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Abstract

Let X1, . . . , XN ∈ R
n be independent centered random vectors with log-concave distribution and with

the identity as covariance matrix. We show that with overwhelming probability one has

sup
x∈Sn−1

∣

∣

∣

1

N

N
∑

i=1

(

|〈Xi, x〉|2 − E|〈Xi, x〉|2
)

∣

∣

∣
≤ C

√

n

N
,

where C is an absolute positive constant. This result is valid in a more general framework when the linear
forms (〈Xi, x〉)i≤N,x∈Sn−1 and the Euclidean norms (|Xi|/

√
n)i≤N exhibit uniformly a sub-exponential

decay. As a consequence, if A denotes the random matrix with columns (Xi), then with overwhelming
probability, the extremal singular values λmin and λmax of AA⊤ satisfy the inequalities 1 − C

√

n

N
≤

λmin

N
≤ λmax

N
≤ 1 + C

√

n

N
which is a quantitative version of Bai-Yin theorem [4] known for random

matrices with i.i.d. entries.

Let X ∈ R
n be a centered random vector whose covariance matrix is the identity and X1, ..., XN be

independent copies of X . Let A be a random n×N matrix whose columns are (Xi). By λmin (resp. λmax)
we denote the smallest (resp. the largest) singular number of the matrix of empirical covariance AA⊤. In
the study of the local regime in the random matrix theory of particular interest is the limit behaviour of
extremal values of the spectrum of AA⊤. In the case of Wishart Ensemble when the coordinates of X are
independent, the Bai-Yin theorem [4] establishes the convergence of λmin/N and λmax/N when n,N → ∞
and n/N → β ∈ (0, 1), under the assumption of a finite fourth moment. In this note we study the asymptotic
non-limit behaviour (also called “non-asymptotic” in Statistics) i.e. we look for sharp upper and lower bounds
for singular values in terms of n and N , when n and N are sufficiently large. For example, for Gaussian
matrices it is known that singular values satisfy inequalitites

1 − C

√

n

N
≤ λmin

N
≤ λmax

N
≤ 1 + C

√

n

N
(1)
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with probability close to 1. We obtain the same estimates for large class of random matrices, which in
particular do not require that entries of the matrix are independent or that Xi’s are identically distributed.
Note that the natural question about convergence of singular values in such a case is still open (see [2] for
the case of Xi having uniform distribution on a rescaled ℓnp ball).

The natural scalar product and Euclidean norm on R
n are denoted by 〈 ·, ·〉 and | · |. We also denote by

the same notation | · | the cardinality of a set. By C, C1, c etc. we will denote absolute positive constants.
Let X1, . . . , XN be a sequence of random vectors in R

n (not necessarily identically distributed). We say
that it is uniformly ψ1 if for some ψ > 0,

sup
i≤N

sup
y∈Sn−1

‖ | 〈Xi, y〉 | ‖ψ1
≤ ψ, (2)

where for a random variable Y ∈ R, ‖Y ‖ψ1
= inf {C > 0 ; E exp (|Y |/C) ≤ 2} . We say that it satisfies the

boundedness condition with constant K (for some K ≥ 1) if

P

(

max
i≤N

|Xi|/
√
n > K max{1, (N/n)1/4}

)

≤ exp
(

−√
n
)

. (3)

The main result of this note is the following theorem.

Theorem 1 Let N,n be positive integers and ψ,K ≥ 1. Let X1, . . . , XN be independent random vectors in
R
n satisfying (2) and (3). Then with probability at least 1 − 2 exp (−c√n) one has

sup
x∈Sn−1

∣

∣

∣

1

N

N
∑

i=1

(

|〈Xi, x〉|2 − E|〈Xi, x〉|2
)

∣

∣

∣
≤ C (ψ +K)2

√

n

N
.

Theorem 1 improves estimates obtained in [1] for log-concave isotropic vectors. There, we considered
essentially the case of N proportional to n, which was sufficient to answer the question of Kannan, Lovász
and Simonovits [6], however, for bigger N , the results were off by a logarithmic factor. The theorem above
removes this factor completely leading to the best possible estimate for an arbitrary N , that is to an estimate
of the same order as in the Gaussian case.

As a consequence, we obtain in our setting, the following quantitative version of Bai-Yin theorem [4]
known for random matrices with i.i.d. entries.

Corollary 1 Let A be a random n × N matrix, whose columns X1, . . . , XN are isotropic random vectors
satisfying the assumptions of Theorem 1. Then with probability at least 1 − 2 exp(−c√n),

1 − C (ψ +K)
2

√

n

N
≤ λmin

N
≤ λmax

N
≤ 1 + C (ψ +K)

2

√

n

N
.

To emphasize the strength of the above results we observe that conditions (2) and (3) are valid for many
classes of distributions.

Example 1 Random vectors uniformly distributed on the Euclidean ball of radius K
√
n clearly satisfy (3).

They also satisfy (2) with ψ = CK.
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Example 2 Log-concave isotropic random vectors in R
n. Recall that a random vector is isotropic if its

covariance matrix is the identity and it is log-concave if its distribution has a log-concave density. Such
vectors satisfy (2) and (3) for appropriate absolute constants ψ and K. The boundedness condition follows
from Paouris’ theorem ([7]) and is explicitly written e.g., in [1], Lemma 3.1. We would like to remark that
a version of Theorem 1 with a weaker probability estimate was proved by Aubrun in the case of isotropic
log-concave random vectors under an additional assumption of unconditionality (see [3]).

Example 3 Any isotropic random vectors (Xi)i≤N in R
n, satisfying the Poincaré inequality with constant L,

i.e. such that Var(f(Xi)) ≤ L2
E|∇f(Xi))|2 for all compactly supported smooth functions, satisfy (2) with

ψ = CL and (3) with K = CL. The question from [5] whether all log-concave isotropic random vectors
satisfy the Poincaré inequality with an absolute constant is one of the major open problems in the theory of
log-concave measures.

The proof of Theorem 1 is close to arguments in Section 4.3 of [1], however it uses a choice of parameters
more appropriate for the case considered here, and a new approximation argument. We need additional
notations. Let 1 ≤ m ≤ N . By Um we denote the subset of all vectors in SN−1 having at most m non-zero
coordinates. For an n×N matrix A we let

Am = sup
z∈Um

|Az|. (4)

The main technical tool is the following result which is the “in particular” part of Theorem 3.13 from [1] in
which one needs to adjust corresponding constants and to take a union bound.

Theorem 2 Let X1, . . . , XN be as in Theorem 1, let A be a random n × N matrix whose columns are the
Xi’s. Then for every t ≥ 1 one has

P

(

∃m Am ≥ Cψtmax{√m ln
2N

m
,
√
n} + 6 max

i≤N
|Xi|

)

≤ exp
(

−t√n
)

.

Proof of Theorem 1. We assume N ≥ n, otherwise Theorem 2 implies Theorem 1. For x ∈ Sn−1 set

S(x) =

∣

∣

∣

∣

∣

1

N

N
∑

i=1

(

|〈Xi, x〉|2 − E|〈Xi, x〉|2
)

∣

∣

∣

∣

∣

.

Let B > 0 be a parameter which we specify later and observe that

sup
x∈Sn−1

S(x) ≤ sup
x∈Sn−1

(∣

∣

∣

1

N

N
∑

i=1

(

(|〈Xi, x〉| ∧B)
2 − E (|〈Xi, x〉| ∧B)

2
) ∣

∣

∣

+
1

N

N
∑

i=1

(

|〈Xi, x〉|2 −B2
)

1{|〈Xi,x〉|≥B} +
1

N
E

N
∑

i=1

(

|〈Xi, x〉|2 −B2
)

1{|〈Xi,x〉|≥B}

)

.

We denote the summands under the supremum by S1(x), S2(x), and S3(x), respectively.

Estimate for S1: Given x ∈ Sn−1 and i ≤ N let Zi = Zi(x) = (|〈Xi, x〉| ∧B)
2 − E (|〈Xi, x〉| ∧B)

2
. Then

|Zi| ≤ B2. Moreover, since

Var(Zi) ≤ E (|〈Xi, x〉| ∧B)
4 ≤ E|〈Xi, x〉|4 ≤ C1ψ

4,
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we observe that σ2 = 1

N

∑N
i=1

Var(Zi) ≤ C1ψ
4. Thus, by Bernstein’s inequality

P (S1(x) ≥ θ) = P

(

1

N

N
∑

i=1

Zi ≥ θ

)

≤ exp

(

− θ2N

2(C1ψ4 +B2θ/3)

)

.

It is well known that Sn−1 admits a (1/3)-net N in the Euclidean metric such that |N | ≤ 7n. Then by the
union bound we obtain that if

θ2N > 8C1ψ
4n ln 7 and θN > (8/3)B2n ln 7 (5)

then

P

(

sup
x∈N

S1(x) ≥ θ

)

≤ exp

(

n ln 7 − θ2N

2(C1ψ4 +B2θ/3)

)

≤ exp

(

− θ2N

4(C1ψ4 +B2θ/3)

)

. (6)

Estimates for S2 and S3: By Hölder’s inequality and (2) we have, for some absolute constant C2 ≥ 1,

sup
x∈Sn−1

S3(x) ≤ 1

N

N
∑

i=1

sup
x∈Sn−1

‖〈Xi, x〉‖24 P (|〈Xi, x〉| ≥ B)
1/2 ≤ C2ψ

2 exp(−B/ψ). (7)

To estimate S2, we will use the following notation

M = max
{

ψ2n,max
i≤N

|Xi|2
}

, EB = EB(x) = {i ≤ N : |〈Xi, x〉| ≥ B}, m = sup
x∈Sn−1

|EB(x)|.

By the definition of Am, we have for every x ∈ Sn−1

B2|EB| ≤
∑

i∈EB

|〈Xi, x〉|2 ≤ sup
|E|≤m

∑

i∈E

|〈Xi, x〉|2 ≤ A2

m,

which yields B2m ≤ A2
m and NS2(x) ≤ A2

m. Theorem 2 implies that for some absolute constant C ≥ C2,
with probability at least 1 − exp(−√

n) one has

B2m ≤ C

(

M + ψ2m ln2 2N

m

)

and sup
x∈Sn−1

S2(x) ≤ C

(

M

N
+ ψ2

m

N
ln2 2N

m

)

. (8)

Now we choose the parameters. Let B = 2
√

2Cψ ln(5N/n). Then (7) gives S3(x) ≤ Cψ2 n
N ≤ CM

N for all
x ∈ Sn−1 and together with (8) it yields that with probability at least 1 − exp(−√

n) one has

sup
x∈Sn−1

(S2(x) + S3(x)) ≤ C
(

(2M/N) + ψ2(m/N) ln2(2N/m)
)

.

It is easy to check that M ≥ ψ2m ln2(2N/m) on the set where (8) holds. Indeed, assume it is not so,
thus M < ψ2m ln2(2N/m). Then by (8) we observe that B2 ≤ 2Cψ2 ln2(2N/m), which implies

m ≤ 2N exp(−B/ψ
√

2C) = 2n2/25N.

By our hypothetical upper bound for M and since f(m) = m ln2(2N/m) increases on [1, 2N/e2], we get

ψ2n ≤M ≤ ψ2(8n2/25N) ln2(5N/n),
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which is impossible.
It follows that

P

(

sup
x∈Sn−1

(S2(x) + S3(x)) ≤ 3C(M/N)

)

≥ 1 − exp(−√
n).

Combining this estimate with (6), we get

P

(

sup
x∈N

S(x) ≤ θ + 3C
M

N

)

≥ 1 − exp(−√
n) − exp

(

− θ2N

4(C1ψ4 +B2θ/3)

)

.

We now set θ = C3ψ
2
√

n/N , where C3 is a sufficiently large absolute positive constant so that (5) is satisfied.
Then using boundedness condition with constant K we obtain

P

(

sup
x∈N

S(x) ≤
(

C3ψ
2 + 3CK2

)
√

n/N

)

≥ 1 − exp(−√
n) − exp (−cn) ≥ 1 − 2 exp(−c√n),

where c is a sufficiently small positive constant. It proves the desired estimate on the (1/3)-net.
To pass from N to the whole sphere note that S(x) can be written as |〈Tx, x〉|, where T is a self-adjoint

operator on R
n. Thus, writing for each x ∈ Sn−1, x = y + z with y ∈ N and |z| ≤ 1/3, we get

‖T ‖ = sup
x∈Sn−1

|〈Tx, x〉| ≤ sup
y∈N

|〈Ty, y〉| +
2

3
sup
y∈N

|Ty| + sup
|z|≤1/3

|〈Tz, z〉| ≤ sup
y∈N

S(y) +
7

9
‖T ‖,

which implies the desired estimate on the whole sphere Sn−1. �
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