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Abstract

It is proved, that the homology group of the Tate curve is the
Pontryagin dual to the K-theory of the UHF-algebras.
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1 Introduction

A. The Pontryagin duality establishes a canonical isomorphism between
the locally compact abelian group G and the group Char (Char (G)), where
Char is the group of characters of G, i.e. the homomorphisms G — S* [4;
such a duality generalizes the correspondence between the periodic function
and its Fourier series. The aim of the underlying note is the Pontryagin
duality between a geometric object known as the Tate curve and a class of
the operator algebras known as the Uniformly Hyper-Finite algebras (the
UHF-algebras) [3]; such a duality provides a (little studied) link between
algebraic geometry of elliptic curves and their noncommutative topology.
Roughly speaking, our result says that the K-theory of a UHF-algebra is a
“Fourier series” of the abelian variety over the field of p-adic numbers; the
details of the construction are given below.
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B. The Tate curve. We shall work with a plane cubic E, : y* + xy =
23 + a4(q)x + ag(q), such that
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where ¢ is a p-adic number satisfying condition 0 < |¢| < 1. The series ()
are convergent and, therefore, £, is an elliptic curve defined over the field
of p-adic numbers Q,; it is called a Tate curve [5], p.190. There exists a
remarkable uniformization of E, by the lattice ¢* = {¢" : n € Z}; an exact
result is this. Let Q be the group of units of Q, and consider an action
x +— qx for 2 € Qj; the action is discrete and, therefore, the quotient Q;/¢”
is a Hausdorff topological space. It was proved by Tate, that there exists
an (analytic) isomorphism ¢ : Q;/¢” — Ejg; it follows from the last formula,
that Hy(E,; Z,) = Z, (see p.5).

C. The UHF-algebras. A UHF-algebra (“Uniformly Hyper-Finite C*-
algebra”) is a C*-algebra which is isomorphic to the inductive limit of the
sequence

Mkl (C) — Mkl (C) ® Mkz (C) — Mkl (C) ® Mkz (C) ® Mks ((C> e (2>

where My, (C) is a matrix C*-algebra and k; € {1,2,3,...}; we shall denote
the UHF-algebra by My, where k = (k1, k2, k3, ...). The UHF-algebras M)
and My are said to be stably isomorphic (Morita equivalent), whenever
My ®K = My ®K, where K is the C*-algebra of compact operators; such an
isomorphism means, that from the standpoint of noncommutative topology
M, and Mk’ are homeomorphic topological spaces. To classify the UHF-
algebras up to the stable isomorphism, one needs the following construction.
Let p be a prime number and n = sup {0 < j < oo : p’ | T[22, ki}; denote
by n = (ny,nse,...) an infinite sequence of n; as p; runs the ordered set of
all primes. By Q(n) we understand an additive subgroup of Q consisting
of rational numbers, whose denominators divide the “supernatural number”
pitps? .. .; the Q(n) is a dense subgroup of Q and every dense subgroup of
Q containing Z is given by Q(n) for some n. The UHF-algebra Mj, and the
group Q(n) are connected by the formula Ko(Mj) = Q(n), where Ko(M))
is the Ko-group of the C*-algebra M).. The UHF-algebras M)y and M) are
stably isomorphic if and only if rQ(n) = sQ(n’) for some positive integers r
and s [1], p.28.



D. The result. Denote by {a,}°, a canonical sequence of the p-adic num-
ber g, i.e. the sequence of integers 0 < a,, < p"—1, such that |g—a,| < p"; the
sequence is unique and satisfies the equation a,,; = a, mod p”. Consider
the rational numbers 0 < ~,, = Z—Z < 1 and let

Ly:= Z Yni (3>
n=1

be an additive subgroup of Q generated by ~,; it is a dense subgroup of Q
containing Z (lemma [I]). Finally, let M, := My, be a UHF-algebra, such

that Ko(M,) = T',; our main result can be stated as follows.

Theorem 1 The discrete group Ko(M,) is the Pontryagin dual of the con-
tinuous group Hy(Ey; Zy).

The note is organized as follows. Theorem [Il is proved in Section 2 and a
numerical example of the duality is constructed in Section 3.

2 Proof

We split the proof in a series of lemmas; for the notation and preliminary
facts, we refer the reader to [1]-[5].

Lemma 1 Let g #0. Then:
(i) zCTy;
(ii)) T, = Q.
Proof. Recall that every p-adic integer can be uniquely written as ¢ =

S0, bip', where 0 < b; < p — 1; the integers b; are related to the canon-
ical sequence by the formulas:

a; = bl
az = by +byp
as = bl + bgp + bgp2 (4)

Note that ¢ = 0 if and only if all b; = 0. If ¢ # 0, some b; # 0; thus, there
are infinitely many a; # 0. Therefore, group I'; has an infinite number of the
non-trivial generators.



(i) Let v and +' be a pair of non-trivial generators of I'y; clearly, their
nominators a and a’ are integers and belong to I',. By the Euclidean algo-
rithm, the equation ra — sa’ = 1 has a solution in integers r and s; thus,
1 eI, and Z C T';. The first part of lemma [l follows.

(i) In view of formulas (), we have

a, bi4+byp+...+b,p"t b,
p p p

where ~ means the first approximation (the main part) of a rational number;
thus, v, =~ %. Consider a pair of generators v, and 7,; then py, ~ b, and
DYnr = bys. Since py,, € I'y and py,y € T, the element b, (py,) — by (pynr) also
belongs to I',. But pb,/7y, — pb, vy = 0 and, therefore, there are elements of
the group I'y, which are arbitrary close to zero. To prove part (ii), assume to
the contrary that Fq # Q; then there exists r/s € Q and the closest v € Ty,
such that [y — £| = € > 0. Take 4" € T'; such that |y'| = g¢ < &; then v —
lies between v and r/s. Thus, 7 is not the closest to r/s; this contradiction
proves, that T, = Q. Lemma [Tl follows. O

Recall that the abelian group

Z(p>) == (n,%25--- | p1 =0, pya =71, PY3="2,--.) (6)

is called quasicyclic (or Priifer) group [2], p.15; the following lemma clarifies
the algebraic structure of I',.

Lemma 2 I',/Z = 7(p™) whenever |q| < 1.

Proof. Let us verify the condition py; = 0. Since |¢| < 1, the p-adic number
q is not a unit of the ring of p-adic integers Z,; therefore, in the canonical
sequence for ¢ the integer a; = 0. On the other hand, py; = a1 and, thus,

pn =0.
Let us verify the condition pv, 1 = 7, for n > 1; it follows from formulas
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we have pv,11 = Vn+bni1, where b, is an integer; thus, py,+1 = v, mod 1.
Lemma [2] follows. O

Lemma 3 Every q € Z, is a character of the abelian group Z(p™).

Proof. Since I'; C R, by lemmas there exists a map i, : Z(p™) — R/Z;
note, that ¢, is correctly defined for 0 < |¢| < 1 and extends to ¢ = 0 and
q = 1. Let us show, that i, is a homomorphism. Indeed, if 7,7 € Z(p*),
then i,(y + ') = (y+9) mod 1 = y mod 1+ mod 1 = iy(y) + i,(7')-
Thus, the map i, : Z(p>®) — R/Z = S' is a homomorphism, i.e. i, is a
character of the group Z(p™). O

In view of lemma B we have Z, = Char (z(p>)), where Char is the
group of characters of the abelian group. Note, that in the p-adic topology
Z, is a compact totally disconnected abelian group whose group operation is
the addition of the p-adic numbers; likewise, Z(p™) is a discrete abelian group
endowed with the discrete topology. Since Z, = Char (Z(p™)), by the First
Fundamental Theorem [4] there exists a canonical continuous isomorphism
Z(p*>*) — Char (Char (z(p>))); the isomorphism sends v € Z(p™) into the
character x, : Char (Z(p>)) — S* defined by the formula:

vy (y) = y(y), Vy € Char (z(p™)). (8)

Thus, Z, is the Pontryagin dual of the group I'y = K (M,).

Let us show, that Z, = H,(E,;Z,). Indeed, each elliptic curve E is
isomorphic to its own Jacobian, i.e. F = Jac (F) := QY(F)/H,(FE), where
Q'(E) is the vector space of analytic differentials on E. Since Q'(E,) = Q;
and F, = Q,/q", we conclude that H,(E,) = ¢” = 7Z; then by the Universal
Coefficient Formula one gets Hy(E; Z,) = Hi(E) ®Z, = 2R Z, = Z,.
Theorem [ is proved. O

3 Example

We shall consider an example illustrating theorem [Il Let p be a prime and
consider the p-adic integer ¢ = p; to obtain the canonical sequence for g,

>



notice that:

a; = bl =0

ay = by +bp=0+1xp

as = bl—l—bgp—l—bgp2:()—|—1><p—|—0><p2 (9>
Thus, by = 1 and by = by = ... = 0; the canonical sequence (a1, as,as, . ..)
for ¢ = p takes the form (0,p,p,...) and, therefore, the generators ~; = 0

and 7, = % = 2 = _L_for n > 2. In this case one gets the following dense
p p p

subgroup of Q:

(10)

Thus I') = Q(n), where n = (0,...,0,00,0,...); therefore, I'), = Ky(M),
where k = (p, p,...). In other words, the UHF-algebra corresponding to the
Tate curve E), = Q,/p” has the form:

Moo == M,(C) ® M,(C) ® ... (11)

We conclude that the UHF-algebra M,~ is the “Fourier series” of the Tate
curve E,; in the particular case p = 2 one gets a duality between the Tate
curve F5 and the UHF-algebra My, which is known as the Canonical Anti-
commutation Relations C*-algebra (the CAR or Fermion algebra) [1], p.13.
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