Noncommutative Tate curves

Igor Nikolaev *

Abstract

It is proved, that the homology group of the Tate curve is the Pontryagin dual to the K-theory of the UHF-algebras.

Key words and phrases: Tate curves, UHF-algebras
AMS (MOS) Subj. Class.: 11G07 (elliptic curves over local fields); $46 L 85$ (noncommutative topology)

1 Introduction

A. The Pontryagin duality establishes a canonical isomorphism between the locally compact abelian group G and the group Char (Char (G)), where Char is the group of characters of G, i.e. the homomorphisms $G \rightarrow S^{1}[4 ;$ such a duality generalizes the correspondence between the periodic function and its Fourier series. The aim of the underlying note is the Pontryagin duality between a geometric object known as the Tate curve and a class of the operator algebras known as the Uniformly Hyper-Finite algebras (the UHF-algebras) [3]; such a duality provides a (little studied) link between algebraic geometry of elliptic curves and their noncommutative topology. Roughly speaking, our result says that the K-theory of a UHF-algebra is a "Fourier series" of the abelian variety over the field of p-adic numbers; the details of the construction are given below.

[^0]B. The Tate curve. We shall work with a plane cubic $E_{q}: y^{2}+x y=$ $x^{3}+a_{4}(q) x+a_{6}(q)$, such that
\[

$$
\begin{equation*}
a_{4}(q)=-5 \sum_{n=1}^{\infty} \frac{n^{3} q^{n}}{1-q^{n}}, \quad a_{6}(q)=-\frac{1}{12} \sum_{n=1}^{\infty} \frac{\left(5 n^{3}+7 n^{5}\right) q^{n}}{1-q^{n}} \tag{1}
\end{equation*}
$$

\]

where q is a p-adic number satisfying condition $0<|q|<1$. The series (1) are convergent and, therefore, E_{q} is an elliptic curve defined over the field of p-adic numbers \mathbf{Q}_{p}; it is called a Tate curve [5], p.190. There exists a remarkable uniformization of E_{q} by the lattice $q^{\mathbb{Z}}=\left\{q^{n}: n \in \mathbb{Z}\right\}$; an exact result is this. Let \mathbf{Q}_{p}^{*} be the group of units of \mathbf{Q}_{p} and consider an action $x \mapsto q x$ for $x \in \mathbf{Q}_{p}^{*}$; the action is discrete and, therefore, the quotient $\mathbf{Q}_{p}^{*} / q^{\mathbb{Z}}$ is a Hausdorff topological space. It was proved by Tate, that there exists an (analytic) isomorphism $\phi: \mathbf{Q}_{p}^{*} / q^{\mathbb{Z}} \rightarrow E_{q}$; it follows from the last formula, that $H_{1}\left(E_{q} ; \mathbf{Z}_{p}\right) \cong \mathbf{Z}_{p}$ (see p.5).
C. The UHF-algebras. A UHF-algebra ("Uniformly Hyper-Finite C^{*} algebra") is a C^{*}-algebra which is isomorphic to the inductive limit of the sequence

$$
\begin{equation*}
M_{k_{1}}(\mathbb{C}) \rightarrow M_{k_{1}}(\mathbb{C}) \otimes M_{k_{2}}(\mathbb{C}) \rightarrow M_{k_{1}}(\mathbb{C}) \otimes M_{k_{2}}(\mathbb{C}) \otimes M_{k_{3}}(\mathbb{C}) \rightarrow \ldots, \tag{2}
\end{equation*}
$$

where $M_{k_{i}}(\mathbb{C})$ is a matrix C^{*}-algebra and $k_{i} \in\{1,2,3, \ldots\}$; we shall denote the UHF-algebra by $M_{\mathbf{k}}$, where $\mathbf{k}=\left(k_{1}, k_{2}, k_{3}, \ldots\right)$. The UHF-algebras $M_{\mathbf{k}}$ and $M_{\mathbf{k}^{\prime}}$ are said to be stably isomorphic (Morita equivalent), whenever $M_{\mathbf{k}} \otimes \mathcal{K} \cong M_{\mathbf{k}^{\prime}} \otimes \mathcal{K}$, where \mathcal{K} is the C^{*}-algebra of compact operators; such an isomorphism means, that from the standpoint of noncommutative topology $M_{\mathbf{k}}$ and $M_{\mathbf{k}^{\prime}}$ are homeomorphic topological spaces. To classify the UHFalgebras up to the stable isomorphism, one needs the following construction. Let p be a prime number and $n=\sup \left\{0 \leq j \leq \infty: p^{j} \mid \prod_{i=1}^{\infty} k_{i}\right\}$; denote by $\mathbf{n}=\left(n_{1}, n_{2}, \ldots\right)$ an infinite sequence of n_{i} as p_{i} runs the ordered set of all primes. By $\mathbb{Q}(\mathbf{n})$ we understand an additive subgroup of \mathbb{Q} consisting of rational numbers, whose denominators divide the "supernatural number" $p_{1}^{n_{1}} p_{2}^{n_{2}} \ldots ;$ the $\mathbb{Q}(\mathbf{n})$ is a dense subgroup of \mathbb{Q} and every dense subgroup of \mathbb{Q} containing \mathbb{Z} is given by $\mathbb{Q}(\mathbf{n})$ for some \mathbf{n}. The UHF-algebra $M_{\mathbf{k}}$ and the group $\mathbb{Q}(\mathbf{n})$ are connected by the formula $K_{0}\left(M_{\mathbf{k}}\right) \cong \mathbb{Q}(\mathbf{n})$, where $K_{0}\left(M_{\mathbf{k}}\right)$ is the K_{0}-group of the C^{*}-algebra $M_{\mathbf{k}}$. The UHF-algebras $M_{\mathbf{k}}$ and $M_{\mathbf{k}^{\prime}}$ are stably isomorphic if and only if $r \mathbb{Q}(\mathbf{n})=s \mathbb{Q}\left(\mathbf{n}^{\prime}\right)$ for some positive integers r and s [1], p. 28 .
D. The result. Denote by $\left\{a_{n}\right\}_{n=1}^{\infty}$ a canonical sequence of the p-adic number q, i.e. the sequence of integers $0 \leq a_{n} \leq p^{n}-1$, such that $\left|q-a_{n}\right| \leq p^{n}$; the sequence is unique and satisfies the equation $a_{n+1} \equiv a_{n} \bmod p^{n}$. Consider the rational numbers $0 \leq \gamma_{n}=\frac{a_{n}}{p^{n}}<1$ and let

$$
\begin{equation*}
\Gamma_{q}:=\sum_{n=1}^{\infty} \gamma_{n} \mathbb{Z} \tag{3}
\end{equation*}
$$

be an additive subgroup of \mathbb{Q} generated by γ_{n}; it is a dense subgroup of \mathbb{Q} containing \mathbb{Z} (lemma (1). Finally, let $M_{q}:=M_{\mathbf{k}_{(q)}}$ be a UHF-algebra, such that $K_{0}\left(M_{q}\right) \cong \Gamma_{q}$; our main result can be stated as follows.

Theorem 1 The discrete group $K_{0}\left(M_{q}\right)$ is the Pontryagin dual of the continuous group $H_{1}\left(E_{q} ; \mathbf{Z}_{p}\right)$.

The note is organized as follows. Theorem 1 is proved in Section 2 and a numerical example of the duality is constructed in Section 3.

2 Proof

We split the proof in a series of lemmas; for the notation and preliminary facts, we refer the reader to [1]-5].

Lemma 1 Let $q \neq 0$. Then:
(i) $\mathbb{Z} \subset \Gamma_{q}$;
(ii) $\bar{\Gamma}_{q}=\mathbb{Q}$.

Proof. Recall that every p-adic integer can be uniquely written as $q=$ $\sum_{i=1}^{\infty} b_{i} p^{i}$, where $0 \leq b_{i} \leq p-1$; the integers b_{i} are related to the canonical sequence by the formulas:

$$
\left\{\begin{array}{l}
a_{1}=b_{1} \tag{4}\\
a_{2}=b_{1}+b_{2} p \\
a_{3}=b_{1}+b_{2} p+b_{3} p^{2} \\
\vdots
\end{array}\right.
$$

Note that $q=0$ if and only if all $b_{i}=0$. If $q \neq 0$, some $b_{i} \neq 0$; thus, there are infinitely many $a_{i} \neq 0$. Therefore, group Γ_{q} has an infinite number of the non-trivial generators.
(i) Let γ and γ^{\prime} be a pair of non-trivial generators of Γ_{q}; clearly, their nominators a and a^{\prime} are integers and belong to Γ_{q}. By the Euclidean algorithm, the equation $r a-s a^{\prime}=1$ has a solution in integers r and s; thus, $1 \in \Gamma_{q}$ and $\mathbb{Z} \subset \Gamma_{q}$. The first part of lemma 1 follows.
(ii) In view of formulas (4), we have

$$
\begin{equation*}
\gamma_{n}=\frac{a_{n}}{p^{n}}=\frac{b_{1}+b_{2} p+\ldots+b_{n} p^{n-1}}{p^{n}} \approx \frac{b_{n}}{p} \tag{5}
\end{equation*}
$$

where \approx means the first approximation (the main part) of a rational number; thus, $\gamma_{n} \approx \frac{b_{n}}{p}$. Consider a pair of generators γ_{n} and $\gamma_{n^{\prime}}$; then $p \gamma_{n} \approx b_{n}$ and $p \gamma_{n^{\prime}} \approx b_{n^{\prime}}$. Since $p \gamma_{n} \in \Gamma_{q}$ and $p \gamma_{n^{\prime}} \in \Gamma_{q}$, the element $b_{n^{\prime}}\left(p \gamma_{n}\right)-b_{n}\left(p \gamma_{n^{\prime}}\right)$ also belongs to Γ_{q}. But $p b_{n^{\prime}} \gamma_{n}-p b_{n} \gamma_{n^{\prime}} \approx 0$ and, therefore, there are elements of the group Γ_{q}, which are arbitrary close to zero. To prove part (ii), assume to the contrary that $\bar{\Gamma}_{q} \neq \mathbb{Q}$; then there exists $r / s \in \mathbb{Q}$ and the closest $\gamma \in \Gamma_{q}$, such that $\left|\gamma-\frac{r}{s}\right|=\varepsilon>0$. Take $\gamma^{\prime} \in \Gamma_{q}$ such that $\left|\gamma^{\prime}\right|=\varepsilon_{0}<\varepsilon$; then $\gamma-\gamma^{\prime}$ lies between γ and r / s. Thus, γ is not the closest to r / s; this contradiction proves, that $\bar{\Gamma}_{q}=\mathbb{Q}$. Lemma 1 follows.

Recall that the abelian group

$$
\begin{equation*}
\mathbb{Z}\left(p^{\infty}\right):=\left\langle\gamma_{1}, \gamma_{2}, \ldots \mid p \gamma_{1}=0, p \gamma_{2}=\gamma_{1}, p \gamma_{3}=\gamma_{2}, \ldots\right\rangle \tag{6}
\end{equation*}
$$

is called quasicyclic (or Prüfer) group [2], p.15; the following lemma clarifies the algebraic structure of Γ_{q}.

Lemma $2 \Gamma_{q} / \mathbb{Z} \cong \mathbb{Z}\left(p^{\infty}\right)$ whenever $|q|<1$.
Proof. Let us verify the condition $p \gamma_{1}=0$. Since $|q|<1$, the p-adic number q is not a unit of the ring of p-adic integers \mathbf{Z}_{p}; therefore, in the canonical sequence for q the integer $a_{1}=0$. On the other hand, $p \gamma_{1}=a_{1}$ and, thus, $p \gamma_{1}=0$.

Let us verify the condition $p \gamma_{n+1}=\gamma_{n}$ for $n \geq 1$; it follows from formulas (4), that:

$$
\left\{\begin{array}{l}
\gamma_{n}=\frac{b_{1}+\ldots+b_{n} p^{n-1}}{p^{n}} \tag{7}\\
\gamma_{n+1}=\frac{b_{1}+\ldots+b_{n} p^{n-1}+b_{n+1} p^{n}}{p^{n+1}}
\end{array}\right.
$$

Since

$$
p \gamma_{n+1}=\frac{b_{1}+\ldots+b_{n} p^{n-1}+b_{n+1} p^{n}}{p^{n}}=
$$

$$
\begin{aligned}
& =\frac{b_{1}+\ldots+b_{n} p^{n-1}}{p^{n}}+b_{n+1}= \\
& =\gamma_{n}+b_{n+1}
\end{aligned}
$$

we have $p \gamma_{n+1}=\gamma_{n}+b_{n+1}$, where b_{n+1} is an integer; thus, $p \gamma_{n+1}=\gamma_{n} \bmod 1$. Lemma 2 follows.

Lemma 3 Every $q \in \mathbf{Z}_{p}$ is a character of the abelian group $\mathbb{Z}\left(p^{\infty}\right)$.
Proof. Since $\Gamma_{q} \subset \mathbb{R}$, by lemmas $1 / 2$ there exists a map $i_{q}: \mathbb{Z}\left(p^{\infty}\right) \rightarrow \mathbb{R} / \mathbb{Z}$; note, that i_{q} is correctly defined for $0<|q|<1$ and extends to $q=0$ and $q=1$. Let us show, that i_{q} is a homomorphism. Indeed, if $\gamma, \gamma^{\prime} \in \mathbb{Z}\left(p^{\infty}\right)$, then $i_{q}\left(\gamma+\gamma^{\prime}\right)=\left(\gamma+\gamma^{\prime}\right) \bmod 1=\gamma \bmod 1+\gamma^{\prime} \bmod 1=i_{q}(\gamma)+i_{q}\left(\gamma^{\prime}\right)$. Thus, the map $i_{q}: \mathbb{Z}\left(p^{\infty}\right) \rightarrow \mathbb{R} / \mathbb{Z} \cong S^{1}$ is a homomorphism, i.e. i_{q} is a character of the group $\mathbb{Z}\left(p^{\infty}\right)$.

In view of lemma 3, we have $\mathbf{Z}_{p} \cong \operatorname{Char}\left(\mathbb{Z}\left(p^{\infty}\right)\right)$, where Char is the group of characters of the abelian group. Note, that in the p-adic topology \mathbf{Z}_{p} is a compact totally disconnected abelian group whose group operation is the addition of the p-adic numbers; likewise, $\mathbb{Z}\left(p^{\infty}\right)$ is a discrete abelian group endowed with the discrete topology. Since $\mathbf{Z}_{p} \cong \operatorname{Char}\left(\mathbb{Z}\left(p^{\infty}\right)\right.$), by the First Fundamental Theorem [4] there exists a canonical continuous isomorphism $\mathbb{Z}\left(p^{\infty}\right) \rightarrow \mathbf{C h a r}\left(\operatorname{Char}\left(\mathbb{Z}\left(p^{\infty}\right)\right)\right)$; the isomorphism sends $\gamma \in \mathbb{Z}\left(p^{\infty}\right)$ into the character x_{γ} : Char $\left(\mathbb{Z}\left(p^{\infty}\right)\right) \rightarrow S^{1}$ defined by the formula:

$$
\begin{equation*}
x_{\gamma}(y)=y(\gamma), \quad \forall y \in \operatorname{Char}\left(\mathbb{Z}\left(p^{\infty}\right)\right) \tag{8}
\end{equation*}
$$

Thus, \mathbf{Z}_{p} is the Pontryagin dual of the group $\Gamma_{q} \cong K_{0}\left(M_{q}\right)$.
Let us show, that $\mathbf{Z}_{p} \cong H_{1}\left(E_{q} ; \mathbf{Z}_{p}\right)$. Indeed, each elliptic curve E is isomorphic to its own Jacobian, i.e. $E \cong \mathbf{J a c}(E):=\Omega^{1}(E) / H_{1}(E)$, where $\Omega^{1}(E)$ is the vector space of analytic differentials on E. Since $\Omega^{1}\left(E_{q}\right) \cong \mathbf{Q}_{p}^{*}$ and $E_{q} \cong \mathbf{Q}_{p}^{*} / q^{\mathbb{Z}}$, we conclude that $H_{1}\left(E_{q}\right) \cong q^{\mathbb{Z}} \cong \mathbb{Z}$; then by the Universal Coefficient Formula one gets $H_{1}\left(E_{q} ; \mathbf{Z}_{p}\right) \cong H_{1}\left(E_{q}\right) \otimes \mathbf{Z}_{p} \cong \mathbb{Z} \otimes \mathbf{Z}_{p} \cong \mathbf{Z}_{p}$. Theorem 1 is proved.

3 Example

We shall consider an example illustrating theorem 1. Let p be a prime and consider the p-adic integer $q=p$; to obtain the canonical sequence for q,
notice that:

$$
\left\{\begin{array}{l}
a_{1}=b_{1}=0 \tag{9}\\
a_{2}=b_{1}+b_{2} p=0+1 \times p \\
a_{3}=b_{1}+b_{2} p+b_{3} p^{2}=0+1 \times p+0 \times p^{2} \\
\vdots
\end{array}\right.
$$

Thus, $b_{2}=1$ and $b_{1}=b_{3}=\ldots=0$; the canonical sequence $\left(a_{1}, a_{2}, a_{3}, \ldots\right)$ for $q=p$ takes the form $(0, p, p, \ldots)$ and, therefore, the generators $\gamma_{1}=0$ and $\gamma_{n}=\frac{a_{n}}{p^{n}}=\frac{p}{p^{n}}=\frac{1}{p^{n-1}}$ for $n \geq 2$. In this case one gets the following dense subgroup of \mathbb{Q} :

$$
\begin{equation*}
\Gamma_{p}=\sum_{n=1}^{\infty} \frac{1}{p^{n}} \mathbb{Z}=\mathbb{Z}\left[\frac{1}{p}\right] . \tag{10}
\end{equation*}
$$

Thus $\Gamma_{p} \cong Q(\mathbf{n})$, where $\mathbf{n}=(0, \ldots, 0, \infty, 0, \ldots)$; therefore, $\Gamma_{p} \cong K_{0}\left(M_{\mathbf{k}}\right)$, where $\mathbf{k}=(p, p, \ldots)$. In other words, the UHF-algebra corresponding to the Tate curve $E_{p}=\mathbf{Q}_{p}^{*} / p^{\mathbb{Z}}$ has the form:

$$
\begin{equation*}
M_{p^{\infty}}:=M_{p}(\mathbb{C}) \otimes M_{p}(\mathbb{C}) \otimes \ldots \tag{11}
\end{equation*}
$$

We conclude that the UHF-algebra $M_{p \infty}$ is the "Fourier series" of the Tate curve E_{p}; in the particular case $p=2$ one gets a duality between the Tate curve E_{2} and the UHF-algebra $M_{2 \infty}$, which is known as the Canonical Anticommutation Relations C^{*}-algebra (the CAR or Fermion algebra) [1], p. 13.

References

[1] E. G. Effros, Dimensions and C^{*}-Algebras, in: Conf. Board of the Math. Sciences No.46, AMS (1981).
[2] L. Fuchs, Infinite Abelian Groups, vol.1, Academic Press, 1970.
[3] J. G. Glimm, On a certain class of operator algebras, Trans. Amer. Math. Soc. 95 (1960), 318-340.
[4] L. S. Pontrjagin, The theory of topological commutative groups, Annals of Math. 35 (1934), 361-388.
[5] J. T. Tate, The arithmetic of elliptic curves, Inventiones Math. 23 (1974), 179-206.

The Fields Institute for Mathematical Sciences, Toronto, ON, Canada, E-mail: igor.v.nikolaev@gmail.com

Current address: 101-315 Holmwood Ave., Ottawa, ON, Canada, K1S 2R2

[^0]: *Partially supported by NSERC.

