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SCATTERING OF WAVE MAPS FROM R
2+1 TO

GENERAL TARGETS

J. NAHAS

Abstract. We show that smooth, compactly supported radially
symmetric Wave Maps U from R

2+1 to a compact target mani-
fold N scatter. The result will follow from the work of Christ-
doulou and Tahvildar-Zadeh, and Struwe, upon proving that for
λ′ ∈ (0, 1), energy does not concentrate in the set Kλ′

5

8
T, 7

8
T

=

{(x, t) ∈ R
2+1| |x| ≤ λ′t, t ∈ [ 5

8
T, 7

8
T ]}.

1. Introduction

In this work we consider the initial value problem for Wave Maps
from R

2+1 to a compact target manifold (N, 〈·, ·〉),
{

∂α∂
αU = B(U)(∂αU, ∂

αU)
U(x, 0) = U0(x), ∂tU(x, 0) = U1(x), x ∈ R

2,

where B is the second fundamental form of (N, 〈·, ·〉). Much is known
about this system; we refer readers to [6], [3], and references therein.

Concerning radially symmetric Wave Maps, Christdoulou and Tahvildar-
Zadeh in [2] proved global well posedness for smooth Wave Maps to
targets that satisfied certain bounds on the second fundamental form,
in addition to being either compact or having bounded structure func-
tions. These results were obtained by showing that energy does not
concentrate at the origin, along with pointwise estimates on the fun-
damental solution to the linear problem.

Struwe in [4] extended this result to radially symmetric Wave Maps
from R

2+1 to spheres Sk, and later in [5] to general targets, by showing
with energy estimates and rescalling, that energy cannot concentrate
at the origin. Concerning asymptotic behavior for radially symmetric
Wave Maps, Christdoulou and Tahvildar-Zadeh in [1] proved point-
wise estimates which imply scattering for smooth, compactly supported
Wave Maps to targets satisfying the same conditions as in [2].

We will use similar methods as in [4], [5], and [1] to prove our main
result.

Theorem 1.1. For a smooth, compactly supported radially symmetric
Wave Map U to a compact target manifold N , there exists a function

1
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U+ such that

lim
t→∞

‖U(x, t)− cos(t
√
−∆)U0 −

sin(t
√
−∆)√

−∆
(U1 + U+)‖Ḣ1 = 0.

In Section 2, we review the work done on radially symmetric Wave
Maps, with emphasis on results which we will use to prove Theorem
1.1, in Section 3. We use the following notation. Let

Kλ
S,T = {(x, t) ∈ R

2+1| |x| ≤ λt, t ∈ [S, T ]}.
Energy will be denoted by either

E(λ, λ′; t) =

∫

Bλ′t(0)\Bλt(0)

〈∂αU, ∂αU〉 dx,

or

E(S, t) =

∫

S

〈∂αU, ∂αU〉 dx.

With r = |x|, we will denote light cone coordinates as u = t − r,
v = t + r. The statement ’a . b’ will mean the quantity a is less than
b multiplied by a fixed constant.

2. A brief review of radially symmetric wave maps

We will prove our main result by showing that energy does not con-
centrate in the set Kλ′

5

8
T, 7

8
T
. Scattering will then follow by the work of

Struwe in [5], and Christdoulou and Tahvildar-Zadeh in [1]. We briefly
describe these results here.

In [1], the authors prove a series of energy estimates, which are then
used in a bootstrap argument. We mention two in particular that will
be used later. For 0 < λ′ < λ′′ < 1,

(2.1) lim
t→∞

E(λ′, λ′′; t) = 0,

and

(2.2) lim
T→∞

1

T

∫ ∫

Kλ′

T/2.T

‖Ut‖2 = 0.

Their bootstrap argument hinges on the Bondi energy decaying for
large u,

(2.3) E(u) ≡
∫ ∞

u

r‖∂vU‖2 dv → 0 as u → ∞.

In order to control E(u), define (see [1], page 34)

(2.4) Eλ′(u) ≡
∫ ∞

((1+λ′)/(1−λ′))u

2r‖∂vU‖2 dv,
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which will approach 0 as u → ∞, and observe that for u = (1 − λ′)t
(ibid, page 43),

1

T

∫ 7

8
T

5

8
T

E(u) dt = 1

T

∫ 7

8
T

5

8
T

[Eλ′(u) + E(0, λ′; t)] dt.

By using assumptions on the second fundamental form of N , along
with energy estimates, the authors show (ibid, page 42)

(2.5) lim
T→∞

1

T

∫ 7

8
T

5

8
T

E(0, λ′; t) dt = 0,

which implies the necessary decay on E(u).
This is the only place where the bounds on the second fundamental

form come into play. The rest of the paper is a bootstrap argument,
and the fact that in appropriate coordinates the nonlinearlity in (1.1)
can be controlled by (ibid, page 43)

(2.6) |B(∂αU, ∂
αU)| . |∂uU ||∂vU |,

to prove the following result (ibid, page 31, and page 45),

Theorem 2.1. Let C+
u (resp. C−

u ) be the interior of the future (resp.
past) light cone with vertex at (t = u, r = 0) in M = R

2,1. For a smooth,
compactly supported radially symmetric Wave Map U satisfying (2.5),

diam(U(C+
u )) ≤

c√
u
.

Futhermore, U obeys the estimates

(2.7) ‖∂vU‖ ≤ c

v
3

2

, ‖∂uU‖ ≤ c

v
1

2 (|u|+ 1)
.

In [5], it is shown that energy does not concentrate at the origin at
some time T , since this is the only only obstacle to global well posedness
by [2]. Arguing by contradiction, one finds a radius R(t) such that

(2.8) ε1 ≤ E(BR(t)(0), t) ≤ 2ε1 ≤ lim inf
t→T

E(BT−t(0), t),

in addition to

(2.9) lim
t→T

R(t)/(T − t) = 0.

Using estimates on the kinetic energy, one can find a sequence of
intervals {(tl −R(tl), tl +R(tl))} with tl → T so that

lim
l→∞

1

R(tl)

∫

(tl−R(tl),tl+R(tl))

(

∫

BT−t(0)

‖Ut‖2 dx
)

dt = 0.
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By rescaling with Ul(t, x) ≡ U(tl +Rlt, Rlx), one obtains a sequence of
Wave Maps {Ul} with

(2.10) lim
l→∞

∫

(−1,1)

(
∫

Dl(t)

‖∂tUl‖2 dx
)

dt = 0.

where Dl(t) = {x| Rl|x| ≤ tl +Rlt}.
With these estimates, it can be shown that Ul converges to a Har-

monic Map from R
2 to N . Specifically, (2.10) shows that the function

that Ul converges to satisfies a Harmonic Map equation, (2.8) shows
this function has bounded energy, and (2.9) shows that the limit is a
map from all of R2 to N . Since N is compact, such a map must be
constant. With some geometric estimates, one can then show that the
total energy of Ul tends to 0, contradicting the lower bound in (2.8).
In particular, Struwe proved the following result in [5].

Theorem 2.2. If {Ul} is a sequence of radially symmetric Wave Maps
from R

2+1 to a compact manifold N satisfying

(2.11) E(Dl(t), t) ≤ E0 < ∞,

(2.10) with someDl(t) obeying lim supl→∞Dl(t) = R
2, then E(Dl(t), t) →

0 as l → ∞.

3. Proof of main result

With the results from the previous section, we prove Theorem 1.1.
Using Theorem 2.2, we will show (2.5), then use this fact to apply
Theorem 2.1.

We argue the decay of energy by contradiction. Suppose it is not
true that

lim
T→∞

1

T

∫ 7

8
T

5

8
T

E(0, λ′; t) dt = 0.

Since energy is positive and bounded,

lim sup
T→∞

1

T

∫ 7

8
T

5

8
T

E(0, λ′; t) dt = η,

where 0 < η < ∞. Pick {Tn}n∈N such that limT→∞
1
Tn

∫
7

8
Tn

5

8
Tn

E(0, λ′; t) dt =
η.

In order to produce the sequence Ul in Theorem 2.2, we require the
lower bound in (2.8), which we now prove. By energy conservation (for
t < t′ and R > 0),

(3.1) E(BR(0), t) ≤ E(BR+(t′−t)(0), t
′),

any energy that enters or leaves Kλ′

5

8
T, 7

8
T
must pass through the sur-

rounding region. By (2.1), energy just outside Kλ′

5

8
T, 7

8
T
must decay with

time. This keeps energy from rapidly fluxuating in Kλ′

5

8
T, 7

8
T
, so after



SCATTERING OF WAVE MAPS FROM R
2+1

TO GENERAL TARGETS 5

r

t

5
8
T

7
8
T

t1

t2

...

r = λ′t r = λ′′t

t0

t−1

t−2
...

Figure 1. Construction for the sequence {tl}. Dashed
lines either have slope 1 or −1.

sufficient time, the energy at a fixed time in Kλ′

5

8
T, 7

8
T
must stay away

from 0. This argument is formalized in the following lemma.

Lemma 3.1. Fix λ′ < λ′′ < 1. There is an α = α(λ′, λ′′) ∈ (0, 1) such
that for large enough n, t ∈ [5

8
Tn,

7
8
Tn], it follows that αη < E(0, λ′; t).

Proof. From (2.1), we can pick n big enough so that E(λ′, λ′′; t) < βη
for β = β(λ′, λ′′) to be chosen later and t ≥ 5

8
Tn. For perhaps even

larger n, we can have that

(3.2)

∣

∣

∣

∣

∣

1

Tn

∫ 7

8
Tn

5

8
Tn

E(0, λ′; t) dt− η

∣

∣

∣

∣

∣

< γη

for γ = γ(λ′, λ′′) ∈ (0, 1) which we will specify below.
Suppose for some τn ∈ [5

8
Tn,

7
8
Tn], E(0, λ′; τn) ≤ αη. We will show

that

1

Tn

∫ 7

8
Tn

5

8
Tn

E(0, λ′; t) dt =

1

Tn

∫ τn

5

8
Tn

E(0, λ′; t) dt+
1

Tn

∫ 7

8
Tn

τn

E(0, λ′; t) dt < (1− γ)η,(3.3)

which would contradict our assumption (3.2). We seperately estimate
the two integrals in the middle of (3.3).
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Let {tl}l∈Z be defined by t0 = τn, tl = (1+λ′′

1+λ′
)lt0 for l > 0, and

tl = (1−λ′′

1−λ′
)lt0 for l < 0 (see Figure 1). Let N+ = N+(λ

′, λ′′) be the

smallest number with tN+
≥ 7

8
Tn, and N− = N−(λ

′, λ′′) the largest

number with tN−
≤ 5

8
Tn. Let q+ = 1+λ′′

1+λ′
and q− = 1−λ′′

1−λ′
.

We first estimate the integral over [τn,
7
8
Tn]. By (3.1),

E(0, λ′; tl+1) ≤ E(0, λ′; tl) + E(λ′, λ′′; tl).

From this, our bounds on E(λ′, λ′′; tl), and our assumption on t0 = τn,

E(0, λ′; tl+1) ≤ E(0, λ′; t0) + lE(λ′, λ′′; t0)

≤ αη + lβη.

Integrating over [tl, tl+1],

(3.4)

∫ tl+1

tl

E(0, λ′; s) ds ≤ (q+ − 1)ql+τnαη + l(q+ − 1)ql+τnβη.

Adding these up,
∫ 7

8
Tn

τn

E(0, λ′; s) ds ≤
N+−1
∑

l=0

∫ tl+1

tl

E(0, λ′; s) ds

≤
N+−1
∑

l=0

((q+ − 1)ql+τnαη + l(q+ − 1)ql+τnβη)

= (q+ − 1)
q
N+

+ − 1

q+ − 1
τnαη

+ (q+ − 1)[(
N+

q+ − 1
− q+

(1− q+)2
)q

N+

+ +
q+

(1− q+)2
]τnβη

≤ (q
N+

+ − 1)
7

8
Tnαη

+ [(N+ − q+
1− q+

)q
N+

+ +
q+

1− q+
]
7

8
Tnβη.

For the integral over [5
8
Tn, τn] in (3.3), we use a similar argument,

∫ τn

5

8
Tn

E(0, λ′; s) ds ≤
N−−1
∑

l=0

((q− − 1)ql−τn(αη + l(q− − 1)ql−τnβη))

= (q− − 1)
q
N−

+ − 1

q− − 1
τnαη

+ (q− − 1)[(
N−

q− − 1
− q−

(1− q−)2
)q

N−

− +
q−

(1− q−)2
]τnβη

≤ (q
N−

− − 1)
7

8
Tnαη

+ [(N− − q−
1− q−

)q
N−

− +
q−

1− q−
]
7

8
Tnβη.
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Combining these,

1

Tn

∫ τn

5

8
Tn

E(0, λ′; s) ds+
1

Tn

∫ 7

8
Tn

τn

E(0, λ′; s) ds ≤ 7

8
(q

N−

− + q
N+

+ − 2)αη

+ [(N+ − q+
1− q+

)q
N+

+ +
q+

1− q+
]
7

8
βη

+ [(N− − q−
1− q−

)q
N−

− +
q−

1− q−
]
7

8
βη.

Choosing α, β, and γ so that

7

8
(q

N−

− + q
N+

+ − 2)αη + [(N+ − q+
1− q+

)q
N+

+ +
q+

1− q+
]
7

8
βη

+ [(N− − q−
1− q−

)q
N−

− +
q−

1− q−
]
7

8
βη < (1− γ)η,

from which (3.3) follows, which contradicts (3.2). �

With this lemma, along with the results of Struwe and Tahvildar-
Zadeh, we now prove Theorem 1.1.

Proof of Theorem 1.1. We closely follow the argument of Stuwe. Let
E0 denote the total energy of the system, T = ∪n[

5
8
Tn,

7
8
Tn], and pick

R(t) so that for some η0 with 2η0 less than lim inf t∈T E(Bλt(0), t), η0 <
E(BR(t)(0), t) < 2η0 for t ∈ T . Cover T with countably many intervals
Λl ≡ (tl −R(tl), tl +R(tl)), and with Rl = R(tl), note that from (2.2)

(3.5)
1

Rl

∫

Λl

∫

Bλ′t(0)

‖∂tU‖2 dx dt → 0,

as l → ∞.
Since limt→∞E(λ′, λ′′; t) = 0 for all 0 < λ′ < λ′′ < 1, we have for

any {tn} ⊂ T with limn→∞ tn = ∞,

(3.6) lim
n→∞

R(tn)

tn
= 0.

Rescale with Ul(t, x) = U(tl +Rlt, Rlx) so that

(3.7)

∫ 1

−1

∫

Dl(t)

‖∂tUl‖2 dx dt → 0,

with

Dl(t) = {x| Rl|x| ≤ λ′(tl +Rlt)}.
Then

(3.8) η0 ≤ E(Dl(t), t) ≤ E0.

By Theorem 2.2 and (3.8), we have a contradiction. Therefore

(3.9) lim
T→∞

1

T

∫ 7

8
T

5

8
T

E(0, λ′; t) dt = 0.
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From (3.9), we can now apply Theorem 2.1 to show that U scatters.
By translating in time, we can safely assume the initial condition is
proscribed at t = 1, and write (1.1) as the following integral equation.

U(t, x) = cos((t− 1)
√
−∆)U0 +

sin((t− 1)
√
−∆)√

−∆
U1

+

∫ t

1

sin((t− τ)
√
−∆)√

−∆
B(U)(∂αU, ∂

αU) dτ.

In order to prove scattering in the energy norm, it will suffice to show
the quantity

(3.10) ‖
∫ ∞

1

sin((−τ)
√
−∆)√

−∆
B(U)(∂αU, ∂

αU) dτ‖Ḣ1

is finite.
Picking coordinates so that (2.6) applies, we can use energy estimates

to bound (3.10) by

(3.11) ‖B(U)(∂αU, ∂
αU)‖L1

tL
2
x
. ‖|∂uU ||∂vU |‖L1

tL
2
x
.

Applying the estimates in Theorem 2.1 to (3.11),

‖|∂uU ||∂vU |‖L1
tL

2
x
.

∫ ∞

1

(
∫ ∞

0

|∂uU |2|∂vU |2r dr
)

1

2

dt

.

∫ ∞

1

(
∫ ∞

0

r dr

(t + r)4((t− r)2 + 1)

)
1

2

dt

.

∫ ∞

1

(

1

t4

∫ ∞

0

r dr

(t− r)2 + 1

)
1

2

dt

.

∫ ∞

1

1

t3/2
dt < ∞.

Therefore U scatters.
�
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