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SO(n)\SO0(n, 1) HAS POSITIVE CURVATURES

TAECHANG BYUN, KYEONGHEE JO, AND KYUNG BAI LEE

Abstract. The Lie group SO0(n, 1) has the left-invariant metric com-
ing from the Killing-Cartan form. The maximal compact subgroup
SO(n) of the isometry group acts from the left. The geometry of the quo-
tient space of the homogeneous submersion SO0(n, 1) → SO(n)\SO0(n, 1)
is investigated. The space is expressed as a warped product. Its group
of isometries and sectional curvatures are calculated.

0. Introduction

On the Lie group G = SO0(n, 1), we give a left-invariant metric which
comes from the Killing-Cartan form. The maximal compact subgroup SO(n)
= SO(n)× {1} is denoted by K. Then the group of isometries is

Isom0(G) = G×K,

the left translation by G and the right translation by K. Thus, there are
two actions of K, ℓ(K) ⊂ G and r(K) = K.

The homogeneous Riemannian submersion by the isometric r(K)-action
(which is free and proper)

SO(n)→ SO0(n, 1)→ SO0(n, 1)/SO(n)

is very well understood; SO0(n, 1)/SO(n) is the n-dimensional hyperbolic
space H

n.
It is the purpose of this paper to study the homogeneous Riemannian

submersion by the ℓ(K)-action

SO(n)→ SO0(n, 1)→ SO(n)\SO0(n, 1).

It can be seen that this space Hn = SO(n)\SO0(n, 1) is diffeomorphic
to H

n, but metrically it is not as nice as the case of right actions. More
specifically, it will be shown that the metric is not conformal to H

n, and the
space has fewer symmetries. The following facts will be proven:
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1. Isom0(SO(n)\SO0(n, 1)) = r(SO(n)), and it has one fixed point {i},
(Theorem 4.4).

2. Hn − {i} is a warped product (1,∞) ×e2φ Sn−1, (Theorem 4.11).
3. The sectional curvature κ satisfies: 0 < κ ≤ 5, and κ = 5 is achieved

only at i, (Theorem 4.15).

1. Iwasawa Decomposition

1.1. We shall establish some notation first. Let

J =

[
−Ip 0
0 Iq

]
,

where Ip and Iq are the identity matrices of size p and q. The group O(p, q)
is the subgroup of GL(p + q,R) satisfying AJAt = J . It has 4 connected
components (for p, q > 0) and we denote the connected component of the
identity by SO0(p, q). It is a semi-simple Lie group. The Iwasawa decompo-
sition is best described on its Lie algebra. We specialize to SO0(n, 1).

1.2. Let eij denote the matrix whose (i, j)-entry is 1 and 0 elsewhere. The
standard metric on SO0(n, 1) is given by the orthonormal basis for the Lie
algebra

Eij = ǫijeij + eji, 1 ≤ i < j ≤ n+ 1,

where ǫij = −1 if j < n+ 1 and ǫij = 1 if j = n+ 1.
An Iwasawa decomposition KAN is defined as follows. Let

Ni = Ei,n + Ei,n+1, for i = 1, 2, . . . , n− 1,

be a basis for the nilpotent Lie algebra n; A1 = En,n+1 be a basis for the
abelian a. The compact subalgebra k = so(n) is sitting in so(n + 1) as
blocked diagonal matrices so(n) ⊕ (0). For an explicit discussion of such a
decomposition using positive roots, see, for example, [2].

1.3. It is well known that NA(= AN) forms a (solvable) subgroup. As a
Riemannian subspace, NA is an Einstein space; i.e., has a Ricci tensor which
is proportional to the metric. However, our concern here is NA, not as a
subspace, but rather as a quotient space of G because it provides a smooth
cross-section for both G −→ G/K and G −→ K\G.

1.4. From now on, in a slight abuse of notation, ‘r(K)-action’ means the
right action of K = SO(n) on either SO0(n, 1) or Hn under appropriate
situations. Also ‘ℓ(K)-action’ means the left action of K = SO(n) on either
SO0(n, 1) or H

n. Note that Hn (respectively, Hn) does not have an ℓ(K)-
action (respectively, r(K)-action).
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2. H2 = SO(2)\SO0(2, 1)

2.1 (Metric on SO0(2, 1)). We shall study the case when n = 2 first, because
this is the building block for the general case. The orthonormal basis for
the Lie algebra so(2, 1) is

E13 =



0 0 1
0 0 0
1 0 0


 , E23 =



0 0 0
0 0 1
0 1 0


 , E12 =



0 −1 0
1 0 0
0 0 0


 .

The Lie algebras for the Iwasawa decomposition are

k = 〈E12〉, a = 〈A1〉 and n = 〈N1〉,
where

A1 = E23 and N1 = E13 + E12.

The corresponding Lie subgroups are denoted by K, A and N , respectively.

2.2 (Global trivialization of H2). In order to study SO(2)\SO0(2, 1), it is
advantageous to use the notation SO0(2, 1) = NAK rather than KAN .
That is, every element p of SO0(2, 1) is uniquely written as a product

p = nak, n ∈ N, a ∈ A, k ∈ K.

The nilpotent subgroup N is normalized by A, and NA forms a subgroup.
We give a global coordinate to NA by

ϕ : R× R
+ −→ NA(2.1)

(x, y) 7→ exN1eln(y)A1 .

Note that this is different from the restriction of the exponential map
exp : so(2, 1) → SO0(2, 1). Sometimes we shall suppress ϕ and write (x, y)
for ϕ(x, y).

2.3 (Comparison with SL(2,R)). We use the standard isomorphism of Lie
algebras sl(2,R) and so(2, 1), sending the basis

[
0 1
0 0

]
, 1

2

[
1 0
0 −1

]
, 1

2

[
0 −1
1 0

]

to the basis

N1, A1, −E12.

With the above identification ϕ in diagram (2.1), we see the following cor-
respondence:

R× R
+ ∋ (x, y)←→

[
1 x
0 1

] [√
y 0
0 1√

y

]
←→ exN1eln(y)A1 ∈ NA.
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For the compact subgroup SO(2), this isomorphism yields a 2-to-1 covering
transformation

[
cos z2 − sin z

2
sin z

2 cos z2

]
←→




cos z sin z 0
− sin z cos z 0

0 0 1


 = ez(−E12).

Therefore, in order to conform with the ordinary Möbius transformations of
SO(2) on the upper half-plane model, the group SO(2) ⊂ SO0(2, 1) will be

parametrized by ez(−E12) rather than by ezE12 .

2.4 (Riemannian metric on H2). With the Riemannian metric on SO0(2, 1)
induced by the orthonormal basis {E13, E23, E12}, the group of isometries is

Isom0(SO0(2, 1)) = SO0(2, 1) × SO(2).

The subgroup SO(2) ⊂ SO0(2, 1) acts on SO0(2, 1) as left translations, ℓ(K),
freely and properly, yielding a submersion. The quotient space SO(2)\SO0(2, 1)
acquires a unique Riemannian metric that makes the projection, proj :
SO0(2, 1) −→ SO(2)\SO0(2, 1), a Riemannian submersion. It has a nat-
ural smooth (non-metric) cross section NA in KNA = NAK.

At any p ∈ SO0(2, 1), the vector ℓ(p)∗(Eij) is just matrix multiplication
pEij, and

{pE13, pE23, pE12}
is an orthonormal basis at p. The isometric ℓ(K)-action induces a homo-
geneous foliation on SO0(2, 1). The leaf passing through p is Kp, the orbit
containing p. Therefore, the vertical vector is E12 p. We can find a new
orthonormal basis {v1,v2,v3}, where the last vector v3 is the normalized
E12 p. More explicitly, we write E12p as a combination of the above or-
thonormal basis:

u3 = E12p = g1(p) pE13 + g2(p) pE23 + g3(p) pE12,

and set

u1 = −g3(p) pE13 + g1(p) pE12.

Then take the cross product u3 × u1 as u2. Now normalize {u1,u2,u3} to
get {v1,v2,v3}.

Thus, {v1,v2} is an orthonormal basis for the horizontal distribution
to the homogeneous foliation generated by the ℓ(K)-action. We want the
projection, proj : SO0(2, 1) → H2 = SO(2)\SO0(2, 1), to be an isometry on
the horizontal spaces. Since we are using the global coordinate system

(2.2) R× R
+

ϕ

∼=
// NA

proj|NA
∼=

// H2 = SO(2)\SO0(2, 1)

on H2, we take the projection Tp(SO0(2, 1)) = Tp(NAK) → Tp(NA) for
p ∈ NA. Expressing the images of v1,v2 by this projection in terms of
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{ ∂
∂x

, ∂
∂y
}, we get

w1 = −

√
(x2 + 1)2 + y4
√
2y

∂

∂x

∣∣∣
(x,y)
−
√
2x
(
x2 + 1

)
√

(x2 + 1)2 + y4

∂

∂y

∣∣∣
(x,y)

w2 = y

√
2x2y2

(x2 + 1)2 + y4
+ 1

∂

∂y

∣∣∣
(x,y)

.

Proposition 2.5. The Riemannian metric on the quotient of the Riemann-
ian submersion SO0(2, 1)→ H2 = SO(2)\SO0(2, 1) is given by the orthonor-
mal basis {w1,w2}.

The space H2 is always assumed to have this metric.

2.6 (Subgroup NA with the left-invariant metric). We mention that the left-
invariant metric restricted on the subgroup NA yields a space isometric to
the quotient H2 = SO0(2, 1)/SO(2): The subgroupNA with the Riemannian
metric induced from that of SO0(2, 1) has an orthonormal basis { 1√

2
N1, A1}

at the identity, while the quotient SO0(2, 1)/SO(2) is isometric to the Lie
group NA with a new left-invariant metric coming from the orthonormal
basis {N1, A1}. These two are isometric by (x, y) 7→ (

√
2x, y), and have

the same constant sectional curvatures −1. Similar statements are true for
general n.

2.7 (Global trivialization of H2). With the same global coordinate system

R× R
+

ϕ

∼=
// NA

proj|NA
∼=

// H
2 = SO0(2, 1)/SO(2),

H
2 has the orthonormal basis {y ∂

∂x
, y ∂

∂y
} (on the plane R× R

+). Then the

projection Tp(SO0(2, 1)) = Tp(NAK)→ Tp(NA) for p ∈ NA is a Riemann-
ian submersion, that is, an isometry on the horizontal spaces.

2.8 (Special point (0, 1)). Note also that the vector fields {w1,w2} are glob-
ally defined and smooth (including the point (0, 1)). This fact is significant
because we shall use the fact that our space with the point (0, 1) removed
is a warped product to calculate curvatures etc. Since the curvature is a
smooth function of the orthonormal basis, the curvatures at the point (0, 1)
will simply be the limit of the curvature, lim(x,y)→(0,1) κ(x, y).
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2.9 (r(K)-action on H2 vs. ℓ(K)-action on H
2). Observe that r(K) nor-

malizes (in fact, centralizes) the left action ℓ(K), and hence, it induces an
isometric action on the quotient K\G. We need to study this isometric
r(K)-action in detail.

First we consider the isometric action ℓ(K) on the hyperbolic space H2 =
G/K. For p ∈ NA and k ∈ K, suppose k · p = p1k1. Then k · (pK) = p1K.
That is

ℓ(k) · p̄ = p̄1 in G/K (if k · p = p1k1 for some k1).

Now for our r(K)-action on H2 = K\G, let p ∈ NA and k ∈ K. Suppose
p · k = k2p2. Then (Kp) · k = Kp2. That is

r(k) · p̄ = p̄2 in K\G (if p · k = k2p2 for some k2).

Proposition 2.10. In xy-coordinate for H2 = SO(2)\SO0(2, 1) (upper half-
plane), the isometric r(K)-action on H2 is given by:

For ẑ = ez(−E12) =




cos z sin z 0
− sin z cos z 0

0 0 1


 ∈ K and (x, y) ∈ H2,

r(ẑ) · (x, y) = 1

2y

(
− (−x2 + y2 − 1) sin z + 2xy cos z,

(−x2 + y2 − 1) cos z + 2xy sin z + x2 + y2 + 1
)
.

In vector notation,

r(ẑ) ·
[
x
y

]
=

[
cos z − sin z
sin z cos z

]([
x
y

]
−
[

0
1+x2+y2

2y

])
+

[
0

1+x2+y2

2y

]
.

2.11. Note that r(ẑ) is a “Euclidean rotation” with an appropriate center.

More precisely, each (x, y) is on the Euclidean circle centered at
(
0, 1+x

2+y2

2y

)

with radius

√
x2 +

(
y − 1+x2+y2

2y

)2
, and r(ẑ) rotates the point (x, y) along

this circle. This can be seen by calculations.
The ℓ(K)-action on H

2 is the genuine Möbius transformation, and is given
by

ℓ(ẑ) · (x, y) = 1

L

( (
x2 + y2 − 1

)
sin z + 2x cos z, 2y

)

with

L = −
(
x2 + y2 − 1

)
cos z + 2x sin z + x2 + y2 + 1.

The relation between r(K)-action on H2 and ℓ(K)-action on H
2 will be

stated in Proposition 3.1 more clearly.
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2.12. Both r(K)- and ℓ(K)-actions have a unique fixed point at (0, 1), and
all the other orbits are Euclidean circles centered on the y-axis. This implies
that the geometry is completely determined by the geometry at the points
on the y-axis (more economically, on the subset [1,∞) of the y-axis). The
orthonormal bases at the points of y-axis are important. From Proposition
2.5, we have

Corollary 2.13. At (0, y) ∈ H2 with y > 1, the orthonormal system is

w1 = −
√
cosh(2 ln y)

∂

∂x

∣∣∣
(0,y)

w2 = y
∂

∂y

∣∣∣
(0,y)

.

With the orthonormal basis on the upper half-plane model given in Propo-
sition 2.5, we can calculate the sectional curvature.

Theorem 2.14. On the space H2 = SO(2)\SO0(2, 1), the sectional curva-
ture at (x, y) is

κ(x, y) =
4y2

(
x4 + 2x2

(
y2 + 1

)
+ y4 + 3y2 + 1

)

(x4 + 2x2 (y2 + 1) + y4 + 1)2
.

In particular, 0 < κ ≤ 5 and the maximum 5 is attained at the point (0, 1).

2.15. Note that, because of the isometric r(K)-action (see Proposition 2.10),
it is enough to know the curvatures at the points on the y-axis,

κ(0, y) =
4y2(1 + 3y2 + y4)

(1 + y4)2
.

As we shall see in Proposition 3.1, the r(K)-orbits will be the geometric
concentric circles centered at (0, 1). These are Euclidean circles with differ-
ent centers, see Proposition 2.10. Over these r(K)-orbits, κ(x, y) is constant,
of course. In fact, on the geometric circle of radius | ln y|, the curvature is
κ(0, y).

Here are graphs of the sectional curvatures. Figure 1(a) shows that κ = 5
is the maximum at (0, 1). The level curves are the geometric circles centered
at (0, 1) of H2.

3. H2 = SO(2)\SO0(2, 1) vs. H
2 = SO0(2, 1)/SO(2)

Recall that both spaces SO(2)\SO0(2, 1) and SO0(2, 1)/SO(2) have iso-
metric actions by circles, r(K) and ℓ(K), respectively. The trivialization
functions ϕ and proj|NA ◦ϕ in diagram (2.2) will be suppressed sometimes.

From the weak G-equivariant diffeomorphism from K\G to G/K given
by Kg 7→ g−1K, we can define τ : R× R

+ −→ R× R
+ as in the following
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2 4 6 8 10

-1

1

2

3

4

5

Figure 1. κ for (−5 < x < 5, 0 < y < 10), and the cross
section at x = 0

Proposition 3.1. For x ∈ R
1 and y ∈ R

+, (0, y)(x, 1)(0, y)−1 = (yx, 1)
(with the notation in the diagram (2.2)) so that

(x, y)−1 = (−x
y
, 1
y
).

The map

τ : H2 = SO(2)\SO0(2, 1) −→ H
2 = SO0(2, 1)/SO(2)

(as a map R× R
+ −→ R× R

+) defined by

τ(x, y) = (−x
y
, 1
y
)

has the following properties:
(1) τ is a weakly SO(2)-equivariant diffeomorphism of period 2. More

precisely,
τ(r(ẑ) · (x, y)) = ℓ(ẑ−1) · τ(x, y)

for ẑ ∈ SO(2). In other words, the identification of H2, H2 and NA with
R × R

+ as sets permits some abuse of τ and gives the following relation
between r(K)-action and ℓ(K)-action: r(ẑ) · (x, y) = τ

(
ℓ(ẑ−1) · τ(x, y)

)
.

(2) τ leaves the geometric circles centered at (0, 1) in each geometry in-
variant. That is, for m > 0, the Euclidean circle

x2 + (y − cosh(lnm))2 = sinh2(lnm)

is a geometric circle centered at (0, 1) with radius | lnm|, in both geometries,
and the map τ maps such a circle to itself. These circles are r(K)-orbits in
H2 and ℓ(K)-orbits in H

2 (when H2 and H
2 are identified with R×R

+) at
the same time.

(3) τ gives a 1-1 correspondence between the two sets of all the geodesics
passing through (0, 1) in the two geometries H2 and H

2. In fact, τ maps the
y-axis to itself and half-circles {(x − α)2 + y2 = α2 + 1}α∈R to hyperbolas
{x2 + 2αxy − y2 + 1 = 0}α∈R.
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Proof. (1) Observe that τ(x, y) corresponds to the inverse of ϕ(x, y) in the
group NA. In fact, we have

ϕ(τ(x, y)) = (ϕ(x, y))−1.

For ϕ(x, y) ∈ NA and ẑ ∈ K, one can find k ∈ K for which

k · ϕ(x, y) · ẑ ∈ NA.

Thus,

ϕ
(
τ(r(ẑ) · (x, y))

)
=
(
ϕ(r(ẑ) · (x, y))

)−1

= (k · ϕ(x, y) · ẑ
)−1

= ẑ−1 · (ϕ(x, y))−1 · k−1

= ẑ−1 ·
(
ϕ(τ(x, y))

)
· k−1

= ϕ
(
ℓ(ẑ)−1 · τ(x, y)

)
.

(2) Any (x, y) lies on the Euclidean circle centered at (0, c), where c =

1+x2+y2

2y and radius r =

√
x2 +

(
y − 1+x2+y2

2y

)2
. In particular, (0,m) lies

on the Euclidean circle centered at (0, c), where c = cosh(lnm) and radius
r = | sinh(lnm)|. Note m = cosh(lnm) + sinh(lnm) and 1

m
= cosh(lnm) −

sinh(lnm), which show that both (0,m) and (0, 1
m
) lie on the same circle.

Then, in R× R
+,

r(K) · (0,m) = τ(ℓ(K) · (0, 1
m
)) = ℓ(K) · (0, 1

m
) = ℓ(K) · (0,m)

shows this circle is both r(K)-orbit of the point (0,m) (in H2) and its
ℓ(K)-orbit (in H

2) at the same time. Since both r(K)-action on H2 and
ℓ(K)-action on H

2 are isometric, every point on the circle has the same
distance from (0, 1) in each geometry.

In xy-coordinates, the equations for geodesics in H2 are a system of 2
equations

0 =x′′(t)
(
2x(t)2y(t)3 +

(
x(t)2 + 1

)2
y(t) + y(t)5

)2

− 2y(t)x′(t)y′(t)
(
x(t)6

(
4y(t)2 + 2

)
+ x(t)4

(
6y(t)4 + 8y(t)2

) )

− 2y(t)x′(t)y′(t)
(
2x(t)2

(
2y(t)6 + y(t)4 + 2y(t)2 − 1

)
+ x(t)8 + y(t)8 − 1

)

− 4x(t)y(t)2x′(t)2
(
x(t)2 + 1

)2

+ x(t)y′(t)2
(
4
(
x(t)2 + 1

)
y(t)6 + 2

(
3x(t)4 + 4x(t)2 + 1

)
y(t)4

)

+ x(t)y′(t)2
(
4
(
x(t)2 + 1

)3
y(t)2 +

(
x(t)2 + 1

)4
+ y(t)8

)
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and

0 =y(t)
(
2x(t)2

(
y(t)2 + 1

)
+ x(t)4 + y(t)4 + 1

)2
y′′(t)

− 4x(t)y(t)x′(t)y′(t)
(
x(t)4

(
3y(t)2 + 1

)
+ x(t)2

(
3y(t)4 + 4y(t)2 − 1

))

− 4x(t)y(t)x′(t)y′(t)
(
x(t)6 + y(t)6 + y(t)4 + y(t)2 − 1

)

+ 2y(t)2x′(t)2
(
3x(t)4

(
y(t)2 − 1

)
+ x(t)2

(
y(t)2 + 1

) (
3y(t)2 − 5

))

+ 2y(t)2x′(t)2
(
x(t)6 + y(t)6 − y(t)4 − y(t)2 − 1

)

+ y′(t)2
(
2x(t)6

(
y(t)2 + 1

)
+ 4x(t)4y(t)2 − 2x(t)2

(
y(t)6 + y(t)4 − y(t)2 + 1

))

+ y′(t)2
(
x(t)8 −

(
y(t)4 + 1

)2)
.

One can readily check that

γ(t) = (0, et) ∈ H2, 0 ≤ t ≤ | ln(m)| = | ln( 1

m
)|

is a unit-speed geodesic, and therefore, Length(γ) = | ln(m)|. This is the geometric
radius of the circle centered at i = (0, 1) ∈ H2.

(3) Let GH2 and GH2 be the sets of all the unit-speed geodesics starting from i

in H2 and H
2, respectively. Then

GH2 = {r(k) · γ(•) : R −→ H2}k∈K

and

GH2 = {l(k) · γ(•) : R −→ H
2}k∈K ,

since γ ∈ GH2 ∩ GH2 .
The 1-1 correspondence between GH2 and GH2 by τ comes from the weak equiv-

ariance of τ and the fact τ(γ(t)) = γ(−t). In fact, for k ∈ K and t ∈ R,

r(k) · γ(t) = τ(ℓ(k−1) · τ(γ(t))) = τ(ℓ(k−1) · γ(−t)) = τ(ℓ(k−1) · ℓ(π̂) · γ(t)).
Finally, we can check easily that for each α ∈ R, the hyperbola x2+2αxy−y2+1 =
0, a H2-geodesic, corresponds to the half-circle (x − α)2 + y2 = α2 + 1, a H

2-
geodesic. �

Theorem 3.2. The space H2−{i} is isometric to the warped product B×e2φ
S1, where B = (1,∞) = {(0, y) : 1 < y <∞} ⊂ H2 has the induced metric;
that is, | ∂

∂t
(t0)| = 1

t0
for t0 ∈ (1,∞), S1 has the standard metric; and

e2φ(t) = sinh2(ln t)
cosh(2 ln t) .

Proof. The crucial points are that r(K) ⊂ Isom(H2) and that all the other
orbits are circles, except for the one fixed point i = (0, 1). This will make
our space a warped product of S1 by the base space B, and we need to find
a map φ in B×e2φS1. The r(K)-orbit through (0, y) ∈ H2 is, by Proposition
2.10,

r(ẑ) · (0, y) =
(
− sinh(ln y) sin z, sinh(ln y) cos z + cosh(ln y)

)
.

Define a map

f : B ×e2φ S1 −→ H2 = SO(2)\SO0(2, 1)
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by

f(t, ẑ) = f(t, ẑ · 0̂)
= r(ẑ−1) · (0, t)
= r(−̂z) · (0, t)
=
(
sinh(ln t) sin z, sinh(ln t) cos z + cosh(ln t)

)
.

Note the definition of f does not depend on e2φ and it is weakly equivariant
with the r(SO(2))-action without the concept of isometry yet. Since f maps

the base B × 0̂ of the warped product to the y-axis of H2, it is enough to
find e2φ which makes f isometric on B × 0̂.

Recall that H2 has an orthonormal basis
{
−
√

cosh(2 ln t)
∂

∂x

∣∣∣
(0,t)

, t
∂

∂y

∣∣∣
(0,t)

}

at f(t, 0̂) = (0, t), t > 1, see Corollary 2.13. Also note that the metric on
B ×e2ϕ S1 is given by the orthonormal basis

{
t
∂

∂t

∣∣∣
(t,ẑ)

, −e−φ(t) ∂
∂ẑ

∣∣∣
(t,ẑ)

}

at (t, ẑ). Observe

f∗

(
∂

∂t

∣∣∣
(t,0̂)

)
=

d(f ◦ t)
dt

∣∣∣
(t,0̂)

=
∂

∂t

(
f(t, ẑ)

)∣∣∣
z=0

=
1

t

(
cosh(ln t) sin z

∂

∂x

∣∣∣
f(t,ẑ)

+
(
cosh(ln t) cos z + sinh(ln t)

) ∂

∂y

∣∣∣
f(t,ẑ)

)∣∣∣
z=0

=
∂

∂y

∣∣∣
f(t,0̂)

=
∂

∂y

∣∣∣
(0,t)

and, we have

f∗

(
t
∂

∂t

∣∣∣
(t,0̂)

)
= t

∂

∂y

∣∣∣
(0,t)

.

Thus, if

f∗

(
e−φ(t)

∂

∂ẑ

∣∣∣
(t,0̂)

)
= −

√
cosh

(
2 ln t

) ∂

∂x

∣∣∣
(0,t)

,(3.1)
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then f will be an isometry. Now,

f∗

(
e−φ(t)

∂

∂ẑ

∣∣∣
(t,0̂)

)
= e−φ(t)

d(f ◦ ẑ)
dẑ

∣∣∣
(t,0̂)

(3.2)

= e−φ(t)
(
sinh(ln t) cos z

∂

∂x

∣∣∣
f(t,ẑ)

− sinh(ln t) sin z
∂

∂y

∣∣∣
f(t,ẑ)

)∣∣∣
z=0

= e−φ(t) sinh(ln t)
∂

∂x

∣∣∣
(0,t)

.

From the equalities (3.1) and (3.2), the condition is then

−
√
cosh(2 ln t) = e−φ(t) sinh(ln t),

which implies e2φ(t) = sinh2(ln t)
cosh(2 ln t) . �

We calculate κ(0, y) again using the warped product. The result conforms
with Theorem 2.14.

Corollary 3.3. For (t, 0) ∈ B ×e2φ S1,

κ(t, 0) =
4t2(1 + 3t2 + t4)

(1 + t4)2
.

Proof. From e2φ(t) = sinh2(ln t)
cosh(2 ln t) , we get

{t ∂
∂t
|(t,0),−

√
cosh(2 ln t)

sinh(ln t)
∂
∂ẑ
|(t,0)}

is an orthonormal basis at (t, 0) ∈ B ×e2φ S1 and

φ(t) = ln(sinh(ln t))− 1
2 ln(cosh(2 ln t)).

Since φ is constant along each circle,

∇φ |(t,0) = 〈∇φ, t ∂∂t〉 t ∂∂t |(t,0)
= (t∂φ

∂t
) t ∂

∂t
|(t,0)

= (coth(ln t)− tanh(2 ln t)) t ∂
∂t
|(t,0) .

For tangent vectors T1, T2 ∈ T (S1) and X ∈ T (S1)⊥ in the warped prod-
uct, we have

R(X,T )Y =
(
hφ(X,Y ) + 〈∇φ,X〉〈∇φ, Y 〉

)
T

and so

〈R(X,T )T, Y 〉φ = −e2φ|T |2S1

(
hφ(X,X) + 〈∇φ,X〉2

)
,
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where hφ is a hessian form, see [1, p.60, Proposition2.2.2, Corollary 2.2.1].
Since

hφ(t
∂
∂t
, t ∂
∂t
) = 〈∇

t
∂
∂t

∇φ, t ∂
∂t
〉

= −csch2(ln t)− 2 sech2(2 ln t)

= −csch2(ln t)− 2 + 2 tanh2(2 ln t),

κ(t ∂
∂t
,−
√

cosh(2 ln t)

sinh(ln t)
∂
∂ẑ
) = −

(
〈∇φ, t ∂

∂t
〉2 + hφ(t

∂
∂t
, t ∂
∂t
)
)

= 1− 3 tanh2(2 ln t)− 2 coth(ln t) · tanh(2 ln t)

= 4t2(1+3t2+t4)
(1+t4)2

. �

Remark 3.4. The following are well known: the space H2−{i} is isometric
to the warped product (0, 1) ×e2ψ S1, where (0, 1) ⊂ H

2 has the induced
metric from H

2, that is, | ∂
∂t
(t0)| = 1

t0
for t0 ∈ (0, 1); S1 has the standard

metric; and e2ψ(t) = sinh2(ln t).

The isometry can be given by

f̃ : (0, 1) ×e2ψ S1 −→ H
2 − {i}

defined by
f̃(s, û) = ℓ(û) · (0, s).

See, for example, [1, p.58, Theorem 2.2.1].

Corollary 3.5. The map τ induces a map on the warped products

τ ′ : (1,∞)×e2φ S1 −→ (0, 1) ×e2ψ S1

given by
τ ′(t, ẑ) = (1

t
, ẑ),

which is SO(2)-equivariant and satisfies f̃ ◦ τ ′ = τ ◦ f .
The following commutative diagram shows more detail:

(1,∞) ×e2φ S1 τ ′−−−−→ (0, 1) ×e2ψ S1

f

y f̃

y
H2 = SO(2)\SO0(2, 1)

τ−−−−→ H
2 = SO0(2, 1)/SO(2)

(t, ẑ · 0̂) = (t, ẑ)
τ ′−−−−→ (1

t
, ẑ) = (1

t
, ẑ · 0̂)

f

y f̃

y
r(−̂z) · (0, t) τ−−−−→ ℓ(ẑ) · (−0

t
, 1
t
)
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L

L ’

P
R

R ’

Figure 2. Geometric circles and orthogonal geodesics in two

geometries. R = r( π̂7 ) · P , L = ℓ( π̂7 ) · P
and R′ = τ(R), L′ = τ(L).

4. The general case: SO(n)\SO0(n, 1)

4.1 (Subgroup NA with the left-invariant metric). As is well known, the
subgroup NA has the structure of a solvable Lie group N ⋊A, where

N ∼= R
n−1, A ∼= R

+.

The subgroup NA with the Riemannian metric induced from that of
SO0(n, 1) has an orthonormal basis

{ 1√
2
N1,

1√
2
N2, . . . , 1√

2
Nn−1, A1}.

at the identity while the quotient SO0(n, 1)/SO(n) is isometric to the Lie
group NA with a new left-invariant metric coming from the orthonormal
basis

{N1, N2, . . . , Nn−1, A1}.
These two are isometric by (x, y) 7→ (

√
2x, y), and have the same constant

sectional curvatures −1.

4.2 (Global trivialization of Hn). With the Riemannian metric on SO0(n, 1)
induced by the orthonormal basis {Eij : 1 ≤ i < j ≤ n + 1}, the group of
isometries is

Isom0(SO0(n, 1)) = SO0(n, 1)× SO(n).

The subgroup SO(n) ⊂ SO0(n, 1) acts on SO0(n, 1) as left translations, ℓ(K),
freely and properly, yielding a submersion. The quotient space SO(n)\SO0(n, 1)
acquires a unique Riemannian metric that makes the projection, proj :
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SO0(n, 1) −→ SO(n)\SO0(n, 1), a Riemannian submersion. It has a nat-
ural smooth (non-metric) cross section NA in KNA = NAK.

A map

ϕ : R
n−1 × R

+ −→ NA

(x, y) 7→ e
∑n−1

i=1
xiNieln(y)A1 ,

where x = (x1, . . . , xn−1), gives rise to a global trivialization for the sub-
group NA and our space Hn. Thus, we shall use (x, y) to denote a point in
Hn ∼= NA.

4.3. Note, for x ∈ R
n−1 and y ∈ R

+,

(0, y)(x, 1)(0, y)−1 = (yx, 1).

Even though we use the local trivialization Hn = SO(n)\SO0(n, 1) →
NA, the metric on Hn is not related to the group structure of NA. That is,
the metric is neither left-invariant nor right-invariant.

Theorem 4.4. Isom0(SO(n)\SO0(n, 1)) = r(SO(n)).

Proof. The normalizer of ℓ(SO(n)) in Isom0(SO(n, 1)) = ℓ(SO0(n, 1)) ×
r(SO(n)) is ℓ(SO(n)) × r(SO(n)). Since ℓ(SO(n)) acts ineffectively on the
quotient, only r(SO(n)) acts effectively on the quotient as isometries. Thus,
Isom0(SO(n)\SO0(n, 1)) ⊃ r(SO(n)).

Suppose these are not equal. Then there exists a point whose orbit con-
tains an open subset, since the r(SO(n))-orbits are already codimension 1.
This implies the sectional curvature is constant on such an open subset. But
this is impossible by Theorem 4.15. Notice that, for the calculation of the
sectional curvature, we only need the inequality above. �

For a ∈ A and k ∈ SO(n− 1)× SO(1) ⊂ K = SO(n),

ak = ka

and

(Ka) · k = Kka = Ka

so that the stabilizer of r(SO(n)) at a = ϕ(0, y), y 6= 1, y ∈ R
+, contains

SO(n − 1) × SO(1). Let S be the only subgroup of K = SO(n) properly
containing SO(n − 1) × SO(1). Then SO(n − 1) × SO(1) has index 2 in S,
and no element of S − SO(n− 1)× SO(1) can fix a. Thus, we have

Corollary 4.5. For the r(SO(n))-action on ϕ−1(NA) = R
n−1 × R

+, the
stabilizer at (0, y), y 6= 1, is SO(n− 1)× SO(1).

This can also be proved from the similar fact on H
n using the weak SO(n)-

equivariant map.
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4.6 (Embedding of SO0(2, 1) into SO0(n, 1)). Consider the subgroup SO0(2, 1)
of SO0(n, 1), as

In−2 × SO0(2, 1) ⊂ SO0(n, 1),

where In−2 is the identity matrix of size n − 2. For k ∈ ℓ(K) and p ∈
SO0(2, 1), k · p ∈ SO0(2, 1) if and only if k ∈ SO0(2, 1). Therefore, the
space ℓ(SO(2))\SO0(2, 1) is isometrically embedded into ℓ(K)\SO0(n, 1).
With this embedding, there is an orthonormal basis for this 2-dimensional
subspace:

wn−1 = c
∂

∂xn−1

∣∣∣
(0,y)

wn = y
∂

∂y

∣∣∣
(0,y)

where c = −
√

cosh(2 ln y).

4.7 (Orthonormal basis of Hn). The right action of a matrix k = exp(π2 ·
Ej,n−1) ∈ K (j < n) maps (x, y) = (x1, . . . , xj , . . . , xn−1, y) ∈ Hn to
(x′, y) = (x1, . . . , xn−1, . . . ,−xj , y) ∈ Hn. (i.e., exchanges the (n − 1)st and
jth slot). More precisely, ϕ(x, y) · k = k′ · ϕ(x′, y) in SO0(n, 1) for some
k′ ∈ SO(n). By applying such a right action on NA for j = 1, 2, . . . , n − 2,
we get the orthonormal system at (0, . . . , 0, y) ∈ Hn with y > 1:

w1 = c
∂

∂x1

∣∣∣
(0,y)

w2 = c
∂

∂x2

∣∣∣
(0,y)

w3 = c
∂

∂x3

∣∣∣
(0,y)

· · ·

wn−1 = c
∂

∂xn−1

∣∣∣
(0,y)

wn = y
∂

∂y

∣∣∣
(0,y)

where c = −
√
cosh(2 ln y). As before, we denote the upper half-space Rn−1×

R
+ with this metric by Hn. The above shows that the metric is very close

to being conformal to the standard R
n.

4.8. Recall that both spacesHn = SO(n)\SO0(n, 1) andH
n = SO0(n, 1)/SO(n)

have isometric actions by the maximal compact subgroup, r(K) and ℓ(K),
respectively. The latter has more isometries, ℓ(SO0(n, 1)).
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Proposition 4.9. The map

τ : Hn −→ H
n

(as a map R
n−1 × R

+ −→ R× R
+) defined by

τ(x, y) = (−x

y
, 1
y
)

has the following properties:
(1) τ is a weakly SO(n)-equivariant diffeomorphism of period 2. More

precisely,

τ(r(z) · (x, y)) = ℓ(z−1) · τ(x, y)
for z ∈ SO(n). In other words, the identification of Hn,Hn, NA, and R

n−1×
R
+ as sets permits the following abuse of τ and gives a following relation

between r(K)-action and ℓ(K)-action: r(ẑ) · (x, y) = τ
(
ℓ(ẑ−1) · τ(x, y)

)
.

(2) τ leaves the geometric spheres centered at i = (0, 1) in each geometry
invariant. That is, in both geometries, for m > 0, the Euclidean sphere

|x|2 + (y − cosh(lnm))2 = sinh2(lnm)

is a geometric sphere centered at i = (0, 1) with radius | lnm|, in both ge-
ometries, and the map τ maps such a sphere to itself. These spheres are
r(K)-orbits in Hn and ℓ(K)-orbits in H

n (when Hn and H
n are identified

with R
n−1 × R

+) at the same time.
(3) τ gives a 1-1 correspondence between the two sets of all the geodesics

passing through i in the two geometries Hn and H
n.

4.10. For the ℓ(K)-action on the hyperbolic space H
n = G/K, we can take

the ray {0}×(0, 1] as a cross section to the ℓ(K)-action. Clearly, {0}×[1,∞)
is another cross section. The cross section to the r(K)-action on Hn = K\G
is the ray {0} × [1,∞). The action has a fixed point i = (0, 1), and all the
other orbits are SO(n)/SO(n−1) ∼= Sn−1 ∼= SO(n−1)\SO(n). The geometry
of the whole space Hn = K\G is completely determined by the geometry
on the line {0} × [1,∞) as shown below.

Theorem 4.11. The space Hn − {i} is isometric to the warped product
(1,∞)×e2φ Sn−1, where (1,∞) has the induced metric from {0} × (1,∞) ⊂
Hn, that is, | ∂

∂t
(t0)| = 1

t0
for t0 ∈ (1,∞); Sn−1 has the standard metric; and

e2φ(t) = sinh2(ln t)
cosh(2 ln t) .

Proof. The sphere Sn−1 ⊂ R
n has a canonical SO(n)-action by matrix mul-

tiplication. Choose the north pole n = (0, . . . , 0, 1) ∈ Sn−1 as a base point.
Then the SO(n)-action induces an action on (1,∞)× Sn−1, acting trivially
on the first factor. The space Hn − {i} also has an (isometric) action by
r(SO(n)). Using these actions, we define

f : (1,∞) × Sn−1 −→ Hn − {i}
by

f(t, a · n) = f(a · (t,n)) = r(a−1) · (0, t),
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where (0, t) ∈ R
n−1 × R

+ ⊂ Hn. Since both actions have orbits Sn−1, and
the stabilizers at (t,n) and (0, t) are both SO(n− 1)× SO(1) ⊂ SO(n) (see
Corollary 4.5), f is well-defined, bijective and smooth.

Consider the subgroup K2,

K2 = In−2 × SO(2)× I1 ⊂ SO(n)× I1 ⊂ SO0(n, 1).

By taking the intersection of (1,∞) × Sn−1 and Hn − {i} with the last
2-dimensional plane, we get isometric embeddings

(1,∞)× Sn−1 −−−−→ Hn − {i}

∪
x ∪

x
(1,∞)× S1 −−−−→ H2 − {i}

Furthermore, when we give a warped product structure to (1,∞) × S1 by

the function e2φ(t) = sinh2(ln t)
cosh(2 ln t) , the restriction of the map f ,

(1,∞) ×e2φ S1 −−−−→ H2 − {i}

f(t, a · n) = f(a · (t,n)) = r(a−1) · (0, t),
where (0, t) ∈ H2 ⊂ Hn, becomes an isometry by Theorem 3.2. Now it is
clear that the SO(n)-action on both spaces make the weakly equivariant map
f a global isometry. Thus, the geometry of Hn is completely determined by
the geometry on the cross section {0}×(1,∞) ⊂ Hn to the r(K)-action. �

4.12. The sectional curvature of a plane containing the (1,∞)-direction in
(1,∞) ×e2φ Sn−1 is easy to calculate, since such a plane is a rotation of
corresponding plane for SO(2)\SO0(2, 1) by SO(n). Thus, the curvature of
such a plane is exactly the same as the 2-dimensional case.

4.13. For a general plane (not containing the (1,∞)-direction), we need some
work. Notice that {f−1

∗ w1, . . . , f
−1
∗ wn−1, f

−1
∗ wn} is an orthonormal basis

on (1,∞) ×e2φ {n} such that f−1
∗ wn is a normal vector to each sphere and

the others are tangent to the sphere. By abusing notation, denote f−1
∗ wi as

wi again.

Lemma 4.14. For (0, y) ∈ Hn − {(0, 1)} = (1,∞) ×e2φ Sn−1, with y > 1,
and w, w̃ ∈ Span{w1, . . .wn−1}, with |w|φ = |w̃|φ = 1 and 〈w, w̃〉φ = 0, we
have

κ(awn + bw, cwn + dw̃) = (a2d2 + b2c2)κ(wn,w) + b2d2 κ(w, w̃).

Proof. For tangent vectors T1, T2, T3 ∈ T (Sn−1) and X ∈ T (Sn−1)⊥ in the
warped product, we have

R(T1, T2)T3 = RSn−1(T1, T2)T3 − e2φ |∇φ |2
(
〈T2, T3〉Sn−1T1 − 〈T1, T3〉Sn−1T2

)
,

R(X,T )Y =
(
hφ(X,Y ) + 〈∇φ,X〉〈∇φ, Y 〉

)
T,
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see [1, p.60, Proposition 2.2.2]. So,

〈R(w̃,w)w,wn〉φ = 0 and 〈R(w, w̃)w̃,wn〉φ = 0,

also

〈R(wn,w)wn, w̃〉φ = e2φ〈w, w̃〉S1

(
hφ(wn,wn) + 〈∇φ,wn〉2

)
= 0.

Using an isometric r(K)-action rotating the {wn,w}-plane to {wn, w̃}-
plane, we have κ(wn,w) = κ(wn, w̃). Thus,

κ(awn + bw, cwn + dw̃) = 〈R(awn + bw, cwn + dw̃)(cwn + dw̃), awn + dw〉φ
= a2d2κ(wn, w̃) + b2c2κ(wn,w) + b2d2κ(w, w̃)

= (a2d2 + b2c2)κ(wn,w) + b2d2 κ(w, w̃). �

Theorem 4.15 ( The sectional curvature of the spaceHn = SO(n)\SO0(n, 1)).
For (0, y) ∈ Hn − {(0, 1)} = (1,∞) ×e2φ Sn−1, with y > 1, let σ be a 2-
dimensional tangent plane at (0, y) whose angle with the y-axis is θ. Then
its sectional curvature κ(y, θ) := κ(σ) is

κ(y, θ) = cos2 θ
4y2(1 + 3y2 + y4)

(1 + y4)2
+ sin2 θ

2(1 + 2y2 + 4y4 + 2y6 + y8)

(1 + y4)4
.

This curvature formula is valid for all 1 ≤ y <∞. Therefore 0 < κ(0,y) ≤ 5
for all y ≥ 1, and at y = 1, κ(1, θ) = 5 gives the maximum curvature for all
y ≥ 1.

Proof. It is obvious in the case of either θ = 0 or θ = π
2 .

Assume 0 < θ < π
2 . Let ŵ be the orthogonal projection of wn to σ.

There is a unique w ∈ T (Sn−1), which lies in the plane {ŵ,wn}, such that
we can write ŵ as a linear combination of wn and w with respect to θ:
ŵ = r cos θ wn + r sin θ w for some r > 0. Now let w̃ be a unit vector in
σ ∩ T (Sn−1). Since w̃, ŵ ∈ σ,

0 = 〈wn, w̃〉φ = 〈ŵ, w̃〉φ = 〈r cos θwn + r sin θw, w̃〉φ = r sin θ〈w, w̃〉φ,
which implies

〈w, w̃〉φ = 0

and from the above lemma

κ(y, θ) = κ(ŵ, w̃)

= κ(cos θ wn + sin θ w, w̃)

= cos2 θ κ(wn, w̃) + sin2 θ κ(w, w̃)

= cos2 θ κ(y) + sin2 θ κ(w, w̃),

where κ(y) is the curvature of any tangent 2-plane containing wn. Now, we
get

|w |Sn−1=|w̃ |Sn−1= e−φ(y)
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with respect to the standard metric on Sn−1 and, from the formula of
R(T1, T2)T3 in the proof of Lemma 4.14,

κ(w, w̃) = 〈R(w, w̃)w̃,w〉φ
= e2φ(y)〈R(w, w̃)w̃,w〉Sn−1

= e2φ(y)
(
κSn−1(w, w̃)− e2φ(y) |∇φ |2 (|w |2Sn−1 |w̃ |2Sn−1 −〈w, w̃〉2Sn−1)

)

= e2φ(y)
(
e−4φ(y) − e2φ(y) |∇φ |2 e−4φ(y)

)

= e−2φ(y) − 〈∇φ,wn〉2

= cosh(2 ln y)

sinh2(ln y)
−
(
wn(φ)

)2

= 2(y4+1)
(y2−1)2

−
(
y ∂φ
∂y

)2

=
2(1 + 2y2 + 4y4 + 2y6 + y8)

(1 + y4)2
.

Thus,

κ(y, θ) = cos2 θ
4y2(1 + 3y2 + y4)

(1 + y4)2
+ sin2 θ

2(1 + 2y2 + 4y4 + 2y6 + y8)

(1 + y4)2
.

By the remark after Proposition 2.5, by the continuity argument, this cur-
vature formula is valid even at the removed point (0, 1) with κ(0,1) = 5.

To estimate the values κ(y, θ), let

f(y) =
4y2(1 + 3y2 + y4)

(1 + y4)2

g(y) =
2(1 + 2y2 + 4y4 + 2y6 + y8)

(1 + y4)2

for y > 1. Then
0 < f(y) < 5 and 0 < g(y) < 5.

The relation,

κ(y, θ) = cos2 θ f(y) + sin2 θ g(y) =
f(y) + g(y) + cos(2θ)

(
f(y)− g(y)

)

2

gives us the following inequality

f(y) + g(y)− |f(y)− g(y) |
2

≤ κ(y, θ) ≤ f(y) + g(y)+ |f(y)− g(y) |
2

,

so that
min{f(y), g(y)} ≤ κ(y, θ) ≤ max{f(y), g(y)},

which shows 0 < κ(y, θ) < 5. �
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