ2 ⊗ θ2 + C(t) θ3 ⊗ θ3,

and the corresponding Ricci (2, 0)-tensors satisfy

−2Rc(g(t)) =
C

B
θ1 ⊗ θ1 +

C

A
θ2 ⊗ θ2 −

C2

AB
θ3 ⊗ θ3.

Proposition 4.2. Solutions of Ricci flow on Nil3 of the form (4.1) have the fol-
lowing asympototics:

(4.3)

A(t) ∼ A0K
−1/3t1/3,

B(t) ∼ B0K
−1/3t1/3,

C(t) ∼ C0K
1/3t−1/3,

for the constant K = A0B0/3C0.

Ricci flow on Nil3 been studied extensively. See, for example, [9], [11], [1], [13],

[6], [18], [20]. We want to study (RH)c flow on Nil3. Consider a function

φ :
(
Nil3, g(t)

)
−→ (R, gcan),

and let c = c(t) ≥ 0 be a non-increasing function. For the resulting (RH)c flow
system to remain a system of ordinary differential equations for the metric, we need
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φ to be harmonic and ∇φ ⊗ ∇φ = dφ ⊗ dφ to be a diagonal left-invariant tensor.
It is not hard to see that the latter condition requires that

φ(x, y, z) = ax+ by,

for some a, b ∈ R. Note that such a function is also a group homomorphism, and
that

τg,gcanφ = gij(∂i∂jφ− Γk
ij∂kφ) = 0,

so it is harmonic. Then

dφ⊗ dφ = a2 dx⊗ dx+ ab(dx⊗ dy + dy ⊗ dx) + b2 dy ⊗ dy.

To keep the system diagonal, take b = 0, so that dφ⊗ dφ = a2 θ1 ⊗ θ1. The (RH)c
flow system is

(4.4)

d

dt
A =

C

B
+ 2a2c,

d

dt
B =

C

A
,

d

dt
C = −

C2

AB
.

Let us first make a few general observations about the long-time behavior of
A, B, and C. Set f(t) = 2a2c(t) for simplicity. Note that Φ = BC = B0C0 is
conserved, A and B are increasing, and C is decreasing. This implies

C′ = −
C2

AB
≥ −

1

A0B0
C2,

and integrating tells us that

0 <
A0B0C0

A0B0 + C0t
≤ C(t) ≤ C0,

for t ≥ 0. We conclude that C(t) → C∞ ∈ [0, C0) as t→ ∞. Similarly, we see that

C′ = −
C3

ΦA
≥ −

1

ΦA0
C3,

which implies

0 <
A0B0C

2
0

A0B0 + 2C2
0 t

≤ C(t)2 ≤ C2
0 .

This gives

(4.5)

∫ t

0

C(s)2 ds ≥

∫ t

0

A0B0C
2
0

A0B0 + 2C0s
ds −→ ∞

as t→ ∞.
Next we use Φ to see that

(4.6) A′ =
C2

Φ
+ f =

Φ

B2
+ f,

which we integrate to obtain

(4.7) A(t) = A0 +
1

Φ

∫ t

0

C(s)2 ds+

∫ t

0

f(s) ds.

By (4.5), we have A(t) → ∞ as t→ ∞, and we have a bound on the growth of A:

(4.8) A(t) ≤ A0 +
C2

0

Φ

∫ t

0

ds+ f0

∫ t

0

ds ≤ A0 +

(
C0

B0
+ f0

)
t.
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This implies

(4.9)

∫ t

0

ds

A(s)
≥

∫ t

0

ds

A0 +
(

C0

B0

+ f0

)
s
−→ ∞

as t→ ∞.
Finally,

(B2)′ =
2Φ

A
,

which implies

(4.10) B(t)2 = B2
0 + 2Φ

∫ t

0

ds

A(s)
,

so, by (4.9), B(t) → ∞ and C(t) = Φ/B(t) → 0 as t→ ∞.

4.1. Constant coupling function. Let us now consider the case when c (and
therefore f , which we write as f0) is a constant. From (4.6) we compute that

lim
t→∞

A(t)

f0t

LH
= lim

t→∞

A′(t)

f0
= lim

t→∞

(
C2

f0Φ
+ 1

)
= 1,

so A(t) ∼ f0t. Using (4.10) and A ∼ f0t ∼ f0(t+ 1), we have

B2 ∼ 2Φ

∫ t

0

ds

A(s)
∼

2Φ

f0

∫ t

0

ds

s+ 1
∼

2Φ

f0
log t.

This gives the following.

Proposition 4.11. Solutions of (RH)c flow on Nil3 of the form (4.1) with map
φ(x, y, z) = ax and c > 0 constant have the following asympototics:

(4.12)

A(t) ∼ 2a2ct,

B(t) ∼

√
B0C0

a2c
log t,

C(t) ∼ 2

√
a2cB0C0

log t
.

Note that if we attempt to take a limit of these solutions as f0 → 0, they do
not converge in a naive sense to the solutions of Ricci flow from (4.3). To explain
this, we examine certain coupling functions that decay as t → ∞, and which yield
behavior similar to that for Ricci flow.

4.2. Nonconstant coupling function. Now consider a coupling function such
that

c(t) ∼
1

tr
,

where r ≥ 1. We make the ansatz that A(t) ∼ αtp, for some α, p > 0 to be
determined. From (4.8), it is consistent to assume that 0 < p ≤ 1. Then using
(4.7),

(4.13) lim
t→∞

A(t)

αtp
LH
= lim

t→∞

A′(t)

pαtp−1
= lim

t→∞

1

pαtp−1

(
Φ

B2
+

2a2

tr

)
.
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Finding this limit comes down to analyzing two limits:

(4.14) lim
t→∞

1

B2tp−1
,

(4.15) lim
t→∞

1

tr+p−1
.

Since r ≥ 1 implies that (4.15) is zero for any p > 0, we need that

B ∼ βt
1−p
2

for some β > 0. To find β, consider

B2 ∼ 2Φ

∫ t

0

ds

A(s)
∼

2Φ

α

∫ t

0

ds

(s+ 1)p
∼

2Φ

α(1 − p)
t1−p.

This now implies

lim
t→∞

1

B2tp−1
=
α(1 − p)

2Φ
,

and so

1
?
= lim

t→∞

A(t)

αtp
=

Φ

pα
lim
t→∞

1

B2tp−1
=

Φ

pα

α(1− p)

2Φ
=

1− p

2p
.

For A(t) ∼ αtp we therefore need p = 1/3. From here, we obtain the asymptotic
behavior. Modulo constants, it is that of the Ricci flow solutions (4.3).

Proposition 4.16. Solutions of (RH)c flow on Nil3 of the form (4.1) with map
φ(x, y, z) = ax and c ∼ 1/tr, r ≥ 1, have the following asympototics:

(4.17)

A ∼ αt1/3,

B ∼

√
3Φ

α
t1/3,

C ∼

√
αΦ

3
t−1/3,

for some constant α depending on r and the initial data.

The reason that the limit as f0 → 0 of the solutions (4.12) is not the Ricci flow
solutions (4.3) lies in the integrability of the coupling function. Informally, the lack
of such a limit results from

0 = lim
t→∞

lim
f0→0

∫ t

0

f0 ds 6= lim
f0→0

lim
t→∞

∫ t

0

f0 ds = ∞.

To be more precise, consider A(t) as given in (4.7). When r > 1, f(t) is integrable,
allowing ∫ t

0

C(s)2 ds

to dominate and produce growth like t1/3. When r < 1, f(t) is not integrable, and
∫ t

0

f(s) ds

dominates to produce linear growth.
In numerical simulations, 0 < r < 1 appears to be a transitionary region where

solutions have properties of both (4.12) and (4.17). We were unable to obtain the
precise asymptotics, but we expect that letting r → 0 should recover (4.12) and
letting r → ∞ should recover (4.3).
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