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0 Noncommutative Tate curves

Igor Nikolaev ∗

Abstract

It is proved, that the homology group of the Tate curve is the

Pontryagin dual to the K-theory of the UHF-algebras.
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AMS (MOS) Subj. Class.: 11G07 (elliptic curves over local fields);
46L85 (noncommutative topology)

1 Introduction

A. The Pontryagin duality establishes a canonical isomorphism between
the locally compact abelian group G and the group Char (Char (G)), where
Char is the group of characters of G, i.e. the homomorphisms G → S1 [4];
such a duality generalizes the correspondence between the periodic function
and its Fourier series. The aim of the underlying note is the Pontryagin
duality between a geometric object known as the Tate curve and a class of
the operator algebras known as the Uniformly Hyper-Finite algebras (the
UHF-algebras) [3]; such a duality provides a (little studied) link between
algebraic geometry of elliptic curves and their noncommutative topology.
Roughly speaking, our result says that the K-theory of a UHF-algebra is a
“Fourier series” of the abelian variety over the field of p-adic numbers; the
details of the construction are given below.

∗Partially supported by NSERC.
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B. The Tate curve. We shall work with a plane cubic Eq : y2 + xy =
x3 + a4(q)x+ a6(q), such that

a4(q) = −5
∞
∑

n=1

n3qn

1− qn
, a6(q) = −

1

12

∞
∑

n=1

(5n3 + 7n5)qn

1− qn
, (1)

where q is a p-adic number satisfying condition 0 < |q| < 1. The series (1)
are convergent and, therefore, Eq is an elliptic curve defined over the field
of p-adic numbers Qp; it is called a Tate curve [5], p.190. There exists a
remarkable uniformization of Eq by the lattice qZ = {qn : n ∈ Z}; an exact
result is this. Let Q∗

p be the group of units of Qp and consider an action
x 7→ qx for x ∈ Q∗

p; the action is discrete and, therefore, the quotient Q∗

p/q
Z

is a Hausdorff topological space. It was proved by Tate, that there exists
an (analytic) isomorphism φ : Q∗

p/q
Z → Eq; it follows from the last formula,

that H1(Eq;Zp) ∼= Zp (see p.5).

C. The UHF-algebras. A UHF-algebra (“Uniformly Hyper-Finite C∗-
algebra”) is a C∗-algebra which is isomorphic to the inductive limit of the
sequence

Mk1(C) → Mk1(C)⊗Mk2(C) → Mk1(C)⊗Mk2(C)⊗Mk3(C) → . . . , (2)

where Mki(C) is a matrix C∗-algebra and ki ∈ {1, 2, 3, . . .}; we shall denote
the UHF-algebra by Mk, where k = (k1, k2, k3, . . .). The UHF-algebras Mk
and Mk

′ are said to be stably isomorphic (Morita equivalent), whenever
Mk⊗K ∼= Mk

′⊗K, where K is the C∗-algebra of compact operators; such an
isomorphism means, that from the standpoint of noncommutative topology
Mk and Mk

′ are homeomorphic topological spaces. To classify the UHF-
algebras up to the stable isomorphism, one needs the following construction.
Let p be a prime number and n = sup {0 ≤ j ≤ ∞ : pj |

∏

∞

i=1 ki}; denote
by n = (n1, n2, . . .) an infinite sequence of ni as pi runs the ordered set of
all primes. By Q(n) we understand an additive subgroup of Q consisting
of rational numbers, whose denominators divide the “supernatural number”
pn1

1 pn2

2 . . .; the Q(n) is a dense subgroup of Q and every dense subgroup of
Q containing Z is given by Q(n) for some n. The UHF-algebra Mk and the
group Q(n) are connected by the formula K0(Mk)

∼= Q(n), where K0(Mk)
is the K0-group of the C∗-algebra Mk. The UHF-algebras Mk and Mk

′ are
stably isomorphic if and only if rQ(n) = sQ(n′) for some positive integers r
and s [1], p.28.
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D. The result. Denote by {an}
∞

n=1 a canonical sequence of the p-adic num-
ber q, i.e. the sequence of integers 0 ≤ an ≤ pn−1, such that |q−an| ≤ pn; the
sequence is unique and satisfies the equation an+1 ≡ an mod pn. Consider
the rational numbers 0 ≤ γn = an

pn
< 1 and let

Γq :=
∞
∑

n=1

γnZ (3)

be an additive subgroup of Q generated by γn; it is a dense subgroup of Q

containing Z (lemma 1). Finally, let Mq := Mk(q)
be a UHF-algebra, such

that K0(Mq) ∼= Γq; our main result can be stated as follows.

Theorem 1 The discrete group K0(Mq) is the Pontryagin dual of the con-
tinuous group H1(Eq;Zp).

The note is organized as follows. Theorem 1 is proved in Section 2 and a
numerical example of the duality is constructed in Section 3.

2 Proof

We split the proof in a series of lemmas; for the notation and preliminary
facts, we refer the reader to [1]–[5].

Lemma 1 Let q 6= 0. Then:

(i) Z ⊂ Γq;

(ii) Γq = Q.

Proof. Recall that every p-adic integer can be uniquely written as q =
∑

∞

i=1 bip
i, where 0 ≤ bi ≤ p − 1; the integers bi are related to the canon-

ical sequence by the formulas:























a1 = b1
a2 = b1 + b2p
a3 = b1 + b2p+ b3p

2

...

(4)

Note that q = 0 if and only if all bi = 0. If q 6= 0, some bi 6= 0; thus, there
are infinitely many ai 6= 0. Therefore, group Γq has an infinite number of the
non-trivial generators.
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(i) Let γ and γ′ be a pair of non-trivial generators of Γq; clearly, their
nominators a and a′ are integers and belong to Γq. By the Euclidean algo-
rithm, the equation ra − sa′ = 1 has a solution in integers r and s; thus,
1 ∈ Γq and Z ⊂ Γq. The first part of lemma 1 follows.

(ii) In view of formulas (4), we have

γn =
an
pn

=
b1 + b2p+ . . .+ bnp

n−1

pn
≈

bn
p
, (5)

where ≈ means the first approximation (the main part) of a rational number;
thus, γn ≈ bn

p
. Consider a pair of generators γn and γn′; then pγn ≈ bn and

pγn′ ≈ bn′. Since pγn ∈ Γq and pγn′ ∈ Γq, the element bn′(pγn)− bn(pγn′) also
belongs to Γq. But pbn′γn − pbnγn′ ≈ 0 and, therefore, there are elements of
the group Γq, which are arbitrary close to zero. To prove part (ii), assume to
the contrary that Γq 6= Q; then there exists r/s ∈ Q and the closest γ ∈ Γq,
such that |γ − r

s
| = ε > 0. Take γ′ ∈ Γq such that |γ′| = ε0 < ε; then γ − γ′

lies between γ and r/s. Thus, γ is not the closest to r/s; this contradiction
proves, that Γq = Q. Lemma 1 follows. �

Recall that the abelian group

Z(p∞) := 〈γ1, γ2, . . . | pγ1 = 0, pγ2 = γ1, pγ3 = γ2, . . .〉 (6)

is called quasicyclic (or Prüfer) group [2], p.15; the following lemma clarifies
the algebraic structure of Γq.

Lemma 2 Γq/Z ∼= Z(p∞) whenever |q| < 1.

Proof. Let us verify the condition pγ1 = 0. Since |q| < 1, the p-adic number
q is not a unit of the ring of p-adic integers Zp; therefore, in the canonical
sequence for q the integer a1 = 0. On the other hand, pγ1 = a1 and, thus,
pγ1 = 0.

Let us verify the condition pγn+1 = γn for n ≥ 1; it follows from formulas
(4), that:







γn = b1+...+bnp
n−1

pn

γn+1 = b1+...+bnp
n−1+bn+1p

n

pn+1 .
(7)

Since

pγn+1 =
b1 + . . .+ bnp

n−1 + bn+1p
n

pn
=

4



=
b1 + . . .+ bnp

n−1

pn
+ bn+1 =

= γn + bn+1,

we have pγn+1 = γn+bn+1, where bn+1 is an integer; thus, pγn+1 = γn mod 1.
Lemma 2 follows. �

Lemma 3 Every q ∈ Zp is a character of the abelian group Z(p∞).

Proof. Since Γq ⊂ R, by lemmas 1-2 there exists a map iq : Z(p∞) → R/Z;
note, that iq is correctly defined for 0 < |q| < 1 and extends to q = 0 and
q = 1. Let us show, that iq is a homomorphism. Indeed, if γ, γ′ ∈ Z(p∞),
then iq(γ + γ′) = (γ + γ′) mod 1 = γ mod 1 + γ′ mod 1 = iq(γ) + iq(γ

′).
Thus, the map iq : Z(p∞) → R/Z ∼= S1 is a homomorphism, i.e. iq is a
character of the group Z(p∞). �

In view of lemma 3, we have Zp
∼= Char (Z(p∞)), where Char is the

group of characters of the abelian group. Note, that in the p-adic topology
Zp is a compact totally disconnected abelian group whose group operation is
the addition of the p-adic numbers; likewise, Z(p∞) is a discrete abelian group
endowed with the discrete topology. Since Zp

∼= Char (Z(p∞)), by the First
Fundamental Theorem [4] there exists a canonical continuous isomorphism
Z(p∞) → Char (Char (Z(p∞))); the isomorphism sends γ ∈ Z(p∞) into the
character xγ : Char (Z(p∞)) → S1 defined by the formula:

xγ(y) = y(γ), ∀y ∈ Char (Z(p∞)). (8)

Thus, Zp is the Pontryagin dual of the group Γq
∼= K0(Mq).

Let us show, that Zp
∼= H1(Eq;Zp). Indeed, each elliptic curve E is

isomorphic to its own Jacobian, i.e. E ∼= Jac (E) := Ω1(E)/H1(E), where
Ω1(E) is the vector space of analytic differentials on E. Since Ω1(Eq) ∼= Q∗

p

and Eq
∼= Q∗

p/q
Z, we conclude that H1(Eq) ∼= qZ ∼= Z; then by the Universal

Coefficient Formula one gets H1(Eq;Zp) ∼= H1(Eq) ⊗ Zp
∼= Z ⊗ Zp

∼= Zp.
Theorem 1 is proved. �

3 Example

We shall consider an example illustrating theorem 1. Let p be a prime and
consider the p-adic integer q = p; to obtain the canonical sequence for q,
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notice that:






















a1 = b1 = 0
a2 = b1 + b2p = 0 + 1× p
a3 = b1 + b2p+ b3p

2 = 0 + 1× p + 0× p2

...

(9)

Thus, b2 = 1 and b1 = b3 = . . . = 0; the canonical sequence (a1, a2, a3, . . .)
for q = p takes the form (0, p, p, . . .) and, therefore, the generators γ1 = 0
and γn = an

pn
= p

pn
= 1

pn−1 for n ≥ 2. In this case one gets the following dense
subgroup of Q:

Γp =
∞
∑

n=1

1

pn
Z = Z

[

1

p

]

. (10)

Thus Γp
∼= Q(n), where n = (0, . . . , 0,∞, 0, . . .); therefore, Γp

∼= K0(Mk),
where k = (p, p, . . .). In other words, the UHF-algebra corresponding to the
Tate curve Ep = Q∗

p/p
Z has the form:

Mp∞ := Mp(C)⊗Mp(C)⊗ . . . (11)

We conclude that the UHF-algebra Mp∞ is the “Fourier series” of the Tate
curve Ep; in the particular case p = 2 one gets a duality between the Tate
curve E2 and the UHF-algebra M2∞ , which is known as the Canonical Anti-
commutation Relations C∗-algebra (the CAR or Fermion algebra) [1], p.13.
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