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ON A RELATION BETWEEN POTENTIALS FOR PLURIHARMONIC

MAPS AND PARA-PLURIHARMONIC MAPS

NOBUTAKA BOUMUKI AND JOSEF F. DORFMEISTER

Abstract. In this paper, we show that one can interrelate pluriharmonic maps with

para-pluriharmonic maps by means of the loop group method. As an appendix, we

give examples for the interrelation between pluriharmonic maps and para-pluriharmonic

maps. Moreover, we investigate the relation among CMC-surfaces by use of such maps.

1. Introduction

Let f1 : (M1, J) → G1/H1 be a pluriharmonic map from a complex manifold (M1, J),

and let f2 : (M2, I) → G2/H2 be a para-pluriharmonic map from a para-complex man-

ifold (M2, I), where Gi/Hi are affine symmetric spaces. Then, the loop group method

enables us to obtain a pluriharmonic potential (ηλ, τλ) and a para-pluriharmonic potential

(ηθ, τθ) from f1 and f2, respectively; and furthermore, the method enables us to construct

pluriharmonic maps and para-pluriharmonic maps from their potentials, respectively (see

Section 3).

Plurharmonic maps

f1 : (M1, J) → G1/H1

m m

Para-plurharmonic maps

f2 : (M2, I) → G2/H2

Pluriharmonic potentials
(ηλ, τλ)

Para-pluriharmonic potentials
(ηθ, τθ)

The goal of this paper is to interrelate f1 : (M1, J) → G1/H1 with f2 : (M2, I) → G2/H2

by interrelating (ηλ, τλ) with (ηθ, τθ). In this paper, we demonstrate that one can indeed

locally interrelate a pluriharmonic map with a para-pluriharmonic map in the case where

its potential satisfies the morphing condition (M) (see Theorem 4.3.1).

The notions of a pluriharmonic map and a para-pluriharmonic map are generalized

notions of a harmonic map from a Riemann surface Σ2 and a Lorentz harmonic map from

a Lorentz surface Σ2
1, respectively. Consequently, Theorem 4.3.1 enables us to interrelate

harmonic maps from Σ2 with Lorentz harmonic maps from Σ2
1. Harmonic maps f1 from

Σ2 or Lorentz harmonic maps f2 from Σ2
1 into S2, H2 or S2

1 give rise to constant mean

curvature surfaces (CMC-surfaces, for short) in R3, spacelike CMC-surfaces in R3
1 or
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timelike CMC-surfaces in R3
1; and vice versa. For this reason, one can interrelate CMC-

surfaces in R3 or R3
1 with other CMC-surfaces in R3 or R3

1 by means of Theorem 4.3.1. In

the appendix, we present concrete examples of the method developed in this paper; and

moreover, we investigate the relation among CMC-surfaces by use of such maps.

This paper is organized as follows: In Section 2 we recall the basic definitions and

results concerning para-complex manifolds, para-pluriharmonic maps and pluriharmonic

maps. In Section 3 we review elementary facts and results about the loop group method;

and we study the relation between para-pluriharmonic or pluriharmonic maps and loop

groups. In Section 4 we prove the main Theorem 4.3.1. Finally, in Section 5 we actually

interrelate some pluriharmonic maps with para-pluriharmonic maps by means of Theorem

4.3.1.

Acknowledgments. Many thanks are due to the members of GeometrieWerkstatt

at the Universität Tübingen. The first named author would like to express his sincere

gratitude to Wayne Rossman, Hui Ma, Yoshihiro Ohnita, and David Brander for their

encouragement; and he is grateful to Lars Schäfer for his valuable advice.

2. Pluriharmonic maps and para-pluriharmonic maps

2.1. Para-complex manifolds. We first recall the notion of a para-complex manifold,

in order to introduce the notion of a para-pluriharmonic map.

Definition 2.1.1 (cf. Libermann [20], [21, p. 82, p. 83]).

(i) Let M be a 2n-dimensional real smooth manifold, and let XM denote the Lie algebra

of smooth vector fields on M . Then M is called a para-complex manifold, if there exists

a smooth (1, 1)-tensor field I on M such that

(1) I2 = id;

(2) dimR T
+
p M = n = dimR T

−
p M for each p ∈ M ;

(3) [IX, IY ]− I[IX, Y ]− I[X, IY ] + [X, Y ] = 0 for any X, Y ∈ XM ,

where T±
p M denotes the ±-eigenspace of Ip (= the value of I at p) in TpM .

(ii) Let (M, I) and (M ′, I ′) be two para-complex manifolds. Then a smooth map f :

(M, I) → (M ′, I ′) is called para-holomorphic (resp. para-antiholomorphic), if it satisfies

df ◦ I = I ′ ◦ df (resp. df ◦ I = −I ′ ◦ df).

Every para-complex manifold can be endowed with a set of special, local coordinates

(x1
α, · · · , xn

α, y
1
α, · · · , ynα) which are called para-holomorphic coordinates:

Proposition 2.1.2 (cf. Kaneyuki-Kozai [16, p. 83]). Let (M, I) be a para-complex

manifold with dimR M = 2n. Then, M has an atlas {(Uα, ϕα)}α∈A with Uα open and

ϕα = (x1
α, · · · , xn

α, y
1
α, · · · , ynα) a coordinate map satisfying

(1) I(∂/∂xa
α) = ∂/∂xa

α and I(∂/∂yaα) = −∂/∂yaα for all 1 ≤ a ≤ n;

(2) ∂ybβ/∂x
a
α = 0 = ∂xb

β/∂y
a
α on Uα ∩ Uβ 6= ∅ for all 1 ≤ a, b ≤ n.
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A Lorentz surface and a one sheeted hyperboloid are one of the examples of para-

complex manifold.

2.2. Para-pluriharmonic maps.

2.2.1. Now, let us recall the notion of a para-pluriharmonic map:

Definition 2.2.1 (cf. Schäfer [25, p. 72]). Let (M, I) be a para-complex manifold with

dimRM = 2n, and let N be a smooth manifold with a torsion-free affine connection ∇N .

Then a smooth map f : (M, I) → (N,∇N) is called para-pluriharmonic, if it satisfies

(P) (∇df)
( ∂

∂ya
,
∂

∂xb

)
= 0 for all 1 ≤ a, b ≤ n,

for any local para-holomorphic coordinate (x1, · · · , xn, y1, · · · , yn) on (M, I). Here ∇
denotes the connection on End(TM, f−1TN) which is induced from D and ∇N , where D

is any para-complex (i.e., DI = 0) torsion-free affine connection on (M, I).

Remark 2.2.2. Every para-complex manifold admits a para-complex torsion-free affine

connection (cf. [25, p. 64]).

The following lemma implies that the equation (P) in Definition 2.2.1 is independent

of the choice of para-complex torsion-free affine connections on (M, I):

Lemma 2.2.3. Let (M, I) be a para-complex manifold with dimRM = 2n, and let D

be any para-complex torsion-free affine connection on (M, I). Then, every local para-

holomorphic coordinate (x1, · · · , xn, y1, · · · , yn) on (M, I) satisfies D∂a

+
∂b
− = 0 = D∂a

−

∂b
+

for all 1 ≤ a, b ≤ n. Here, ∂a
+ := ∂/∂xa and ∂a

− := ∂/∂ya.

Proof. It follows from DI = 0 that for any 1 ≤ a, b ≤ n,

I(D∂a

+
∂b
−) = D∂a

+
I(∂b

−)− (D∂a

+
I)∂b

− = D∂a

+
I(∂b

−) = −D∂a

+
∂b
−.

This yields D∂a

+
∂b
− ∈ T−M . Similarly one has D∂b

−

∂a
+ ∈ T+M . Therefore we conclude

T−M ∋ D∂a
+
∂b
− = D∂b

−

∂a
+ + [∂a

+, ∂
b
−] = D∂b

−

∂a
+ ∈ T+M

because the torsion of D is free. Thus D∂a

+
∂b
− = 0 = D∂b

−

∂a
+. �

2.2.2. Our goal in this subsection is to show Proposition 2.2.4 (below) which will play an

important role in Section 3. First, let us fix the setting and the notation of the proposition.

Let G be a connected matrix group, and let σ be an involution of G. We denote by H

the fixed point set of σ in G, and get an affine symmetric space (G/H, σ). Let (M, I) be

a para-complex manifold of dimension 2n, and let F be a smooth map from (M, I) into

G. Then we consider:

(2.2.1) π: the projection from G onto G/H ,

(2.2.2) ∇1: the canonical affine connection on (G/H, σ) (see [22, p. 54] for the definition

of the canonical affine connection),
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(2.2.3) α := F−1 · dF : the pullback of the left-invariant Maurer-Cartan form on G along

F ,

(2.2.4) g := LieG, h := Fix(g, dσ), m := Fix(g,−dσ),

(2.2.5) αh (resp. αm): the h-component (resp. the m-component) of α with respect to

g = h⊕m,

(2.2.6) α±
h := (1/2) · (αh ± tI(αh)), α±

m := (1/2) · (αm ± tI(αm)),

(2.2.7) ∂−α
+
m + [α−

h ∧ α+
m ] = 0 as an abbreviation for ∂a

−(αm(∂
b
+)) + [αh(∂

a
−), αm(∂

b
+)] = 0

for all 1 ≤ a, b ≤ n, where (x1, · · · , xn, y1, · · · , yn) is any local para-holomorphic

coordinate system on (M, I),

(2.2.8) T±M : the subbundle of the tangent bundle TM determined by the ±1-eigenspace

of I in TM ,

(2.2.9) [α±
m ∧ α±

m ] = 0 as an abbreviation of: [αm ∧ αm] ≡ 0 on T+M × T+M and on

T−M × T−M ,

(2.2.10) C∗ := C \ {0}.
Now, we are in a position to state

Proposition 2.2.4. With the above setting and notation, the following statements (a)

and (b) are equivalent:

(a) A map f := π ◦ F : (M, I) → (G/H,∇1) is para-pluriharmonic and satisfies

[α+
m ∧ α+

m ] = 0 = [α−
m ∧ α−

m ];

(b) dαµ + (1/2) · [αµ ∧ αµ] = 0 for any µ ∈ C∗, where αµ := αh + µ−1 · α+
m + µ · α−

m .

In order to prove the above proposition, we first show

Lemma 2.2.5. f = π ◦ F : (M, I) → (G/H,∇1) is a para-pluriharmonic map if and

only if ∂−α
+
m + [α−

h ∧ α+
m ] = 0 (cf. (2.2.7)).

Proof. Lemma 2.2.3 allows us to reduce the equation (P) in Definition 2.2.1 as follows:

(∇df)(∂a
−, ∂

b
+) = ∇1

∂a

−

(
df(∂b

+)
)
. This implies that

f = π ◦ F is para-pluriharmonic if and only if β
(
∇1

∂a

−

(
df(∂b

+)
))

= 0

because β : T (G/H) → G/H × g is injective (see [5] or [15, p. 403] for β). Accordingly,

it suffices to show that

(2.2.11) β
(
∇1

∂a

−

(
df(∂b

+)
))

= 0 if and only if ∂−α
+
m + [α−

h ∧ α+
m ] = 0.

To prove this we note first that it is known that ∇1 coincides with the canonical affine

connection of the second kind (cf. [22, p. 53]). Therefore, Proposition 1.4 and Lemma 1.1

in [15, p. 404, p. 403] assure that

β
(
∇1

∂a

−

(
df(∂b

+)
))

= ∂a
−

(
β
(
df(∂b

+)
))

−
[
β
(
df(∂a

−)
)
, β
(
df(∂b

+)
)]
.
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Let us compute each term on the right-hand side of the above equation. We note that

f ∗β = AdF · αm (cf. [15, p. 409]) implies

∂a
−

(
β
(
df(∂b

+)
))

= ∂a
−

(
(f ∗β)(∂b

+)
)
= ∂a

−

(
F · αm(∂

b
+) · F−1

)

= (∂a
−F ) · αm(∂

b
+) · F−1 + F · ∂a

−

(
αm(∂

b
+)
)
· F−1 − F · αm(∂

b
+) · F−1 · (∂a

−F ) · F−1

= AdF ·
{
∂a
−

(
αm(∂

b
+)
)
+
[
F−1 · (∂a

−F ), αm(∂
b
+)
]}

= AdF ·
{
∂a
−

(
αm(∂

b
+)
)
+
[
α(∂a

−), αm(∂
b
+)
]}

.

Moreover, f ∗β = AdF · αm yields
[
β
(
df(∂a

−)
)
, β
(
df(∂b

+)
)]

=
[
(f ∗β)(∂a

−), (f
∗β)(∂b

+)
]
= AdF ·

[
αm(∂

a
−), αm(∂

b
+)
]
.

Therefore we obtain

β
(
∇1

∂a

−

(
df(∂b

+)
))

= AdF ·
{
∂a
−

(
αm(∂

b
+)
)
+
[
αh(∂

a
−), αm(∂

b
+)
]}

.

Hence we have shown (2.2.11). �

Proof of Proposition 2.2.4. First we rewrite the expression dαµ + (1/2) · [αµ ∧ αµ]. Since

α = F−1 · dF we have dα+ (1/2) · [α∧ α] = 0. From [h, h] ⊂ h, [h,m] ⊂ m and [m,m] ⊂ h

we obtain dαh + (1/2) ·
(
[αh ∧αh] + [αm ∧αm]

)
= 0 = dαm + [αh ∧αm]. Thus we can assert

that

dαh +
1

2
· [αh ∧ αh] + [α+

m ∧ α−
m ] = −1

2
·
(
[α+

m ∧ α+
m ] + [α−

m ∧ α−
m ]
)
,

dαm + [αh ∧ αm] = 0.
(2.2.12)

By a direct computation we obtain

dαµ +
1

2
· [αµ ∧ αµ] =dαh +

1

2
· [αh ∧ αh] + [α+

m ∧ α−
m ]

+ µ−1 ·
(
dα+

m + [αh ∧ α+
m ]
)
+ µ ·

(
dα−

m + [αh ∧ α−
m ]
)

+
1

2
· µ−2 · [α+

m ∧ α+
m ] +

1

2
· µ2 · [α−

m ∧ α−
m ].

Consequently, by virtue of (2.2.12) one can rewrite dαµ + (1/2) · [αµ ∧ αµ] as follows:

dαµ +
1

2
· [αµ ∧ αµ] =µ−1 ·

(
dα+

m + [αh ∧ α+
m ]
)
+ µ ·

(
dα−

m + [αh ∧ α−
m ]
)

+
1

2
· (µ−2 − 1) · [α+

m ∧ α+
m ] +

1

2
· (µ2 − 1) · [α−

m ∧ α−
m ].

(2.2.13)

(a)→(b): Suppose that f = π ◦ F is para-pluriharmonic and satisfies [α+
m ∧ α+

m ] = 0 =

[α−
m ∧ α−

m ]. Then, (2.2.13) yields

dαµ +
1

2
· [αµ ∧ αµ] = µ−1 ·

(
dα+

m + [αh ∧ α+
m ]
)
+ µ ·

(
dα−

m + [αh ∧ α−
m ]
)
.

So it suffices to show

dα+
m + [αh ∧ α+

m ] = 0 = dα−
m + [αh ∧ α−

m ].
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Equation (P) in Definition 2.2.1 is symmetric with respect to the variables ya and xb.

This and Lemma 2.2.5 imply that

f = π ◦ F is para-pluriharmonic if and only if ∂−α
+
m + [α−

h ∧ α+
m ] = 0

if and only if ∂+α
−
m + [α+

h ∧ α−
m ] = 0.

Therefore it follows from dαm + [αh ∧ αm] = 0 (cf. (2.2.12)) that dα+
m + [αh ∧ α+

m ] = 0 =

dα−
m + [αh ∧ α−

m ].

(b)→(a): Suppose that dαµ + (1/2) · [αµ ∧ αµ] = 0 for any µ ∈ C∗. We obtain

dα+
m + [αh ∧ α+

m ] = 0 and [α+
m ∧ α+

m ] = 0 = [α−
m ∧ α−

m ] from (2.2.13). So Lemma 2.2.5

allows us to obtain the conclusion, if one has ∂−α
+
m + [α−

h ∧ α+
m ] = 0. But, this equation

is immediate from dα+
m + [αh ∧ α+

m ] = 0. �

2.2.3. We recall the notion of the extended framing of a para-pluriharmonic map (cf.

Definition 2.2.6). One will see that the framing is an element of the loop group Λ̃Gσ in

Section 3.

Let GC be a simply connected, simple, complex linear algebraic subgroup of SL(m,C),

let σ be a holomorphic involution of GC, and let ν be an antiholomorphic involution of

GC such that [σ, ν] = 0 (i.e., σ ◦ ν = ν ◦ σ). Define HC, G and H by

(2.2.14) HC := Fix(GC, σ), G := Fix(GC, ν), H := Fix(G, σ) = Fix(HC, ν).

Note that (G/H, σ|G) is an affine symmetric space. Now, let po be a base point in a

simply connected para-complex manifold (M, I). Then, Proposition 2.2.4 assures that

for any para-pluriharmonic map f = π ◦ F : (M, I) → (G/H,∇1) with F (po) = id and

[α±
m ∧α±

m ] = 0, the gC-valued 1-form αµ = αh +µ−1 ·α+
m +µ ·α−

m on (M, I), parameterized

by µ ∈ C∗, is integrable; and furthermore, one can obtain a smooth map

F : M × C∗ → GC, (p, µ) 7→ Fµ(p),

from the integrability condition dαµ + (1/2) · [αµ ∧ αµ] = 0 and F−1
µ · dFµ = αµ with

Fµ(po) ≡ id. The above map F = Fµ : C∗ → GC satisfies

(2.2.15) σ(Fµ) = F−µ for all µ ∈ C∗,

(2.2.16) Fλ := F |S1 : S1 → GC, where S1 := {λ ∈ C∗ | |λ| = 1},
(2.2.17) Fθ := F |R+ : R+ → G = Fix(GC, ν) (⊂ GC), where R+ := {θ ∈ R | θ > 0}.
Indeed, (2.2.15) follows from dσ(αµ) = α−µ and σ(Fµ(po)) = F−µ(po); (2.2.16) is obvious;

and (2.2.17) follows from αθ being g-valued for any θ ∈ R+.

Definition 2.2.6. The map Fθ is called the extended framing of the para-pluriharmonic

map f = π ◦ F : (M, I) → (G/H,∇1); and {fθ}θ∈R+ is called an associated family of f ,

where fθ := π ◦Fθ. Here, we remark that f1 = f and F1 = F are immediate from α1 = α

and F1(po) = F (po).



PLURIHARMONIC MAPS AND PARA-PLURIHARMONIC MAPS 7

Remark 2.2.7. Throughout this paper we consider that for the extended framing Fθ of

a para-pluriharmonic map, its variable θ varies in the whole C∗ which contains not only

R
+ but also S1.

2.3. Pluriharmonic maps.

2.3.1. In this subsection we will survey some basic facts and results about pluriharmonic

maps. First, let us recall the notion of a pluriharmonic map:

Definition 2.3.1. Let (M,J) be a real 2n-dimensional complex manifold, and let N

be a smooth manifold with a torsion-free affine connection ∇N . Then a smooth map

f : (M,J) → (N,∇N) is called pluriharmonic, if it satisfies

(H) (∇df)
( ∂

∂z̄a
,
∂

∂zb
)
= 0 for all 1 ≤ a, b ≤ n,

for any local holomorphic coordinate (z1, · · · , zn, z̄1, · · · , z̄n) on (M,J). Here ∇ denotes

the connection on End(TM, f−1TN) which is induced from D and ∇N , where D is any

complex torsion-free affine connection on (M,J).

Remark 2.3.2. (i) We utilize the terminology “pluriharmonic map,” in a sense that is

more general than the one originally given by Siu [26].

(ii) Any complex manifold admits a complex torsion-free affine connection (cf. [18, p.

145]).

(iii) The equation (H) in Definition 2.3.1 is independent of the choice of complex torsion-

free affine connections D on (M,J) (ref. the proof of Lemma 2.2.3).

2.3.2. In Section 3 we will study the relation between pluriharmonic maps and the loop

group method. For this we will use a result of Ohnita [23] about pluriharmonic maps (see

Proposition 2.3.3). First, let us fix the setting for Proposition 2.3.3.

Let (G/H, σ) denote the affine symmetric space defined in Subsection 2.2.2, and let F

be a smooth map from a real 2n-dimensional complex manifold (M,J) into G. Then, we

consider:

(2.3.1) π: the same as in (2.2.1),

(2.3.2) ∇1: the same as in (2.2.2),

(2.3.3) α: the same as in (2.2.3),

(2.3.4) g, h, m: the same as in (2.2.4),

(2.3.5) αh, αm: the same as in (2.2.5),

(2.3.6) α′
X := (−i/2) · (iαX + tJ(αX)), α′′

X := (−i/2) · (iαX − tJ(αX)) for X = h, m,

(2.3.7) ∂α′
m + [α′′

h ∧ α′
m] = 0 as an abbreviation for ∂

a
(αm(∂

b)) + [αh(∂
a
), αm(∂

b)] = 0 for

all 1 ≤ a, b ≤ n, where (z1, · · · , zn, z̄1, · · · , z̄n) is any local holomorphic coordinate

system on (M,J), and where ∂b := ∂/∂zb and ∂
a
:= ∂/∂z̄a,

(2.3.8) [α′
m∧α′

m] = 0 as an abbreviation for [αm(∂
a), αm(∂

b)] = 0 for all 1 ≤ a, b ≤ n, where

(z1, · · · , zn, z̄1, · · · , z̄n) is any local holomorphic coordinate system on (M,J).
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Proposition 2.3.3 (cf. Ohnita [23]). With the above notation, a map f := π ◦ F :

(M,J) → (G/H,∇1) is pluriharmonic if and only if ∂α′
m + [α′′

h ∧ α′
m] = 0. Moreover, the

following statements (a) and (b) are equivalent:

(a) f = π ◦ F is pluriharmonic and satisfies [α′
m ∧ α′

m] = 0;

(b) dαµ + (1/2) · [αµ ∧ αµ] = 0 for any µ ∈ C∗, where αµ := αh + µ−1 · α′
m + µ · α′′

m.

2.3.3. We will first recall the notion of the extended framing of a pluriharmonic map

(cf. Definition 2.3.4), and afterwards point out a crucial difference between the extended

framings of pluriharmonic maps and para-pluriharmonic maps in view of the loop group

method (cf. Remark 2.3.5).

The arguments below will be similar to those in Subsection 2.2.3. Let GC, HC, G and

H denote the same Lie groups as in (2.2.14). Fix a base point po in a simply connected

complex manifold (M,J). For a pluriharmonic map f = π ◦ F : (M,J) → (G/H,∇1)

with F (po) = id and [α′
m ∧ α′

m] = 0, Proposition 2.3.3 shows that the gC-valued 1-form

αµ = αh + µ−1 · α′
m + µ · α′′

m on (M,J) parameterized by µ ∈ C
∗ is integrable. Then there

exists a unique map

F : M × C∗ → GC, (p, µ) 7→ Fµ(p),

such that F−1
µ · dFµ = αµ and Fµ(po) ≡ id, by virtue of the integrability condition

dαµ + (1/2) · [αµ ∧ αµ] = 0. Here we remark that F = Fµ : C∗ → GC satisfies

(2.3.9) σ(Fµ) = F−µ for all µ ∈ C∗,

(2.3.10) Fλ := F |S1 : S1 → G = Fix(GC, ν) (⊂ GC).

Indeed, (2.3.10) follows from αλ being g-valued for any λ ∈ S1.

Definition 2.3.4. The map Fλ is called the extended framing of the pluriharmonic

map f = π ◦ F : (M,J) → (G/H,∇1); and {fλ}λ∈S1 is called an associated family of f ,

where fλ(p) := π ◦ Fλ(p) for (p, λ) ∈ M × S1.

Remark 2.3.5. The map F = Fµ : C∗ → GC defined above becomes G-valued if its

variable µ varies in S1; and Fλ = F |S1 is the extended framing of a pluriharmonic map.

By contrast, the map F = Fµ : C∗ → GC in Subsection 2.2.3 becomes G-valued if its

variable µ varies in R+; and Fθ = F |R+ is the extended framing of a para-pluriharmonic

map.

3. The loop group method

First, we introduce three kinds of loop groups ΛGC

σ , ΛGσ and Λ̃Gσ, and review their

decomposition theorems. Next, we explain the relation between para-pluriharmonic maps

and the loop group method, and interrelate para-pluriharmonic maps with para-pluriharmonic

potentials. Finally, we treat the pluriharmonic case.

3.1. Decomposition theorems of loop groups.
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3.1.1. Let GC be a simply connected, simple, complex linear algebraic subgroup of

SL(m,C), and let σ be a holomorphic involution of GC. In this case the twisted loop

group ΛGC

σ is defined as follows:

ΛGC

σ :=

{
Aλ : S1 → GC Aλ =

∑
k∈Z Akλ

k,
∑ ||Ak|| < ∞,

σ(Aλ) = A−λ for all λ ∈ S1

}
,

where || · || denotes some matrix norm satisfying ||A · B|| ≤ ||A|| · ||B|| and || id || = 1.

Then ΛGC
σ , with this norm ||Aλ|| =

∑ ||Ak||, is a complex Banach Lie group (see [1], [12]

and [24] for more details). Here, the Lie algebra ΛgCσ of ΛGC

σ is given by

(3.1.1) ΛgCσ :=

{
Xλ : S1 → gC Xλ =

∑
k∈Z Xkλ

k,
∑ ||Xk|| < ∞,

dσ(Xλ) = X−λ for all λ ∈ S1

}
.

Define four subgroups Λ±GC

σ and Λ±
∗ G

C

σ of ΛGC

σ by

Λ±GC

σ := {Aλ ∈ ΛGC

σ |Aλ has a holomorphic extension Âz : D± → GC},
Λ+

∗ G
C

σ := {Aλ ∈ Λ+GC

σ | Â0 = id}, Λ−
∗ G

C

σ := {Aλ ∈ Λ−GC

σ | Â∞ = id},

where D+ := {z ∈ C | |z| < 1} and D− := {z ∈ C | |z| > 1} ∪ {∞}. With this notation,

we can state the following two Theorems 3.1.1 and 3.1.2, which are called the Iwasawa

decomposition of ΛGC
σ × ΛGC

σ and the Birkhoff decomposition of ΛGC
σ , respectively (see

[1], [12], [24]):

Theorem 3.1.1 (Iwasawa decomposition of ΛGC

σ × ΛGC

σ ). The multiplication maps

△(ΛGC
σ × ΛGC

σ)× (Λ−
∗ G

C
σ × Λ+GC

σ ) → ΛGC
σ × ΛGC

σ ,

△(ΛGC

σ × ΛGC

σ)× (Λ+
∗ G

C

σ × Λ−GC

σ ) → ΛGC

σ × ΛGC

σ

are holomorphic diffeomorphisms onto open subsets of ΛGC

σ × ΛGC

σ , respectively. Here

△(ΛGC
σ × ΛGC

σ ) denotes the diagonal subgroup of ΛGC
σ × ΛGC

σ .

Theorem 3.1.2 (Birkhoff decomposition of ΛGC

σ ). The multiplication maps

Λ−
∗ G

C
σ × Λ+GC

σ → ΛGC
σ , Λ+

∗ G
C
σ × Λ−GC

σ → ΛGC
σ

are holomorphic diffeomorphisms onto the open subsets BC

∓ := Λ∓
∗ G

C

σ · Λ±GC

σ of ΛGC

σ ,

respectively. In particular, each element Aλ ∈ BC := BC

− ∩ BC

+ can be uniquely factorized:

Aλ = A−
λ ·B+

λ = A+
λ · B−

λ , A±
λ ∈ Λ±

∗ G
C

σ , B±
λ ∈ Λ±GC

σ .

3.1.2. Almost split real forms of ΛGC
σ . Now, let ν be an antiholomorphic involution of

GC such that [σ, ν] = 0 (i.e., σ ◦ ν = ν ◦ σ). Then one can define an antiholomorphic

involution νS of ΛGC
σ by setting

(3.1.2) νS(Aλ) := ν(Aλ) for Aλ ∈ ΛGC

σ .
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This involution νS is said to be of the first kind, and its fixed point set ΛGσ := Fix(ΛGC
σ , νS)

is called an almost split real form of ΛGC

σ . Note that νS satisfies νS(Λ
±GC

σ ) = Λ±GC

σ and

νS(Λ
±
∗ G

C

σ ) = Λ±
∗ G

C

σ . That allows us to define four subgroups Λ±Gσ and Λ±
∗ Gσ as follows:

Λ±Gσ := Fix(Λ±GC

σ , νS), Λ±
∗ Gσ := Fix(Λ±

∗ G
C

σ , νS).

With this notation, one can state the following theorems (see [2], [3]):

Theorem 3.1.3 (Iwasawa decomposition of ΛGσ × ΛGσ). The multiplication maps

△(ΛGσ × ΛGσ)× (Λ−
∗ Gσ × Λ+Gσ) → ΛGσ × ΛGσ,

△(ΛGσ × ΛGσ)× (Λ+
∗ Gσ × Λ−Gσ) → ΛGσ × ΛGσ

are holomorphic diffeomorphisms onto open subsets of ΛGσ × ΛGσ, respectively.

Theorem 3.1.4 (Birkhoff decomposition of ΛGσ). The multiplication maps

Λ−
∗ Gσ × Λ+Gσ → ΛGσ, Λ+

∗ Gσ × Λ−Gσ → ΛGσ

are holomorphic diffeomorphisms onto the open subsets B∓ := Λ∓
∗ Gσ · Λ±Gσ of ΛGσ,

respectively. In particular, each element Aλ ∈ B := B− ∩ B+ can be uniquely factorized:

Aλ = A−
λ · B+

λ = A+
λ · B−

λ , A±
λ ∈ Λ±

∗ Gσ, B±
λ ∈ Λ±Gσ.

3.1.3. For a general element Aλ ∈ ΛGC

σ , its variable λ only varies in S1. However, for the

framing Fλ of a para-pluriharmonic map, the variable λ of Fλ can vary in the whole C∗

(cf. Subsection 2.2.3). Toda [27] has addressed this relevant point, since in her work λ is

for all geometric purposes a positive real number. She proposed to consider the following

subgroup Λ̃Gσ of ΛGσ:

(3.1.3) Λ̃Gσ := {Aλ ∈ ΛGσ |Aλ has an analytic extension Ãµ : C∗ → GC}.

One equips Λ̃Gσ with the induced topology from ΛGσ, where ΛGσ is considered as a loop

group with λ ∈ S1; and in a similar way, one defines four subgroups Λ̃±Gσ and Λ̃±
∗ Gσ of

Λ±Gσ and Λ±
∗ Gσ, respectively. Then, the following two decomposition theorems hold (cf.

[2], [9], [27]):

Theorem 3.1.5 (Iwasawa decomposition of Λ̃Gσ × Λ̃Gσ). The multiplication maps

△(Λ̃Gσ × Λ̃Gσ)× (Λ̃−
∗ Gσ × Λ̃+Gσ) → Λ̃Gσ × Λ̃Gσ,

△(Λ̃Gσ × Λ̃Gσ)× (Λ̃+
∗ Gσ × Λ̃−Gσ) → Λ̃Gσ × Λ̃Gσ

are real analytic diffeomorphisms onto open subsets of Λ̃Gσ × Λ̃Gσ, respectively.

Theorem 3.1.6 (Birkhoff decomposition of Λ̃Gσ). The multiplication maps

Λ̃−
∗ Gσ × Λ̃+Gσ → Λ̃Gσ, Λ̃+

∗ Gσ × Λ̃−Gσ → Λ̃Gσ



PLURIHARMONIC MAPS AND PARA-PLURIHARMONIC MAPS 11

are real analytic diffeomorphisms onto the open subsets B̃∓ := Λ̃∓
∗ Gσ · Λ̃±Gσ of Λ̃Gσ,

respectively. In particular, each element Aλ ∈ B̃ := B̃− ∩ B̃+ can be uniquely factorized:

Aλ = A−
λ · B+

λ = A+
λ · B−

λ , A±
λ ∈ Λ̃±

∗ Gσ, B±
λ ∈ Λ̃±Gσ.

Remark 3.1.7. Throughout this paper, we consider that for Aλ ∈ Λ̃Gσ, its variable λ

varies not only in S1 but also in R+ (or more generally in C∗).

We end this subsection with showing the following lemma:

Lemma 3.1.8. Each element Cλ ∈ Λ̃Gσ satisfies Cθ ∈ G := Fix(GC, ν) for all θ ∈ R+.

Proof. Since Cλ ∈ Λ̃Gσ ⊂ ΛGσ = Fix(ΛGC

σ , νS), it satisfies ν(Cλ) = νS(Cλ) = Cλ for

all λ ∈ S1. Hence, one has ν(Cµ) = Cµ for all µ ∈ C∗; and therefore ν(Cθ) = Cθ for all

θ ∈ R+. �

3.2. Para-pluriharmonic maps and the loop group method. In this subsection, we

will study the relation between para-pluriharmonic maps and the loop group method.

3.2.1. Let GC be a simply connected, simple, complex linear algebraic subgroup of

SL(m,C), let σ be a holomorphic involution of GC, and let ν be an antiholomorphic

involution of GC such that [σ, ν] = 0. Define subgroups HC, G and H by the same

conditions as in Subsection 2.2.3, respectively—that is,

HC := Fix(GC, σ), G := Fix(GC, ν), H := Fix(G, σ) = Fix(HC, ν).

We will conclude that the extended framing Fθ of a para-pluriharmonic map belongs

to the loop group Λ̃Gσ (see (3.1.3) for Λ̃Gσ). Let (M, I) be a simply connected para-

complex manifold, and let Fθ be the extended framing of a para-pluriharmonic map

f = π ◦ F : (M, I) → (G/H,∇1) with F (po) = id and [α±
m ∧ α±

m ] = 0, where po is a

base point in (M, I). Then it follows from (2.2.15) and (2.2.16) that Fλ belongs to ΛGC
σ .

Moreover, the variable λ of Fλ can vary in all of C∗ (cf. Subsection 2.2.3). Accordingly

one can assert that the framing Fλ belongs to Λ̃Gσ, if it satisfies

(3.2.1) νS(Fλ) = Fλ

(see (3.1.2) for νS). Let us show (3.2.1). From (2.2.17) we know ν(Fθ) = Fθ for any

θ ∈ R+. This yields that νS(Fλ) = ν(Fλ) = Fλ for any λ ∈ S1 because ν(Fµ) = Fµ for

any µ ∈ C∗ follows from ν(Fθ) = Fθ for any θ ∈ R+. Hence, we have shown (3.2.1).

Consequently the framing Fλ belongs to Λ̃Gσ.

3.2.2. Para-pluriharmonic potentials. We have just shown that Fλ belongs to Λ̃Gσ, where

Fλ is the extended framing of a para-pluriharmonic map f = π ◦F : (M, I) → (G/H,∇1)

with F (po) = id and [α±
m ∧ α±

m ] = 0. To Fλ ∈ Λ̃Gσ, one can apply the Birkhoff decompo-

sition theorem (cf. Theorem 3.1.6). We will obtain a pair of m-valued 1-forms ηθ and τθ

on (M, I) parameterized θ ∈ R+, from the framing Fθ.
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Since Fλ(po) ≡ id ∈ B̃, one can perform a Birkhoff decomposition of the framing

Fλ ∈ Λ̃Gσ:

Fλ = F−
λ · L+

λ = F+
λ · L−

λ , F±
λ ∈ Λ̃±

∗ Gσ, L±
λ ∈ Λ̃±Gσ,

on an open neighborhood U of M at po (cf. Theorem 3.1.6). Define ηθ and τθ by

ηθ := (F−
θ )−1 · dF−

θ , τθ := (F+
θ )−1 · dF+

θ ,

respectively. Then for any θ ∈ R+, both ηθ and τθ become m-valued 1-forms on the

para-complex manifold (U, I); and furthermore, ηθ is para-holomorphic and τθ is para-

antiholomorphic. Indeed, it is immediate from F−1
θ · dFθ = αθ that

αh + θ−1 · α+
m + θ · α−

m = αθ = (L+
θ )

−1 · ((F−
θ )−1 · dF−

θ ) · L+
θ + (L+

θ )
−1 · dL+

θ

= (L−
θ )

−1 · ((F+
θ )−1 · dF+

θ ) · L−
θ + (L−

θ )
−1 · dL−

θ ,

and that ηθ = θ−1 · Ad(L+
0 )α

+
m and τθ = θ · Ad(L−

0 )α
−
m , where L±

λ =
∑

±k≥0 L
±
k λ

k. Here,

we remark that L±
0 ∈ H by Lemma 3.1.8.

From the extended framing Fθ, we have obtained the pair (ηθ, τθ) of an m-valued para-

holomorphic 1-form and anm-valued para-antiholomorphic 1-form on (U, I) parameterized

by θ ∈ R+. In the next subsection, we will see that the pair (ηθ, τθ) is a para-pluriharmonic

potential (cf. Definition 3.2.1).

3.2.3. We are going to introduce the notion of a para-pluriharmonic potential. Consider

two linear subspaces Λ̃−1,∞gσ and Λ̃−∞,1gσ of Λ̃gσ:

Λ̃−1,∞gσ := {Xλ ∈ Λ̃gσ |Xλ =
∑∞

i=−1Xiλ
i},

Λ̃−∞,1gσ := {Yλ ∈ Λ̃gσ | Yλ =
∑1

j=−∞ Yjλ
j},

where Λ̃gσ denotes the Lie algebra of Λ̃Gσ (see (3.1.3) for Λ̃Gσ). Let P̃+ = P̃+(g) and

P̃− = P̃−(g) denote the sets of all Λ̃−1,∞gσ-valued para-holomorphic and Λ̃−∞,1gσ-valued

para-antiholomorphic 1-forms on a simply connected para-complex manifold (M, I), re-

spectively.

Definition 3.2.1. An element (ηλ, τλ) ∈ P̃+ × P̃− is called a para-pluriharmonic po-

tential (or a potential, for short) on (M, I).

Remark 3.2.2. (1) For each potential (ηλ, τλ) ∈ P̃+ × P̃−, one may assume that the

variable λ of ηλ (resp. τλ) varies in R+ by virtue of ηλ ∈ Λ̃gσ (resp. τλ ∈ Λ̃gσ).

(2) Note that we has just obtained a para-pluriharmonic potential (ηθ, τθ) from the

extended framing Fθ of a para-pluriharmonic map f : (M, I) → (G/H,∇1) with F (po) =

id and [α±
m ∧ α±

m ] = 0.

(3) It is unfortunate that the condition [α±
m ∧ α±

m ] = 0 for the applicability of the loop

group method is necessary, but not always satisfied as shown by Krahe [19]. The condition

is always true for surfaces and if the pseudo metric of the target space is positive definite.

Other natural conditions for the existence of [α±
m ∧ α±

m ] = 0 are not known.
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We has just obtained a para-pluriharmonic potential (ηθ, τθ) from the extended framing

Fθ of a para-pluriharmonic map f : (M, I) → (G/H,∇1) with F (po) = id and [α±
m ∧α±

m ] =

0. The converse statement is also true—that is, one can obtain a para-pluriharmonic map

and its extended framing from any para-pluriharmonic potential and this framing satisfies

[α±
m ∧ α±

m ] = 0:

Proposition 3.2.3. Let (ηθ, τθ) ∈ P̃+(g) × P̃−(g) be a para-pluriharmonic potential

on the para-complex manifold (M, I). Then, the following steps provide an R+-family

{fθ}θ∈R+ of para-pluriharmonic maps:

(S1) Solve the two initial value problems: (A−
θ )

−1 ·dA−
θ = ηθ and (A+

θ )
−1 ·dA+

θ = τθ with

A±
θ (po) ≡ id, where po is a base point in (M, I).

(S2) Factorize (A−
θ , A

+
θ ) ∈ Λ̃Gσ × Λ̃Gσ in the Iwasawa decomposition (cf. Theorem

3.1.5) : (A−
θ , A

+
θ ) = (Cθ, Cθ) · (B+

θ , B
−
θ ), where Cθ ∈ Λ̃Gσ, B+

θ ∈ Λ̃+
∗ Gσ and

B−
θ ∈ Λ̃−Gσ.

(S3) Then, fθ := π ◦ Cθ : (W, I) → (G/H,∇1) becomes a para-pluriharmonic map for

every θ ∈ R+. Here, W is any open neighborhood of M at po such that both (S1)

and (S2) are solved on W .

In particular, Cθ(po) ≡ id and Cθ is the extended framing of the para-pluriharmonic map

f1 = π ◦ C1 : (W, I) → (G/H,∇1).

Proof. (S1), (S2): The solution (A−
θ , A

+
θ ) to (S1) satisfies A

∓
θ ∈ Λ̃Gσ and A∓

θ (po) ≡ id.

Therefore, it belongs to the open subset of Λ̃Gσ × Λ̃Gσ locally. Hence, one can factorize

(A−
θ , A

+
θ ) by means of (S2).

(S3): Let W be any open neighborhood of M at po such that both (S1) and (S2)

are solved on W . First, let us show Cθ(po) ≡ id. Since A∓
θ (po) ≡ id we have Λ̃+

∗ Gσ ∋
B+

θ (po) = Cθ(po)
−1 = B−

θ (po) ∈ Λ̃−Gσ. Hence, Cθ(po) ∈ (Λ̃+
∗ Gσ∩ Λ̃−Gσ) = {id}. Now, let

βµ := C−1
µ · dCµ for µ ∈ C∗. Lemma 3.1.8 implies that βθ is a g-valued 1-form on W for

any θ ∈ R+. Therefore, one can express it as βθ = (βθ)h + (βθ)m = (βθ)h + (βθ)+m + (βθ)−m
by taking g = h⊕m into consideration (see (2.2.5) and (2.2.6) for (βθ)h and (βθ)±m). Then

we obtain the conclusion, if one has

(3.2.2) βθ = (β1)h + θ−1 · (β1)+m + θ · (β1)−m

because βθ = C−1
θ ·dCθ satisfies dβ

θ+(1/2)·[βθ∧βθ] = 0 for any θ ∈ R+, and thus the proof

of Proposition 2.2.4 and (3.2.2) allow us to conclude that fθ = π◦Cθ : (W, I) → (G/H,∇1)

is a para-pluriharmonic map for every θ ∈ R+. Hence, it suffices to prove (3.2.2). Direct

computation, together with Cθ = A−
θ · (B+

θ )
−1 = A+

θ · (B−
θ )

−1, gives us

(βθ, βθ) =
(
C−1

θ · dCθ, C−1
θ · dCθ

)

=
(
B+

θ · ηθ · (B+
θ )

−1 +B+
θ · d(B+

θ )
−1, B−

θ · τθ · (B−
θ )

−1 +B−
θ · d(B−

θ )
−1
)
.
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Therefore, the Fourier series βλ =
∑

k∈Z βkλ
k has actually the simple form:

(a) βλ = λ−1 · β−1 + β0 + λ · β+1

because the n-th and m-th Fourier coefficients of B+
λ · ηλ · (B+

λ )
−1 + B+

λ · d(B+
λ )

−1 and

B−
λ · τλ · (B−

λ )
−1 + B−

λ · d(B−
λ )

−1 are zero for all n ≤ −2 and 2 ≤ m, respectively. Let us

denote by (βj)
+ and (βj)

− the para-holomorphic component and the para-antiholomorphic

component of βj , respectively (i.e., (βj)
± := (1/2) · (βj ± tI(βj))) for j = ±1, and rewrite

the above (a) as

(a′) βλ = λ−1 · ((β−1)
+ + (β−1)

−) + β0 + λ · ((β+1)
+ + (β+1)

−).

Then, (a′) simplifies to

(a′′) βλ = λ−1 · (β−1)
+ + β0 + λ · (β+1)

−

because the −1st and +1st Fourier coefficients of B+
λ ·ηλ · (B+

λ )
−1+B+

λ ·d(B+
λ )

−1 and B−
λ ·

τλ · (B−
λ )

−1 +B−
λ · d(B−

λ )
−1 are para-holomorphic and para-antiholomorphic, respectively.

From (a′′) and βλ ∈ Λ̃gσ we see that (β1)h = β0 and (β1)m = (β−1)
+ + (β+1)

−. This

implies (β1)+m = (β−1)
+, (β1)−m = (β+1)

− and βλ = λ−1 · (β1)+m + (β1)h + λ · (β1)−m ; and

(3.2.2) follows. �

3.3. Pluriharmonic maps and the loop group method. We have explained the

relation between para-pluriharmonic maps and the loop group method in Subsection 3.2.

In this subsection, we will explain the relation between pluriharmonic maps and the loop

group method. The arguments below will be similar to those in Subsection 3.2.

3.3.1. In Subsection 3.2.1 we have learned that the extended framing F ′
θ of a para-

pluriharmonic map belongs to the almost split real form ΛGσ—that is, it satisfies νS(F
′
λ) =

F ′
λ for the involution νS of the first kind (cf. (3.1.2) for νS). In this subsection, we will

first confirm that the extended framing Fλ of a pluriharmonic map satisfies νC(Fλ) = Fλ

for the involution νC of the second kind defined below.

Let GC be a simply connected, simple, complex linear algebraic subgroup of SL(m,C),

let σ be a holomorphic involution of GC, and let ν be an antiholomorphic involution of

GC such that [σ, ν] = 0. Denote by HC, G and H , the subgroups defined in Subsection

2.2.3, respectively (cf. (2.2.14)). Now, let us define an antiholomorphic involution νC of

ΛGC

σ by

(3.3.1) νC(Aλ) := ν(A1/λ) for Aλ ∈ ΛGC

σ .

This involution νC is said to be of the second kind, and satisfies the following:

(3.3.2) νC(Λ
±GC

σ ) = Λ∓GC

σ , νC(Λ
±
∗ G

C

σ ) = Λ∓
∗ G

C

σ .

Let po be a base point in a simply connected complex manifold (M,J), and let Fλ be

the extended framing of a pluriharmonic map f = π ◦ F : (M,J) → (G/H,∇1) with
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F (po) = id and [α′
m ∧ α′

m] = 0. From (2.3.9) it follows that Fλ ∈ ΛGC
σ . In particular,

(2.3.10) implies that Fλ satisfies

(3.3.3) νC(Fλ) = Fλ.

3.3.2. Pluriharmonic potentials. Since Fλ(po) ≡ id we perform a Birkhoff decomposition

of the framing Fλ. Therefore we obtain a pair of mC-valued 1-forms ηλ and τλ on (M,J)

parameterized by λ ∈ S1. Here mC := Fix(gC,−dσ). We will see later that the pair

(ηλ, τλ) is a pluriharmonic potential (cf. Definition 3.3.1).

Since Fλ(po) ≡ id ∈ BC, we factorize the framing Fλ ∈ ΛGC

σ in the Birkhoff decompo-

sition:

Fλ = F−
λ · L+

λ = F+
λ · L−

λ , F±
λ ∈ Λ±

∗ G
C

σ , L±
λ ∈ Λ±GC

σ ,

on an open neighborhood U of M at po (cf. Theorem 3.1.2). Define ηλ and τλ by

ηλ := (F−
λ )−1 · dF−

λ , τλ := (F+
λ )−1 · dF+

λ ,

respectively. Then for any λ ∈ S1, both ηλ and τλ become mC-valued 1-forms on the com-

plex manifold (U, J). In addition, ηλ is holomorphic and τλ is antiholomorphic. Indeed,

F−1
λ · dFλ = αλ yields

αh + λ−1 · α′
m + λ · α′′

m = αλ = (L+
λ )

−1 · ((F−
λ )−1 · dF−

λ ) · L+
λ + (L+

θ )
−1 · dL+

θ

= (L−
λ )

−1 · ((F+
λ )−1 · dF+

λ ) · L−
λ + (L−

λ )
−1 · dL−

λ ,

and ηλ = λ−1 · Ad(L+
0 )α

′
m and τλ = λ · Ad(L−

0 )α
′′
m, where L±

λ =
∑

±k≥0L
±
k λ

k. Now, it

follows from (3.3.2) and (3.3.3) that νC(F
−
λ ) = F+

λ . This implies that ηλ is related with

τλ by the formula dνC(ηλ) = τλ. Consequently we obtain from the extended framing

Fλ of a pluriharmonic map the pair (ηλ, τλ) of an mC-valued holomorphic 1-form and an

mC-valued antiholomorphic 1-form on (U, J) satisfying dνC(ηλ) = τλ.

3.3.3. Let us introduce the following subspaces Λ−1,∞gCσ and Λ−∞,1g
C
σ of ΛgCσ , in order

to recall the notion of a pluriharmonic potential:

Λ−1,∞gCσ := {Xλ ∈ ΛgCσ |Xλ =
∑∞

i=−1Xiλ
i},

Λ−∞,1g
C
σ := {Yλ ∈ ΛgCσ | Yλ =

∑1
j=−∞ Yjλ

j}
(cf. (3.1.1) for ΛgCσ ). Let P ′ = P ′(gC) and P ′′ = P ′′(gC) denote the set of all Λ−1,∞gCσ -

valued holomorphic and Λ−∞,1g
C

σ -valued antiholomorphic 1-forms on a simply connected

complex manifold (M,J), respectively.

Definition 3.3.1. An element (ηλ, τλ) ∈ P ′ × P ′′ is called a pluriharmonic potential

(or a potential, for short) on (M,J), if it satisfies dνC(ηλ) = τλ (cf. (3.3.1) for νC).

In Subsection 3.3.2 one has obtained a pluriharmonic potential (ηλ, τλ) from the ex-

tended framing Fλ of a pluriharmonic map f = π ◦ F : (M,J) → (G/H,∇1) with

F (po) = id and [α′
m ∧ α′

m] = 0. Next we recall from [7] that one can obtain a plurihar-

monic map and its extended framing from a pluriharmonic potential:
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Proposition 3.3.2. Let (ηλ, τλ) = (ηλ, dνC(ηλ)) ∈ P ′(gC) × P ′′(gC) be any plurihar-

monic potential on the complex manifold (M,J). Then, the following steps provide an

S1-family {fλ}λ∈S1 of pluriharmonic maps:

(S1) Solve the two initial value problems: A−1
λ ·dAλ = ηλ, B

−1
λ ·dBλ = τλ with Aλ(po) ≡

id ≡ Bλ(po), where po is a base point in (M,J).

(S2) Factorize (Aλ, Bλ) ∈ ΛGC

σ × ΛGC

σ in the Iwasawa decomposition (cf. Theorem

3.1.1) : (Aλ, Bλ) = (Cλ, Cλ) · (B+
λ , B

−
λ ), where Cλ ∈ ΛGC

σ , B+
λ ∈ Λ+

∗ G
C

σ and

B−
λ ∈ Λ−GC

σ .

(S3) Take an open neighborhood V of M at po and a smooth map hC = hC(p) : V → HC

such that

(1) C ′
λ(p) ∈ G for all (p, λ) ∈ V × S1,

(2) C ′
λ(po) ≡ id, where C ′

λ := Cλ · hC.

(S4) Then, fλ := π ◦ C ′
λ : (V, J) → (G/H,∇1) becomes an S1-family of pluriharmonic

maps.

Proof. (S1), (S2): For the solutions Aλ and Bλ to (S1), we deduce that they satisfy

(3.3.4) νC(Aλ) = Bλ

in terms of dνC(ηλ) = τλ. Since Aλ(po) ≡ id ≡ Bλ(po) and (Aλ(po), Bλ(po)) belongs to a

suitable open subset of ΛGC
σ × ΛGC

σ , one can factorize (Aλ, Bλ) by means of (S2).

(S3): Let us assume that both (S1) and (S2) hold on an open neighborhood W of M

at po. We will confirm that there exist an open neighborhood V (⊂ W ) of M at po and

a smooth map hC = hC(p) : V → HC such that

(1) Cλ(p) · hC(p) ∈ G = Fix(GC, ν) for all (p, λ) ∈ V × S1;

(2) Cλ(po) · hC(po) ≡ id

—that is, we want to assert that (S3) holds. First, let us verify

Cλ(po) ≡ id .

By Aλ(po) ≡ id ≡ Bλ(po) we conclude Λ+
∗ G

C

σ ∋ B+
λ (po) = Cλ(po)

−1 = B−
λ (po) ∈ Λ−GC

σ ; so

that Cλ(po) ∈ (Λ+
∗ G

C

σ ∩ Λ−GC

σ ) = {id}, and Cλ(po) ≡ id. Next, we will deduce that

(3.3.5) (Cλ(q))
−1 · ν(Cλ(q)) ∈ HC for any point (q, λ) ∈ W × S1.

Since (3.3.4), (3.3.2) and Cλ = Aλ · (B+
λ )

−1 = Bλ · (B−
λ )

−1, we obtain

(Cλ)
−1 · νC(Cλ) =

(
Bλ · (B−

λ )
−1
)−1 · νC

(
Aλ · (B+

λ )
−1
)
= B−

λ · νC((B+
λ )

−1) ∈ Λ−GC

σ .

The above also leads to (Cλ)
−1 ·νC(Cλ) = νC

(
{(Cλ)

−1 ·νC(Cλ)}−1
)
∈ νC(Λ

−GC
σ ) = Λ+GC

σ .

Therefore we have (Cλ)
−1 · νC(Cλ) ∈ (Λ−GC

σ ∩ Λ+GC

σ ) = HC, and so (3.3.5) follows. It

remains to show that there exist an open neighborhood V of M at po and a smooth

map hC = hC(p) : V → HC satisfying the equations (1) and (2) above. Let UH and Oh

denote open neighborhoods of HC at id and of hC at 0 such that exp : Oh → UH is a
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diffeomorphism and ν(UH) ⊂ UH . Since (3.3.5) and (Cλ(po))
−1 · ν(Cλ(po)) = id ∈ UH ,

there exists an open neighborhood V (⊂ W ) of po inM such that (Cλ(p))
−1·ν(Cλ(p)) ∈ UH

for all p ∈ V . Hence,

(3.3.6) (Cλ(p))
−1 · ν(Cλ(p)) = expX(p) on V ,

where X = X(p) : V → Oh is a smooth map with X(po) = 0. This yields

exp dν(X(p)) = ν
(
(Cλ(p))

−1 · ν(Cλ(p))
)
= ν(Cλ(p))

−1 · (Cλ(p)) = exp(−X(p))

and dν(X(p)) = −X(p). Accordingly we conclude that (1) ν(Cλ(p)·hC(p)) = Cλ(p)·hC(p)

for all (p, λ) ∈ V × S1 and (2) Cλ(po) · hC(po) ≡ id, by setting hC(p) := exp((1/2) ·X(p))

(cf. (3.3.6)).

(S4): The arguments below will be similar to those of the proof of (S3) in Proposition

3.2.3. Define a g-valued 1-form βλ on (V, J) by βλ := (C ′
λ)

−1 · dC ′
λ, and express it as

βλ = (βλ)h + (βλ)m = (βλ)h + (βλ)′m + (βλ)′′m, where g = h⊕m (see (2.3.6) for (βλ)′m and

(βλ)′′m). Then, it suffices to verify (3.3.7):

(3.3.7) βλ = (β1)h + λ−1 · (β1)′m + λ · (β1)′′m.

Indeed, βλ = (C ′
λ)

−1 · dC ′
λ satisfies dβλ + (1/2) · [βλ ∧ βλ] = 0 for any λ ∈ S1, and so

Proposition 2.3.3 and (3.3.7) allow us to conclude that fλ = π ◦C ′
λ : (V, J) → (G/H,∇1)

is a pluriharmonic map for every λ ∈ S1. Direct computation, together with Cλ =

Aλ · (B+
λ )

−1 = Bλ · (B−
λ )

−1 and C ′
λ = Cλ · hC, gives us

(βλ, βλ) =
(
(C ′

λ)
−1 · dC ′

λ, (C ′
λ)

−1 · dC ′
λ

)

=
(
D+

λ · ηλ · (D+
λ )

−1 +D+
λ · d(D+

λ )
−1, D−

λ · τλ · (D−
λ )

−1 +D−
λ · d(D−

λ )
−1
)
,

where (D±
λ )

−1 := (B±
λ )

−1 · hC. It follows from hC ∈ HC that D±
λ ∈ Λ±GC

σ . Therefore, the

Fourier series βλ =
∑

k∈Z βkλ
k is actually a Laurent polynomial of the form

(a) βλ = λ−1 · β−1 + β0 + λ · β+1 = λ−1 · ((β−1)
′ + (β−1)

′′) + β0 + λ · ((β+1)
′ + (β+1)

′′)

because the n-th and m-th Fourier coefficients of D+
λ · ηλ · (D+

λ )
−1 + D+

λ · d(D+
λ )

−1 and

D−
λ ·τλ ·(D−

λ )
−1+D−

λ ·d(D−
λ )

−1 are zero for all n ≤ −2 and 2 ≤ m, respectively. Moreover,

(a) simplifies to

(a′) βλ = λ−1 · (β−1)
′ + β0 + λ · (β+1)

′′

because the −1st and +1st Fourier coefficients of D+
λ · ηλ · (D+

λ )
−1 + D+

λ · d(D+
λ )

−1 and

D−
λ · τλ · (D−

λ )
−1 +D−

λ · d(D−
λ )

−1 are holomorphic and antiholomorphic, respectively. In

view of (a′) and βλ ∈ ΛgCσ it turns out that (β1)h = β0 and (β1)m = (β−1)
′ + (β+1)

′′.

Therefore (3.3.7) follows from (β1)′m = (β−1)
′ and (β1)′′m = (β+1)

′′. �
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4. Relation between pluriharmonic maps and para-pluriharmonic maps

In this section, by utilizing the loop group method, we interrelate pluriharmonic maps

with para-pluriharmonic maps. We consider two real subspaces A2n and B2n of C2n

(cf. Subsection 4.1), and two symmetric closed subspaces G1/H1 and G2/H2 of GC/HC

(cf. Subsection 4.2), and we investigate the relation between certain pluriharmonic maps

f1 : A
2n → G1/H1 and certain para-pluriharmonic maps f2 : B

2n → G2/H2 (cf. Subsection

4.3).

f1 : A
2n −→ G1/H1, pluriharmonic

∩ ∩
C2n GC/HC

∪ ∪
f2 : B

2n −→ G2/H2, para-pluriharmonic

4.1. The real subspaces A2n and B2n of C2n. Let A2n and B2n be the real subspaces

of C2n given by

A
2n : = {(z1, · · · , zn, w1, · · · , wn) ∈ C

n × C
n | z̄a = wa for all 1 ≤ a ≤ n}

= {(z, w) ∈ C
n × C

n |w = z̄},
B
2n : = {(z1, · · · , zn, w1, · · · , wn) ∈ C

n × C
n | za = z̄a and wa = w̄a for all 1 ≤ a ≤ n}

= R
n × R

n.

Let (x1, · · · , xn, y1, · · · , yn) denote the global coordinate system on B2n defined by xa :=

Re(za) and ya := Re(wa) for 1 ≤ a ≤ n. Define smooth (1, 1)-tensor fields J on A2n and

I on B2n by

J
( ∂

∂za

)
:= i

∂

∂za
, J
( ∂

∂z̄a

)
:= −i

∂

∂z̄a
and I

( ∂

∂xa

)
:=

∂

∂xa
, I
( ∂

∂ya

)
:= − ∂

∂ya
.

Then (A2n, J) and (B2n, I) are simply connected complex and para-complex manifolds,

respectively. Henceforth, for the natural coordinate systems (z1, · · · , zn, z̄1, · · · , z̄n) on

A2n, (x1, · · · , xn, y1, · · · , yn) on B2n and (z1, · · · , zn, w1, · · · , wn) on C2n, we will use the

notation (z, z̄), (x,y) and (z,w), respectively.

4.2. The symmetric subspaces G1/H1 and G2/H2 of GC/HC. In this subsection, we

introduce two symmetric subspaces G1/H1 and G2/H2 of GC/HC. Let GC be a simply

connected, simple, complex linear algebraic subgroup of SL(m,C), let σ be a holomorphic

involution ofGC, and let ν1 and ν2 be antiholomorphic involutions ofGC satisfying [σ, ν1] =

[σ, ν2] = [ν1, ν2] = 0. Then we define HC, Gi, Hi, πi (i = 1, 2) and g2 as follows:

(4.2.1) HC := Fix(GC, σ),

(4.2.2) Gi := Fix(GC, νi),

(4.2.3) Hi := Fix(Gi, σ) = Fix(HC, νi),

(4.2.4) πi: the projection from Gi onto Gi/Hi,

(4.2.5) g2 := LieG2.
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Clearly, (GC/HC, σ) is an affine symmetric space, and both G1/H1 and G2/H2 are sym-

metric closed subspaces of (GC/HC, σ) (ref. [18, p. 227] for the definition of symmetric

closed subspace). In particular, (Gi/Hi, σ|Gi
), i = 1, 2, are affine symmetric spaces.

4.3. The main result. With the notation in Subsections 4.1 and 4.2 we assert the fol-

lowing (see (3.3.1) for (ν1)C):

Theorem 4.3.1. Let (ηθ, τθ) = (ηθ(x), τθ(y)) ∈ P̃+(g2)×P̃−(g2) be a real analytic, para-

pluriharmonic potential on (B2n, I), and let (f2)θ = π2 ◦ Cθ(x,y) : (W, I) → (G2/H2,∇1)

denote the R+-family of para-pluriharmonic maps constructed from (ηθ, τθ) in the neighbor-

hood W of B2n at (0, 0) in Proposition 3.2.3. Suppose that (ηθ, τθ) satisfies the morphing

condition

(M) d(ν1)C(ηλ(z)) = τλ(z̄).

Then, there exist an open neighborhood V of A2n at (0, 0) and a smooth map hC(z, z̄) :

V → HC such that

(1) C ′
λ(z, z̄) ∈ G1 for all (z, z̄;λ) ∈ V × S1;

(2) (f1)λ := π1 ◦ C ′
λ(z, z̄) : (V, J) → (G1/H1,∇1) is an S1-family of pluriharmonic

maps with C ′
λ(0, 0) ≡ id, where C ′

λ(z, z̄) := Cλ(z, z̄) · hC(z, z̄).

Remark 4.3.2. (i) Since both ηθ(x) and τθ(y) are analytic on B
2n and B

2n is a totally

real submanifold of C2n, one can uniquely extend them as holomorphic 1-forms ηθ(z) and

τθ(w) to an open subset W̃ of C2n such that B2n ⊂ W̃ . For this reason, the notation ηλ(z)

and τλ(z̄) in Theorem 4.3.1 makes sense.

(ii) Similarly, one can verify that the notation Cλ(z, z̄), used in Theorem 4.3.1, makes

sense.

Proof of Theorem 4.3.1. Let (Aλ(x), Bλ(y)) = (Cλ(x,y), Cλ(x,y)) · (B+
λ (x,y), B

−
λ (x,y))

denote the Iwasawa decomposition in (S2) of Proposition 3.2.3. Note that Aλ(x) and

Bλ(y) satisfy

(A−1
λ · dAλ)(x) = ηλ(x), (B−1

λ · dBλ)(y) = τλ(y), Aλ(0) ≡ id ≡ Bλ(0).

Since (ηλ(x), τλ(y)) is analytic, we deduce that Aλ(x), Bλ(y), Cλ(x,y) and B±
λ (x,y) are

analytic with respect to the variables x and y. Therefore these matrices have unique

analytic extensions Aλ(z), Bλ(w), Cλ(z,w) and B±
λ (z,w) to an open neighborhood W̃

of C2n at (0, 0), respectively, because B2n is a totally real submanifold of C2n. Then on

the neighborhood W̃ ∩ A2n of A2n at (0, 0), we confirm that Aλ(z) and Bλ(z̄) satisfy

(A−1
λ · dAλ)(z) = ηλ(z), (B

−1
λ · dBλ)(z̄) = τλ(z̄) and Aλ(0) ≡ id ≡ Bλ(0); and further-

more, (Aλ(z), Bλ(z̄)) = (Cλ(z, z̄), Cλ(z, z̄)) · (B+
λ (z, z̄), B

−
λ (z, z̄)) becomes the Iwasawa

decomposition in (S2) of Proposition 3.3.2, where we remark that (ηλ(z), τλ(z̄)) satisfy

(ηλ(z), τλ(z̄)) ∈ P ′(gC) × P ′′(gC) and d(ν1)C(ηλ(z)) = τλ(z̄). Consequently, the proof of
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Proposition 3.3.2 assures that there exist an open neighborhood V ⊂ W̃ ∩ A
2n of A2n at

(0, 0) and a smooth map hC(z, z̄) : V → HC satisfying the conditions (1) and (2). �

5. Appendix

We will interrelate concretely some pluriharmonic maps with para-pluriharmonic maps

by means of Theorem 4.3.1. In Subsection 5.2 we will focus on harmonic maps and Lorentz

harmonic maps. This will yield a relation between CMC-surfaces in R3 and CMC-surface

in R3
1.

5.1. A relation between certain pluriharmonic maps and certain para-pluriharmonic

maps.

5.1.1. f1 : A
4 → Gr2,4(C) ⇐⇒ f2 : B

4 → Gr2,4(C
′). Following the main result of this pa-

per, we construct in this subsection a pluriharmonic map f1(z
1, z2, z̄1, z̄2) : A4 → Gr2,4(C)

and a para-pluriharmonic map f2(x
1, x2, y1, y2) : B4 → Gr2,4(C

′) from one potential

(5.1.10) below, where Gr2,4(C) (resp. Gr2,4(C
′)) denotes a complex (resp. para-complex)

Grassmann manifold. In this subsection, we will use the following notation:

(5.1.1) GC = SL(4,C),

(5.1.2) σ(A) := I2,2 · A · I2,2 for A ∈ GC, where I2,2 := diag(−1,−1, 1, 1),

(5.1.3) ν1(A) :=
t(A)−1 for A ∈ GC,

(5.1.4) ν2(A) := A for A ∈ GC,

(5.1.5) GC/HC = SL(4,C)/S(GL(2,C)×GL(2,C)),

(5.1.6) G1/H1 = SU(4)/S(U(2)× U(2)) ≃ Gr2,4(C),

(5.1.7) G2/H2 = SL(4,R)/S(GL(2,R)×GL(2,R)) ≃ Gr2,4(C
′),

(5.1.8) πi: the projection from Gi onto Gi/Hi (i = 1, 2),

(5.1.9) g2 := LieG2 = sl(4,R).

First, we define a Λ̃−1,∞(g2)σ-valued, real analytic para-holomorphic 1-form ηθ(x
1, x2)

on (B4, I) by

(5.1.10) ηθ(x
1, x2) := θ−1




0 0 0 1

0 0 0 0

0 0 0 0

−1 0 0 0


 dx1 + θ−1




0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0


 dx2.

Taking the morphing condition (M) of Theorem 4.3.1 into consideration, we define a

Λ̃−∞,1(g2)σ-valued, real analytic para-antiholomorphic 1-form τθ(y
1, y2) on (B4, I) by set-

ting

τθ(y
1, y2) := θ




0 0 0 1

0 0 0 0

0 0 0 0

−1 0 0 0


 dy1 + θ




0 0 0 0

0 0 −1 0

0 −1 0 0

0 0 0 0


 dy2.
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Hence we obtain the real analytic, para-pluriharmonic potential (ηθ(x
1, x2), τθ(y

1, y2)).

From Proposition 3.2.3 we obtain a para-pluriharmonic map f2 : (B4, I) → G2/H2 ≃
Gr2,4(C

′).

(S1): Solve the two initial value problems:

(A−
θ )

−1 · dA−
θ = ηθ, (A+

θ )
−1 · dA+

θ = τθ, A±
θ (0, 0) ≡ id .

The solutions are

A−
θ (x

1, x2) =




cos(x1/θ) 0 0 sin(x1/θ)

0 cosh(x2/θ) sinh(x2/θ) 0

0 sinh(x2/θ) cosh(x2/θ) 0

− sin(x1/θ) 0 0 cos(x1/θ)


 ,

A+
θ (y

1, y2) =




cos(θy1) 0 0 sin(θy1)

0 cosh(−θy2) sinh(−θy2) 0

0 sinh(−θy2) cosh(−θy2) 0

− sin(θy1) 0 0 cos(θy1)


 .

(S2): Factorize (A−
θ , A

+
θ ) ∈ Λ̃−

∗ (G2)σ × Λ̃+
∗ (G2)σ in the Iwasawa decomposition Theorem

3.1.5:

(A−
θ , A

+
θ ) = (Cθ, Cθ) · (B+

θ , B
−
θ ),

where Cθ ∈ Λ̃(G2)σ, B
+
θ ∈ Λ̃+

∗ (G2)σ and B−
θ ∈ Λ̃−(G2)σ. Here, B±

θ and Cθ are given by

B±
θ = (A±

θ )
−1 and

Cθ(x
1, x2, y1, y2)

=




cos(x1/θ + θy1) 0 0 sin(x1/θ + θy1)

0 cosh(x2/θ − θy2) sinh(x2/θ − θy2) 0

0 sinh(x2/θ − θy2) cosh(x2/θ − θy2) 0

− sin(x1/θ + θy1) 0 0 cos(x1/θ + θy1)


 .

(S3): The last step of Proposition 3.2.3 assures

(f2)θ := π2 ◦ Cθ(x
1, x2, y1, y2) : (B4, I) → Gr2,4(C

′) is para-pluriharmonic

for every θ ∈ R+.

We will construct a pluriharmonic map f1 : (A4, J) → G1/H1 ≃ Gr2,4(C) from

Cθ(x
1, x2, y1, y2) given above. Substituting λ, zi and z̄i for θ, xi and yi, respectively

(i = 1, 2) we obtain

Cλ(z
1, z2, z̄1, z̄2)

=




cos(z1/λ+ λz̄1) 0 0 sin(z1/λ+ λz̄1)

0 cosh(z2/λ− λz̄2) sinh(z2/λ− λz̄2) 0

0 sinh(z2/λ− λz̄2) cosh(z2/λ− λz̄2) 0

− sin(z1/λ+ λz̄1) 0 0 cos(z1/λ+ λz̄1)






22 N. BOUMUKI AND J. F. DORFMEISTER

for Cθ(x
1, x2, y1, y2). Then Cλ(z

1, z2, z̄1, z̄2) ∈ G1 = SU(4) for all (z1, z2, z̄1, z̄2;λ) ∈
A4 × S1 because z1/λ + λz̄1 is a real number and z2/λ − λz̄2 is a purely imaginary

number. Hence, we conclude that

(f1)λ := π1 ◦ Cλ(z
1, z2, z̄1, z̄2) : (A4, J) → Gr2,4(C) is a pluriharmonic map

for every λ ∈ S1. Consequently, we have constructed a pluriharmonic map f1 : A4 →
Gr2,4(C) and a para-pluriharmonic map f2 : B

4 → Gr2,4(C
′) from the potential (5.1.10).

(f1)λ = π1 ◦ Cλ(z
1, z2, z̄1, z̄2) : (A4, J) → Gr2,4(C) is pluriharmonic

m
(f2)θ = π2 ◦ Cθ(x

1, x2, y1, y2) : (B4, I) → Gr2,4(C
′) is para-pluriharmonic

5.1.2. f1 : A4 → S4 ⇐⇒ f2 : B
4 → H4. In this subsection, we will construct a plurihar-

monic map f1(z
1, z2, z̄1, z̄2) : A4 → S4 and a para-pluriharmonic map f2(x

1, x2, y1, y2) :

B
4 → H4 by arguments similar to those in Subsection 5.1.1. Here S4 and H4 denote a

sphere and a upper half space of dimension 4, respectively. Henceforth, we will use the

following notation:

(5.1.11) GC = Sp(2,C) (see [14, p. 445] for Sp(2,C)),

(5.1.12) σ(A) := K1,1 · A ·K1,1 for A ∈ GC, where K1,1 := diag(−1, 1,−1, 1),

(5.1.13) ν1(A) :=
t(A)−1 for A ∈ GC,

(5.1.14) ν2(A) := K1,1 · t(A)−1 ·K1,1 for A ∈ GC,

(5.1.15) GC/HC = Sp(2,C)/(Sp(1,C)× Sp(1,C)),

(5.1.16) G1/H1 = Sp(2)/(Sp(1)× Sp(1)) ≃ S4,

(5.1.17) G2/H2 = Sp(1, 1)/(Sp(1)× Sp(1)) ≃ H4,

(5.1.18) πi: the projection from Gi onto Gi/Hi (i = 1, 2),

(5.1.19) g2 := LieG2 = sp(1, 1).

Define a Λ̃−1,∞(g2)σ-valued para-holomorphic 1-form ηθ(x
1, x2) on (B4, I) by

ηθ(x
1, x2) := θ−1




0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0


 dx1 + θ




0 −1 0 0

−1 0 0 0

0 0 0 1

0 0 1 0


 dx2.

In view of the morphing condition (M), it is natural that one defines a Λ̃−∞,1(g2)σ-valued

para-antiholomorphic 1-form τθ(y
1, y2) as follows:

τθ(y
1, y2) := θ




0 −1 0 0

−1 0 0 0

0 0 0 1

0 0 1 0


 dy1 + θ−1




0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0


 dy2.

Let us solve the two initial value problems: (A−
θ )

−1 ·dA−
θ = ηθ and (A+

θ )
−1 ·dA+

θ = τθ with

A±
θ (0, 0) ≡ id, and factorize (A−

θ , A
+
θ ) ∈ Λ̃(G2)σ × Λ̃(G2)σ in the Iwasawa decomposition
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(cf. Theorem 3.1.5): (A−
θ , A

+
θ ) = (Cθ, Cθ) · (B+

θ , B
−
θ ), where Cθ ∈ Λ̃(G2)σ, B

+
θ ∈ Λ̃+

∗ (G2)σ
and B−

θ ∈ Λ̃−(G2)σ. Then, it follows that

A−
θ (x

1, x2) =




cosh(x
1−θ2x2

θ
) sinh(x

1−θ2x2

θ
) 0 0

sinh(x
1−θ2x2

θ
) cosh(x

1−θ2x2

θ
) 0 0

0 0 cosh(x
1−θ2x2

θ
) − sinh(x

1−θ2x2

θ
)

0 0 − sinh(x
1−θ2x2

θ
) cosh(x

1−θ2x2

θ
)


 ,

A+
θ (y

1, y2) =




cosh( θ
2y1−y2

θ
) − sinh( θ

2y1−y2

θ
) 0 0

− sinh( θ
2y1−y2

θ
) cosh( θ

2y1−y2

θ
) 0 0

0 0 cosh( θ
2y1−y2

θ
) sinh( θ

2y1−y2

θ
)

0 0 sinh( θ
2y1−y2

θ
) cosh( θ

2y1−y2

θ
)


 ,

B+
θ (x

2, y1)

=




cosh(θ(x2 − y1)) − sinh(θ(x2 − y1)) 0 0

− sinh(θ(x2 − y1)) cosh(θ(x2 − y1)) 0 0

0 0 cosh(θ(x2 − y1)) sinh(θ(x2 − y1))

0 0 sinh(θ(x2 − y1)) cosh(θ(x2 − y1))


 ,

B−
θ (x

1, y2) =




cosh(x
1−y2

θ
) − sinh(x

1−y2

θ
) 0 0

− sinh(x
1−y2

θ
) cosh(x

1−y2

θ
) 0 0

0 0 cosh(x
1−y2

θ
) sinh(x

1−y2

θ
)

0 0 sinh(x
1−y2

θ
) cosh(x

1−y2

θ
)


 ,

Cθ(x
1, x2, y1, y2) =




cosh(x
1−θ2y1

θ
) sinh(x

1−θ2y1

θ
) 0 0

sinh(x
1−θ2y1

θ
) cosh(x

1−θ2y1

θ
) 0 0

0 0 cosh(x
1−θ2y1

θ
) − sinh(x

1−θ2y1

θ
)

0 0 − sinh(x
1−θ2y1

θ
) cosh(x

1−θ2y1

θ
)


 .

Substitute λ, zi and z̄i for θ, xi and yi (i = 1, 2), respectively:

Cλ(z
1, z2, z̄1, z̄2) =




cosh( z
1−λ2z̄1

λ
) sinh( z

1−λ2z̄1

λ
) 0 0

sinh( z
1−λ2z̄1

λ
) cosh( z

1−λ2z̄1

λ
) 0 0

0 0 cosh( z
1−λ2z̄1

λ
) − sinh( z

1−λ2z̄1

λ
)

0 0 − sinh( z
1−λ2z̄1

λ
) cosh( z

1−λ2z̄1

λ
)




for Cθ(x
1, x2, y1, y2). Since (z1 − λ2z̄1)/λ is a purely imaginary number, one sees that

Cλ(z
1, z2, z̄1, z̄2) ∈ G1 = Sp(2) for all (z1, z2, z̄1, z̄2;λ) ∈ A4 × S1. Accordingly, we obtain

a pluriharmonic map f1 and a para-pluriharmonic map f2,

(f1)λ = π1 ◦ Cλ(z
1, z2, z̄1, z̄2) : (A4, J) −→ G1/H1 ≃ S4, λ ∈ S1,

(f2)θ = π2 ◦ Cθ(x
1, x2, y1, y2) : (B4, I) −→ G2/H2 ≃ H4, θ ∈ R+

(ref. Subsection 5.1.1).
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(f1)λ = π1 ◦ Cλ(z
1, z2, z̄1, z̄2) : (A4, J) → S4 is pluriharmonic

m
(f2)θ = π2 ◦ Cθ(x

1, x2, y1, y2) : (B4, I) → H4 is para-pluriharmonic

5.2. Harmonic maps, Lorentz harmonic maps and CMC-surfaces. In this sub-

section we will interrelate some harmonic maps f1(z, z̄) : A2 → G1/H1 with Lorentz

harmonic maps f2(x, y) : B
2 → G2/H2 by means of Theorem 4.3.1; and in addition, we

will interrelate CMC-surfaces with other CMC-surfaces in R3 or R3
1, by use of f1(z, z̄) and

f2(x, y). More precisely, we interrelate a cylinder in R
3 with a hyperbolic cylinder in R

3
1

(cf. Subsection 5.2.1), a two sheeted hyperboloid in R3
1 with a one sheeted hyperboloid in

R
3
1 (cf. Subsection 5.2.2), a sphere in R

3 with a one sheeted hyperboloid in R
3
1 (cf. Sub-

section 5.2.3), a Smyth surface in R3 with a timelike Smyth surface in R3
1 (cf. Subsection

5.2.4), and a Delaunay surface in R
3 with a K-surface of revolution in R

3 (cf. Subsection

5.2.5).

5.2.1. Cylinder in R3 ⇔ Hyperbolic cylinder in R3
1. In this subsection we will use the

following notation:

(5.2.1) GC = SL(2,C),

(5.2.2) σ(A) := I1,1 · A · I1,1 for A ∈ GC, where I1,1 := diag(−1, 1),

(5.2.3) ν1(A) :=
t(A)−1 for A ∈ GC,

(5.2.4) ν2(A) := A for A ∈ GC,

(5.2.5) GC/HC = SL(2,C)/S(GL(1,C)×GL(1,C)),

(5.2.6) G1/H1 = SU(2)/S(U(1)× U(1)) ≃ S2,

(5.2.7) G2/H2 = SL(2,R)/S(GL(1,R)×GL(1,R)) ≃ S2
1 ,

(5.2.8) πi: the projection from Gi onto Gi/Hi (i = 1, 2),

(5.2.9) g2 := LieG2 = sl(2,R).

We will construct a harmonic map f1 : (A2, J) → S2 and a Lorentz harmonic map

f2 : (B2, I) → S2
1 by means of Theorem 4.3.1; and moreover, a cylinder in R3 and a

hyperbolic cylinder in R3
1 from f1 and f2, respectively.

In the first place, we define a Λ̃−1,∞(g2)σ-valued, real analytic para-holomorphic 1-form

ηθ(x) on (B2, I) by

(5.2.10) ηθ(x) := θ−1

(
0 1

1 0

)
dx.

In the second place, we define a Λ̃−∞,1(g2)σ-valued para-antiholomorphic 1-form τθ(y) on

(B2, I) by taking the morphing condition (M) in Theorem 4.3.1 into consideration, i.e.,

τθ(y) := θ

(
0 −1

−1 0

)
dy.
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In the third place, let us solve the two initial value problems: A−1
θ ·dAθ = ηθ(x), B

−1
θ ·dBθ =

τθ(y) and Aθ(0) ≡ id ≡ Bθ(0). In this case, one can obtain

Aθ(x) =

(
cosh(θ−1x) sinh(θ−1x)

sinh(θ−1x) cosh(θ−1x)

)
, Bθ(y) =

(
cosh(−θy) sinh(−θy)

sinh(−θy) cosh(−θy)

)

and the Iwasawa decomposition: (Aθ(x), Bθ(y)) = (Cθ(x, y), Cθ(x, y))·(B+
θ (x, y), B

−
θ (x, y)),

where B+
θ (x, y) := Bθ(y)

−1 ∈ Λ̃+
∗ (G2)σ and B−

θ (x, y) := Aθ(x)
−1 ∈ Λ̃−

∗ (G2)σ. Here

Cθ(x, y) is given as follows:

(5.2.11) Cθ(x, y) =

(
cosh(θ−1x− θy) sinh(θ−1x− θy)

sinh(θ−1x− θy) cosh(θ−1x− θy)

)
.

This Cθ(x, y) provides us with an R+-family of Lorentz harmonic maps

(f2)θ = π2 ◦ Cθ(x, y) : (B
2, I) −→ G2/H2 ≃ S2

1 , θ ∈ R+

(cf. Proposition 3.2.3). In the fourth place, we substitute λ, z and z̄ for θ, x and y,

respectively:

(5.2.12) Cλ(z, z̄) =

(
cosh(λ−1z − λz̄) sinh(λ−1z − λz̄)

sinh(λ−1z − λz̄) cosh(λ−1z − λz̄)

)

for Cθ(x, y). Remark that Cλ(z, z̄) ∈ G1 = SU(2) for all (z, z̄;λ) ∈ A2 × S1 because

(λ−1z−λz̄) is a purely imaginary number. As a consequence, one can construct a harmonic

map f1 and a Lorentz harmonic map f2,

(f1)λ = π1 ◦ Cλ(z, z̄) : (A
2, J) −→ G1/H1 ≃ S2, λ ∈ S1,

(f2)θ = π2 ◦ Cθ(x, y) : (B
2, I) −→ G2/H2 ≃ S2

1 , θ ∈ R+,

from the potential (5.2.10) ηθ(x).

(f1)λ = π1 ◦ Cλ(z, z̄) : (A
2, J) → S2 is harmonic

m
(f2)θ = π2 ◦ Cθ(x, y) : (B

2, I) → S2
1 is Lorentz harmonic

Here Cλ(z, z̄) and Cθ(x, y) are given by (5.2.12) and (5.2.11), respectively.

Note that we have constructed the extended framing Cλ(z, z̄) : A
2 → S2 of a harmonic

map and the extended framing Cθ(x, y) : B
2 → S2

1 of a Lorentz harmonic map. For this

reason, the Sym-Bobenko formula will enable us to obtain a CMC-surface φ1(z, z̄) : A
2 →

R3 and a timelike CMC-surface φ2(x, y) : B
2 → R3

1 from them.
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For Cλ(z, z̄), the Sym-Bobenko formula in [11, p. 30] yields

φ1(z, z̄) : = −
{
i · λ · ∂Cλ

∂λ
· C−1

λ +
1

2
· Ad(Cλ) ·

(
i 0

0 −i

)}∣∣∣∣
λ=1

=
−i

2

(
cosh 2(z − z̄) −2(z + z̄)− sinh 2(z − z̄)

−2(z + z̄) + sinh 2(z − z̄) − cosh 2(z − z̄)

)

≃ (−2(z + z̄), i · sinh 2(z − z̄),− cosh 2(z − z̄)).

This CMC-surface φ1(z, z̄) : A2 → R3 is a cylinder. For Cθ(x, y), the Sym-Bobenko

formula in [9]1 is given as follows:

φ2(x, y) : = −2

{
−θ · ∂Cθ

∂θ
· C−1

θ +
1

2
· Ad(Cθ) ·

(
−1 0

0 1

)}∣∣∣∣
θ=1

=

(
cosh 2(x− y) −2(x+ y)− sinh 2(x− y)

−2(x+ y) + sinh 2(x− y) − cosh 2(x− y)

)

≃ (sinh 2(x− y),−2(x+ y),− cosh 2(x− y)).

This timelike CMC-surface φ2(x, y) : B
2 → R3

1 is a hyperbolic cylinder, because−(sinh 2(x−
y))2 + (−2(x + y))2 + (− cosh 2(x − y))2 = 4(x + y)2 + 1 (see Section 1.1 in [9] for the

metric on R3
1).

CMC-surface in R3: Cylinder

φ1(z, z̄) = (−2(z+ z̄), i · sinh 2(z− z̄),− cosh 2(z− z̄))

m
Timelike CMC-surface in R3

1: Hyperbolic cylinder

φ2(x, y) = (sinh 2(x− y),−2(x+ y),− cosh 2(x− y))

5.2.2. Two sheeted hyperboloid in R3
1 ⇔ One sheeted hyperboloid in R3

1. In this subsection

we will use the following notation:

(5.2.13) GC: the same notation (5.2.1) as in Subsection 5.2.1,

(5.2.14) σ: the same notation (5.2.2) as in Subsection 5.2.1,

(5.2.15) ν1(A) := I1,1 · t(A)−1 · I1,1 for A ∈ GC,

(5.2.16) ν2(A) := I1,1 · A · I1,1 for A ∈ GC,

(5.2.17) GC/HC: the same notation (5.2.5) as in Subsection 5.2.1,

(5.2.18) G1/H1 = SU(1, 1)/S(U(1)× U(1)) ≃ H2,

(5.2.19) G2/H2 = SL∗(2,R)/S(GL(1,R)×GL(1,R)) ≃ S2
1 ,

(5.2.20) πi: the projection from Gi onto Gi/Hi (i = 1, 2),

(5.2.21) g2 := LieG2 = sl∗(2,R).

1 We must change (∂Φ/∂t) into −(∂Φ/∂t) in the Sym-Bobenko formula [9, Proposition 5.1] because

the parameter λ in this paper corresponds to the parameter λ−1 in [9].
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where the above notation SL∗(2,R) and sl∗(2,R) are the same as those in [17].

The arguments below are similar to those in Subsection 5.2.1. Define a Λ̃−1,∞(g2)σ-

valued analytic para-holomorphic 1-form ηθ(x) on (B2, I) by

(5.2.22) ηθ(x) := θ−1

(
0 i

0 0

)
dx.

We want τθ(y) ∈ P̃−(g2) to satisfy the morphing condition (M) in Theorem 4.3.1; and

therefore we define τθ(y) as follows:

τθ(y) := θ

(
0 0

−i 0

)
dy.

Solve the two initial value problems: A−1
θ · dAθ = ηθ(x), B

−1
θ · dBθ = τθ(y) and Aθ(0) ≡

id ≡ Bθ(0). Then one has

Aθ(x) =

(
1 iθ−1x

0 1

)
, Bθ(y) =

(
1 0

−iθy 1

)
.

Let us factorize (Aθ, Bθ) ∈ Λ̃(G2)σ × Λ̃(G2)σ in the Iwasawa decomposition around (0, 0):

(Aθ, Bθ) = (Cθ, Cθ) · (B+
θ , B

−
θ ), Cθ ∈ Λ̃(G2)σ and B±

θ ∈ Λ̃±(G2)σ (cf. Theorem 3.1.5).

Here B±
θ and Cθ are given as follows:

B+
θ (x, y) =

1√
1− xy

(
1 0

iθy 1− xy

)
, B−

θ (x, y) =
1√

1− xy

(
1− xy −iθ−1x

0 1

)
,

(5.2.23) Cθ(x, y) =
1√

1− xy

(
1 iθ−1x

−iθy 1

)
.

From Cθ(x, y) one obtains an R+-family of Lorentz harmonic maps

(f2)θ = π2 ◦ Cθ(x, y) : (W, I) −→ G2/H2 ≃ S2
1 ,

where W := {(x, y) ∈ B2 | xy 6= 1}. Substituting λ, z and z̄ for θ, x and y, respectively,

we have

(5.2.24) Cλ(z, z̄) =
1√

1− |z|2

(
1 iλ−1z

−iλz̄ 1

)

for Cθ(x, y). It is obvious that Cλ(z, z̄) ∈ G1 = SU(1, 1) for all (z, z̄;λ) ∈ V × S1, where

V := A2 \S1. Consequently, one can get a harmonic map f1(z, z̄) and a Lorentz harmonic

map f2(x, y),

(f1)λ = π1 ◦ Cλ(z, z̄) : (V, J) −→ G1/H1 ≃ H2, λ ∈ S1,

(f2)θ = π2 ◦ Cθ(x, y) : (W, I) −→ G2/H2 ≃ S2
1 , θ ∈ R+,

from the potential (5.2.22).
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(f1)λ = π1 ◦ Cλ(z, z̄) : (V, J) → H2 is harmonic

m
(f2)θ = π2 ◦ Cθ(x, y) : (W, I) → S2

1 is Lorentz harmonic

Here Cλ(z, z̄) and Cθ(x, y) are given by (5.2.24) and (5.2.23), respectively; and V = A2\S1

and W = {(x, y) ∈ B
2 | xy 6= 1}.

Now, let us obtain a spacelike CMC-surface φ1(z, z̄) : V → R3
1 and a timelike CMC-

surface φ2(x, y) : W → R3
1 from the above f1(z, z̄) and f2(x, y), respectively.

On the one hand, the Sym-Bobenko formula in [4], together with (5.2.24), gives us

φ1(z, z̄) : = −
{
i · λ · ∂Cλ

∂λ
· C−1

λ +
1

2
·Ad(Cλ) ·

(
i 0

0 −i

)}∣∣∣∣
λ=1

=

(
−i(1 + 3|z|2)/2(1− |z|2) −2z/(1 − |z|2)

−2z̄/(1− |z|2) i(1 + 3|z|2)/2(1− |z|2)

)
.

Thus we have a spacelike CMC-surface in R3
1,

φ1 : V −→ R
3
1, (z, z̄) 7→

(
− z + z̄

1− |z|2 ,
i(z − z̄)

1− |z|2 ,−
1 + 3|z|2
2(1− |z|2)

)

(cf. Subsection 3.2.1 in [4]). This φ1(z, z̄) is a two sheeted hyperboloid centered at

(0, 0, 1/2) because

(
− z + z̄

1− |z|2
)2

+
( i(z − z̄)

1− |z|2
)2

−
(
− 1 + 3|z|2
2(1− |z|2) −

1

2

)2
= −1

(see Subsection 3.2.1 in [4] for the metric on R3
1). One the other hand, the Sym-Bobenko

formula in [17], combined with (5.2.23), gives us

φ2(x, y) := −1

2

{
θ · ∂Cθ

∂θ
· C−1

θ +
1

2
·Ad(Cθ) ·

(
1 0

0 −1

)}∣∣∣∣
θ=1

=

(
−(1 + 3xy)/4(1− xy) ix/(1− xy)

iy/(1− xy) (1 + 3xy)/4(1− xy)

)

(ref. Proof of Corollary 3.4 in [17]). Then it turns out that

φ2 : W −→ R3
1, (x, y) 7→

(
− x+ y

1− xy
,− x− y

1− xy
,− 1 + 3xy

2(1− xy)

)

(cf. Subsection 3.1 in [17]). This φ2(x, y) is a one sheeted hyperboloid centered at

(0, 0, 1/2). Indeed, we deduce

(
− x+ y

1− xy

)2
−
(
− x− y

1 − xy

)2
−
(
− 1 + 3xy

2(1− xy)
− 1

2

)2
= −1

by a direct computation (see Remark 3.2 in [17] for the metric on R3
1).
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Spacelike CMC-surface in R3
1: Two sheeted hyperboloid

φ1(z, z̄) =
(
− z+z̄

1−|z|2
, i(z−z̄)
1−|z|2

,− 1+3|z|2

2(1−|z|2)

)

m
Timelike CMC-surface in R3

1: One sheeted hyperboloid

φ2(x, y) =
(
− x+y

1−xy
,− x−y

1−xy
,− 1+3xy

2(1−xy)

)

5.2.3. Sphere in R3 ⇔ One sheeted hyperboloid in R3
1. In this subsection, we utilize the

same potential as in Subsection 5.2.2, but we will obtain other CMC-surfaces. For this

we will use the following notation:

(5.2.25) GC: the same notation (5.2.1) as in Subsection 5.2.1,

(5.2.26) σ: the same notation (5.2.2) as in Subsection 5.2.1,

(5.2.27) ν1: the same notation (5.2.3) as in Subsection 5.2.1,

(5.2.28) ν2: the same notation (5.2.16) as in Subsection 5.2.2,

(5.2.29) GC/HC: the same notation (5.2.5) as in Subsection 5.2.1,

(5.2.30) G1/H1: the same notation (5.2.6) as in Subsection 5.2.1,

(5.2.31) G2/H2: the same notation (5.2.19) as in Subsection 5.2.2,

(5.2.32) πi: the projection from Gi onto Gi/Hi (i = 1, 2),

(5.2.33) g2: the same notation (5.2.21) as in Subsection 5.2.2.

Let ηθ(x) denote the potential (5.2.22). Define τθ(y) ∈ P̃−(g2) by

τθ(y) := θ

(
0 0

i 0

)
dy.

Here we remark that (ηθ(x), τθ(y)) is a real analytic para-pluriharmonic potential on

(B2, I) satisfying the morphing condition (M). Solve the two initial value problems:

A−1
θ · dAθ = ηθ(x), B

−1
θ · dBθ = τθ(y) and Aθ(0) ≡ id ≡ Bθ(0); and factorize (Aθ, Bθ) ∈

Λ̃(G2)σ× Λ̃(G2)σ in the Iwasawa decomposition (cf. Theorem 3.1.5): (Aθ, Bθ) = (Cθ, Cθ) ·
(B+

θ , B
−
θ ), Cθ ∈ Λ̃(G2)σ and B±

θ ∈ Λ̃±(G2)σ. In this case it follows that

Aθ(x) =

(
1 iθ−1x

0 1

)
, Bθ(y) =

(
1 0

iθy 1

)
;

B+
θ (x, y) =

1√
1 + xy

(
1 0

−iθy 1 + xy

)
, B−

θ (x, y) =
1√

1 + xy

(
1 + xy −iθ−1x

0 1

)
;

Cθ(x, y) =
1√

1 + xy

(
1 iθ−1x

iθy 1

)
.

It is easy to see that Cλ(z, z̄) ∈ G1 = SU(2) for all (z, z̄;λ) ∈ A2 × S1. Accordingly, we

obtain a harmonic map f1 and a Lorentz harmonic map f2,

(f1)λ = π1 ◦ Cλ(z, z̄) : (A
2, J) −→ G1/H1 ≃ S2, λ ∈ S1,

(f2)θ = π2 ◦ Cθ(x, y) : (W, I) −→ G2/H2 ≃ S2
1 , θ ∈ R+,
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from (5.2.22). Here W := {(x, y) ∈ B2 | xy 6= −1}. The above maps will provide us with a

CMC-surface φ1 : A
2 → R3 and a timelike CMC-surface φ2 : W → R3

1. The Sym-Bobenko

formula in [11], combined with Cλ(z, z̄), gives

φ1(z, z̄) : = −
{
i · λ · ∂Cλ

∂λ
· C−1

λ +
1

2
· Ad(Cλ) ·

(
i 0

0 −i

)}∣∣∣∣
λ=1

=
−i

2

(
(1− 3|z|2)/(1 + |z|2) −4iz/(1 + |z|2)

4iz̄/(1 + |z|2) −(1 − 3|z|2)/(1 + |z|2)

)

≃
(−2i(z − z̄)

1 + |z|2 ,
−2(z + z̄)

1 + |z|2 ,
−1 + 3|z|2
1 + |z|2

)
.

This CMC-surface φ1(z, z̄) : A2 → R3 is a sphere centered at (0, 0, 1). By the above

Cθ(x, y) and the Sym-Bobenko formula in [17], we obtain

φ2(x, y) : = −1

2

{
θ · ∂Cθ

∂θ
· C−1

θ +
1

2
·Ad(Cθ) ·

(
1 0

0 −1

)}∣∣∣∣
θ=1

=

(
−(1 − 3xy)/4(1 + xy) ix/(1 + xy)

−iy/(1 + xy) (1− 3xy)/4(1 + xy)

)

≃
(
− x− y

1 + xy
,− x+ y

1 + xy
,− 1− 3xy

2(1 + xy)

)
.

This timelike CMC-surface φ2(x, y) : W → R3
1 is a one sheeted hyperboloid centered at

(0, 0, 1/2) because
(
− x− y

1 + xy

)2
−
(
− x+ y

1 + xy

)2
−
(
− 1− 3xy

2(1 + xy)
− 1

2

)2
= −1

(see Remark 3.2 in [17] for the metric on R3
1).

CMC-surface in R3: Sphere

φ1(z, z̄) =
(−2i(z−z̄)

1+|z|2
, −2(z+z̄)

1+|z|2
, −1+3|z|2

1+|z|2

)

m
Timelike CMC-surface in R3

1: One sheeted hyperboloid

φ2(x, y) =
(
− x−y

1+xy
,− x+y

1+xy
,− 1−3xy

2(1+xy)

)

5.2.4. Smyth surface in R3 ⇔ Timelike Smyth surface in R3
1. In this subsection we con-

struct a timelike CMC-surface, φ2(x, y) : W → R3
1, from the potential of Smyth sur-

face in R3 (cf. (5.2.34)); and we study the relation between the Gauß equation for

φ2(x, y) : W → R3
1 and the Painlevé equation of type (III). Henceforth we will use the

same notation as in Subsection 5.2.1.

Define a Λ̃−1,∞(g2)σ-valued, real analytic para-holomorphic 1-form ηθ(x) on (B2, I) by

(5.2.34) ηθ(x) := θ−1

(
0 1

xm 0

)
dx,
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where m ∈ N. Taking the morphing condition (M) into consideration, we define τθ(y) as

follows:

τθ(x) := θ

(
0 −ym

−1 0

)
dy.

Solve the two initial value problems: A−1
θ ·dAθ = ηθ(x), B

−1
θ ·dBθ = τθ(y) and Aθ(0) ≡ id ≡

Bθ(0). In terms of Theorem 3.1.5 we factorize (Aθ, Bθ) ∈ Λ̃−
∗ (G2)σ × Λ̃+

∗ (G2)σ as follows:

(Aθ, Bθ) = (Cθ, Cθ) · (B+
θ , B

−
θ ), Cθ ∈ Λ̃(G2)σ and B+

θ ∈ Λ̃+
∗ (G2)σ and B−

θ ∈ Λ̃−(G2)σ.

Then Proposition 3.2.3 enables us to obtain an R
+-family of Lorentz harmonic maps

(f2)θ = π2 ◦ Cθ(x, y) : (W, I) −→ G2/H2 ≃ S2
1 ,

where W is an open neighborhood of B2 at (0, 0). Furthermore, Theorem 4.3.1 tells us

that there is an S1-family of harmonic maps

(f1)λ = π1 ◦ C ′
λ(z, z̄) : (V, J) −→ G1/H1 ≃ S2, C ′

λ(0, 0) ≡ id,

where C ′
λ(z, z̄) := Cλ(z, z̄) · hC(z, z̄) (see Theorem 4.3.1 for V and hC(z, z̄)). From the

above harmonic map f1(z, z̄), the Sym-Bobenko formula enables us to obtain a CMC-

surface φ1(z, z̄) : V → R3 (ref. Subsection 5.2.1), which is called the Smyth surface (cf.

[10, p. 662]). In addition, one can obtain a timelike CMC-surface φ2(x, y) : W → R
3
1,

from the above Lorentz harmonic map f2(x, y). We end this subsection with clarifying an

important property of φ2(x, y) : W → R
3
1:

Proposition 5.2.1. With the above setting and notation, the Gauß equation for φ2(x, y) :

W → R3
1 is the Painlevé equation of type (III).

Proof. Our first aim is to deduce (5.2.36) below. For k = diag(s, 1/s) ∈ H2 =

S(GL(1,R)×GL(1,R)), let us define real numbers a = a(k) and b = b(k) by a(k) := s−4/m

and b(k) := s−(4+2m)/m, respectively. Since k · ηλ(x) · k−1 = η(b·λ)(a · x), k · τλ(y) · k−1 =

τ(b·λ)(a
−1 · y) and Aλ(0) ≡ id ≡ Bλ(0), we understand that

(5.2.35) k · Aλ(x) · k−1 = Ab·λ(a · x), k · Bλ(y) · k−1 = Bb·λ(a
−1 · y).

It is immediate from B−1
λ · Aλ = (B−

λ )
−1 · B+

λ and (5.2.35) that (k · B−
λ (x, y) · k−1)−1 ·

(k · B+
λ (x, y) · k−1) = B−

b·λ(a · x, a−1 · y)−1 · B+
b·λ(a · x, a−1 · y) for any k ∈ H2 and λ ∈ S1.

Therefore, the uniqueness of the Birkhoff decomposition allows us to conclude

k · B+
λ (x, y) · k−1 = B+

b·λ(a · x, a−1 · y) for any k ∈ H2 and λ ∈ S1.

The above and (5.2.35) imply that

k · Cλ(x, y) · k−1 = k · Aλ(x) · B+
λ (x, y)

−1 · k−1

= Ab·λ(a · x) · B+
b·λ(a · x, a−1 · y)−1 = Cb·λ(a · x, a−1 · y)

—that is, they imply that

(5.2.36) k · Cλ(x, y) · k−1 = Cb·λ(a · x, a−1 · y) for any k ∈ H2 and λ ∈ S1.
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Now, let Uλ(x, y) := Cλ(x, y)
−1 · ∂xCλ(x, y) and Vλ(x, y) := Cλ(x, y)

−1 · ∂yCλ(x, y). We

express these Maurer-Cartan forms explicitly as follows:

Uλ(x, y) =

(
ux(x, y)/4 −(λ−1/2) ·H · eu(x,y)/2

λ−1 ·Q(x) · e−u(x,y)/2 −ux(x, y)/4

)
,

Vλ(x, y) =

(
−uy(x, y)/4 −λ · R(y) · e−u(x,y)/2

(λ/2) ·H · eu(x,y)/2 uy(x, y)/4,

)(5.2.37)

where H ( 6= 0) is constant (cf. (2.1.5) in [17]). Then, the Gauß equation for φ2(x, y) :

W → R3
1 is

(5.2.38) uxy(x, y)− 2 ·Q(x) · R(y) · e−u(x,y) +
1

2
·H2 · eu(x,y) = 0

(cf. (2.1.7) in [17]). This equation will become the Painlevé equation of type (III) later

(cf. (5.2.38′′)). It follows from (5.2.36) that αλ(x, y) := Cλ(x, y)
−1 · dCλ(x, y) satisfies

αλ(x, y) = Uλ(x, y)dx+ Vλ(x, y)dy and k · αλ(x, y) · k−1 = αb·λ(a · x, a−1 · y). Hence

k · Uλ(x, y) · k−1 = a · Ub·λ(a · x, a−1 · y), k · Vλ(x, y) · k−1 = a−1 · Vb·λ(a · x, a−1 · y).

Accordingly we obtain

u(a · x, a−1 · y) = u(x, y), Q(a · x) = am ·Q(x), R(a−1 · y) = a−m · R(y)

from (5.2.37). Let Ω(x·y) := u(1, x·y). Then Ω(x·y) = u(x, y) follows from u(a·x, a−1·y) =
u(x, y) and a := x−1. Hence we conclude that

(5.2.39) uxy = ∂x∂yΩ(x · y) = ∂x(Ω(x · y)′ · x) = Ω(x · y)′′ · x · y + Ω(x · y)′.

Since Q(a · x) = am · Q(x) and R(a−1 · y) = a−m · R(y) one can express Q(x) and R(x)

as Q(x) = Q0 · xm and R(y) = R0 · ym, respectively, where both Q0 and R0 are constant.

Therefore we show

− 2 ·Q(x) · R(y) · e−u(x,y) +
1

2
·H2 · eu(x,y)

= −2 ·Q0 ·R0 · (x · y)m · e−Ω(x·y) +
1

2
·H2 · eΩ(x·y).

(5.2.40)

In terms of (5.2.39) and (5.2.40) we rewrite (5.2.38) as follows:

(5.2.38′) Ω(t)′′ · t+ Ω(t)′ − 2 ·Q0 · R0 · tm · e−Ω(t) +
1

2
·H2 · eΩ(t) = 0,

where t := x · y. Furthermore, one can rewrite (5.2.38′) as follows:

(5.2.38′′)
d2v

du2
=

1

v

(dv
du

)2
− 1

u

dv

du
+

1

u

(
− H2

2 +m
v2 + 4

R0 ·Q0

2 +m

)

by setting u := (2t(2+m)/2)/(2+m) and v := eΩ(t) · t−m/2. Consequently we assert that the

Gauß equation (5.2.38) for φ2(x, y) : W → R3
1 is the Painlevé equation (5.2.38′′) of type

(III). �
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5.2.5. Delaunay surface in R3 ⇔ K-surface of revolution in R3. In this subsection we

will use the following notation:

(5.2.41) GC: the same notation (5.2.1) as in Subsection 5.2.1,

(5.2.42) σ: the same notation (5.2.2) as in Subsection 5.2.1,

(5.2.43) ν1: the same notation (5.2.3) as in Subsection 5.2.1,

(5.2.44) ν2 := ν1,

(5.2.45) GC/HC: the same notation (5.2.5) as in Subsection 5.2.1,

(5.2.46) G1/H1: the same notation (5.2.6) as in Subsection 5.2.1,

(5.2.47) G2/H2 = G1/H1 = SU(2)/S(U(1)× U(1)) ≃ S2,

(5.2.48) πi: the projection from Gi onto Gi/Hi (i = 1, 2).

The main purpose in this subsection is to interrelate a surface of revolution in R3 (i.e.,

a Delaunay surface in R3) with a K-surface of revolution in R3 by means of Theorem 4.3.1

(see Theorem 5.2.7). Here, a K-surface means a surface of constant negative curvature

K = −1. Such a surface is sometimes called a pseudospherical surface.

According to Toda [27] (see [28] also), one can characterize each K-surface M in R3

by an arc length asymptotic line coordinate system (x, y) on M and the angle function

ω(x, y) with respect to (x, y) by the loop group method. For our purpose, we need to

specialize her way concretely to surfaces of revolution. First we recall

Lemma 5.2.2. Let fpseud(u, v), fhyper(u, v) and fconic(u, v) denote the K-surfaces of rev-

olution given in Gray [13, Chapter 19.3]2, respectively:

fpseud(u, v) =
(
cos u sin v, sin u sin v, cos v + log(tan v/2)

)
;

fhyper(u, v) =
(
b cosu cosh v, b sin u cosh v,

∫ v

0

√
1− b2 sinh2(t)dt

)
, 0 < b;

fconic(u, v) =
(
b cosu sinh v, b sinu sinh v,

∫ v

0

√
1− b2 cosh2(t)dt

)
, 0 < b < 1.

Then in each case, an arc length asymptotic line parametrization (x, y) is given by

Pseudosphere : u = x+ y, v = 2 tan−1(exp(x− y));

Hyperboloid type : u =
x+ y√
1 + b2

, v = −i · am
(i(x− y)√

1 + b2
, ib
)
;

Conic type : u =
x+ y√
1− b2

, v = −i · am
(
i(x− y),

ib√
1− b2

)

2Erratum: p. 381, the equation (19.4) in [13], should be −i
√
a2 − b2E(iv/a,−b2/(a2 − b2)) instead of

−i
√
a2 − b2E(iv/a, b2/(a2 − b2)).
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and the first fundamental form Ist is expressed as

Pseudosphere : Istpseud = dx2 + 2
(
−1 +

2

cosh2(x− y)

)
dxdy + dy2;

Hyperboloid type : Isthyper = dx2 + 2
(
1− 2

1 + b2
· dn2

( i(x− y)√
1 + b2

, ib
))

dxdy + dy2;

Conic type : Istconic = dx2 + 2
(
1− 2 · dn2

(
i(x− y),

ib√
1− b2

))
dxdy + dy2

(see Remark 5.2.3 for am(u, k) and dn(u, k)).

Proof. Gray [13] presents a method of computing asymptotic line parametrizations

by the software Mathematica. His arguments [13, p. 329–330], together with the program

in [13, p. 328], enable us to obtain the arc length asymptotic line parametrizations (x, y)

for the K-surfaces fpseud(u, v), fhyper(u, v) and fconic(u, v), respectively. �

Remark 5.2.3. Throughout this paper, we use the notation am(u, k), sn(u, k), cn(u, k),

dn(u, k) and sd(u, k) as in Byrd-Friedman [6] for the Jacobi functions.

Lemma 5.2.4. Let ωpseud(x, y), ωhyper(x, y) and ωconic(x, y) be the real analytic functions

around (0, 0) defined by

ωpseud(x, y) := 2 sin−1(tanh(x− y));

ωhyper(x, y) := 2 sin−1
( 1√

1 + b2
· dn

( i(x− y)√
1 + b2

, ib
))

, 0 < b;

ωconic(x, y) := −2 sin−1
(
b · sd

( x− y√
1− b2

,
√
1− b2

))
+ π, 0 < b < 1.

Then, they satisfy

(i.1) Pseudosphere : Istpseud = dx2 + 2 cos(ωpseud(x, y))dxdy + dy2;

(i.2) Hyperboloid type : Isthyper = dx2 + 2 cos(ωhyper(x, y))dxdy + dy2;

(i.3) Conic type : Istconic = dx2 + 2 cos(ωconic(x, y))dxdy + dy2;

and furthermore, they are solutions to the sine-Gordon equation ∂x∂yω = sinω.

Proof. Both (i.1) and (i.2) are immediate from cosω = 1 − 2 sin2(ω/2). Let us

show (i.3). By direct computations we have cos(ωconic/2) = sin
(
(π/2) − (ωconic/2)

)
=

b · sd
(
(x− y)/

√
1− b2,

√
1− b2

)
, and

(5.2.49) cos2
ωconic

2
= b2 · sd2

( x− y√
1− b2

,
√
1− b2

)
.

Transformation formulas in [6, p. 38] lead to

sn(iu, ib/
√
1− b2) = i

√
1− b2 · sd(u/

√
1− b2,

√
1− b2).

Therefore, (5.2.49) and k2 · sn2(u, k) + dn2(u, k) = 1 yield that

1 + cosωconic

2
= cos2

ωconic

2
= − b2

1− b2
·sn2

(
i(x−y),

ib√
1− b2

)
= 1−dn2

(
i(x−y),

ib√
1− b2

)
.
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Accordingly one deduces cos(ωconic(x, y)) = 1−2 ·dn2(i(x−y), ib/
√
1− b2), and thus (i.3)

follows. Now, the rest of this proof is to demonstrate that ωpseud, ωhyper and ωconic are

solutions to the sine-Gordon equation, respectively. We will only prove that ωconic is a

solution to the equation, because one can consider the other cases in a similar way. Note

that dn((x− y)/
√
1− b2,

√
1− b2) is positive around (0, 0) because of 0 < b < 1. On the

one hand, direct computations show

∂xωconic = − 2√
1− b2

· 1

dn((x− y)/
√
1− b2,

√
1− b2)

;

∂x∂yωconic =
2√

1− b2
· sn((x− y)/

√
1− b2,

√
1− b2) · cn((x− y)/

√
1− b2,

√
1− b2)

dn2((x− y)/
√
1− b2,

√
1− b2)

.

One the other hand, it follows from (5.2.49) that

∂xωconic · sinωconic = −2 · ∂

∂x
cos2

ωconic

2
= −2b2 · ∂

∂x
sd2
( x− y√

1− b2
,
√
1− b2

)

= − 4b2√
1− b2

· sn((x− y)/
√
1− b2,

√
1− b2) · cn((x− y)/

√
1− b2,

√
1− b2)

dn3((x− y)/
√
1− b2,

√
1− b2)

= ∂xωconic · ∂x∂yωconic.

Therefore, one has ∂x∂yωconic = sinωconic by virtue of ∂xωconic < 0. �

Remark 5.2.5. (i) The solution ωpseud(x, y) to the sine-Gordon equation in Lemma

5.2.4 can be rewritten as follows:

(5.2.50) ωpseud(x, y) = 4 tan−1(exp(x− y))− π.

Indeed, f(x, y) := 4 tan−1(exp(x − y))− π is analytic and satisfies ωpseud(0, 0) = f(0, 0),

∂xωpseud = ∂xf and ∂yωpseud = ∂yf . (ii) From every solution ω(x, y) to the sine-Gordon

equation, one can construct another solution ω′(x, y) to the sine-Gordon equation by

setting

ω′(x, y) := ω(x,−y) + π.

Consequently, ω′
pseud(x, y) = 4 tan−1(exp(x + y)) becomes a solution to the sine-Gordon

equation by virtue of (5.2.50). Toda [27] uses this solution to study pseudospheres.

For the K-surfaces fpseud, fhyper and fconic in Lemma 5.2.2, we have obtained arc length

asymptotic line parametrizations (x, y) and the angle functions ω(x, y) with respect to

(x, y), respectively (cf. Lemmas 5.2.2 and 5.2.4). According to Toda [27] one can, up

to an isometry of R3, reconstruct the K-surface from ω(x, y) and the following potential
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(ηθ(x), τθ(y)):

ηθ(x) :=
iθ−1

2

(
0 ei(ω(x,0)−ω(0,0))

e−i(ω(x,0)−ω(0,0)) 0

)
dx,

τθ(y) :=
−iθ

2

(
0 e−iω(0,y)

eiω(0,y) 0

)
dy.

(5.2.51)

Remark 5.2.6. This is not difficult to verify that for ω(x, y) = ωconic(x, y) the above

potential (ηθ(x), τθ(y)) satisfies the morphing condition (M) in Theorem 4.3.1, while this

is not true for the angle functions ωpseud and ωhyper in Lemma 5.2.4.

By means of Theorem 4.3.1, we will construct a harmonic map f1(z, z̄) : A
2 → G1/H1 ≃

S2 and a Lorentz harmonic map f2(x, y) : B2 → G2/H2 ≃ S2 from the angle function

ωconic; and interrelate the associated CMC-surfaces φ1(z, z̄) : A2 → R3 and K-surfaces

φ2(x, y) : B
2 → R3 using f1(z, z̄) and f2(x, y). One will see that φ1(z, z̄) is a Delaunay

surface and φ2(x, y) is a conic K-surface of revolution (cf. Theorem 5.2.7).

First, we define a real analytic, para-pluriharmonic potential (ηθ(x), τθ(y)) on (U, I) by

(5.2.51) with ω(x, y) = ωconic(x, y) as given in Lemma 5.2.4. Here U denotes any open

neighborhood of B2 at (0, 0) such that ωconic(x, y) is analytic on U . As remarked above,

(ηθ(x), τθ(y)) satisfies the morphing condition (M). Next, let us solve the two initial value

problems: (Aθ)
−1 · dAθ = ηθ and (Bθ)

−1 · dBθ = τθ with Aθ(0, 0) ≡ id ≡ Bθ(0, 0); and

factorize (Aθ, Bθ) ∈ Λ̃(G2)σ × Λ̃(G2)σ in the Iwasawa decomposition (cf. Theorem 3.1.5):

(Aθ, Bθ) = (Cθ, Cθ) · (B+
θ , B

−
θ ), Cθ ∈ Λ̃(G2)σ, B+

θ ∈ Λ̃+
∗ (G2)σ, B−

θ ∈ Λ̃−(G2)σ.

Then Proposition 3.2.3 assures that there exists an open neighborhood W of U at (0, 0),

and (f2)θ := π2 ◦ Cθ(x, y) : (W, I) → G2/H2 ≃ S2 is a Lorentz harmonic map for any

θ ∈ R+. Moreover, by Theorem 4.3.1 there exist an open neighborhood V of A2 at (0, 0)

and a smooth map hC : V → HC such that (f1)λ := π1 ◦ C ′
λ(z, z̄) : (V, J) → G1/H1 ≃ S2

is a harmonic map for any λ ∈ S1, where C ′
λ := Cλ · hC. Accordingly we have obtained a

harmonic map f1(z, z̄) and a Lorentz harmonic map f2(x, y) from the potential (5.2.51):

(f1)λ = π1 ◦ C ′
λ(z, z̄) : (V, J) → G1/H1 ≃ S2, C ′

λ(0, 0) ≡ id, λ ∈ S1;

(f2)θ = π2 ◦ Cθ(x, y) : (W, I) → G2/H2 ≃ S2, Cθ(0, 0) ≡ id, θ ∈ R+.

From f1(z, z̄)λ and f2(x, y)θ one obtains a Delaunay surface and a conic K-surface of

revolution, respectively:

Theorem 5.2.7. Let (f1)λ = π1 ◦ C ′
λ(z, z̄) : (V, J) → S2 and (f2)θ = π2 ◦ Cθ(x, y) :

(W, I) → S2 be the above harmonic map and Lorentz harmonic map. Let φ1(z, z̄)λ : V →
R3 (resp. φ2(x, y)θ : W → R3) denote the CMC-surface (resp. K-surface) determined by
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the Sym-Bobenko formula (resp. the Sym formula) :

φ1(z, z̄)λ := i · λ · ∂C
′
λ

∂λ
· C ′

λ
−1

+
1

2
· Ad(C ′

λ) ·
(
i 0

0 −i

)
,

φ2(x, y)θ := θ · ∂Cθ

∂θ
· C−1

θ .

Then, φ1(z, z̄)λ : V → R3 is a Delaunay surface, and φ2(x, y)θ : W → R3 is a conic

K-surface of revolution.

Proof. TheK-surface φ2(x, y)θ : W → R
3 is endowed with the angle function ωconic(x, y)

(cf. (5.2.51)). Therefore, Toda [27] assures that φ2(x, y)θ : W → R3 coincides, up to an

isometry of R3, with the K-surface fconic given in Lemma 5.2.2. Consequently, the rest

of proof is to conclude that φ1(z, z̄)λ : V → R3 is a Delaunay surface. First, let us verify

that

(5.2.52) Cθ(x+ t, y + t) = χθ(t) · Cθ(x, y), for any t ∈ R with (x+ t, y + t) ∈ W,

where χθ(t) := Cθ(t, t). By the proof of Lemma 5.2.4 we have (∂xωconic)(x + t, y + t) =

(∂xωconic)(x, y) and ωconic(x+ t, y+ t) = ωconic(x, y). Therefore (C−1
θ · dCθ)(x+ t, y+ t) =

(C−1
θ · dCθ)(x, y) follows from the equation (6) in [28]; and thus

(C−1
θ · dCθ)(x+ t, y + t) = (C−1

θ · dCθ)(x, y) =
(
(χθ(t) · Cθ)

−1 · d(χθ(t) · Cθ)
)
(x, y).

In view of Cθ(0, 0) ≡ id one sees that Cθ(0 + t, 0 + t) = χθ(t) · Cθ(0, 0) = χθ(t). Hence,

one concludes (5.2.52). From (5.2.52) it follows that

Cλ(z + t, z̄ + t) = χλ(t) · Cλ(z, z̄), λ ∈ S1,

where we remark that the variable θ of χθ(t) can vary in the whole C∗ because of χθ(t) =

Cθ(t, t). Since C ′
λ(z, z̄) = Cλ(z, z̄) · hC(z, z̄), we deduce that

(5.2.53) C ′
λ(z + t, z̄ + t) = χλ(t) · C ′

λ(z, z̄) · kC(t, z, z̄),

where kC(t, z, z̄) := hC(z, z̄)−1 ·hC(z+t, z̄+t). If kC(t, z, z̄) belongs to H1 (⊂ G1), then it is

immediate from C ′
λ(z+ t, z̄+ t), C ′

λ(z, z̄) ∈ G1 that χλ(t) ∈ G1; so that φ1(z, z̄)λ : V → R3

admits a one-parameter group of isometries, which implies that φ1(z, z̄)λ : V → R3 is a

Delaunay surface (cf. Theorem [8, p. 127]). Thus it suffices to confirm

kC(t, z, z̄) ∈ H1.

For the extended framing C ′
λ(z, z̄) of the harmonic map (f1)λ : (V, J) → S2, we have the

Maurer-Cartan form:

C ′
λ
−1 · ∂zC ′

λ = U, C ′
λ
−1 · ∂z̄C ′

λ = V,

U =

(
uz/4 −(λ−1/2) ·H · eu/2

λ−1 ·Q · e−u/2 −uz/4

)
, V =

(
−uz̄/4 −λ · R · e−u/2

(λ/2) ·H · eu/2 uz̄/4

)
,
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where H ( 6= 0) is constant. Since kC(t, z, z̄) = hC(z, z̄)−1 · hC(z + t, z̄ + t) ∈ HC =

S(GL(1,C)×GL(1,C)) is a diagonal matrix, we can express it as

kC(t, z, z̄) =

(
d(t, z, z̄) 0

0 d(t, z, z̄)−1

)
.

Then, the Maurer-Cartan form on the right hand side of (5.2.53) is

(5.2.54)

U(z, z̄) =

(
uz(z, z̄)/4 + d−1 · dz −(λ−1/2) ·H · eu(z,z̄)/2 · d−2

λ−1 ·Q(z) · e−u(z,z̄)/2 · d2 −uz(z, z̄)/4− d−1 · dz

)
,

V (z, z̄) =

(
−uz̄(z, z̄)/4 + d−1 · dz̄ −λ · R(z̄) · e−u(z,z̄)/2 · d−2

(λ/2) ·H · eu(z,z̄)/2 · d2 uz̄(z, z̄)/4− d−1 · dz̄

)
.

The Maurer-Cartan form on the left hand side of (5.2.53) is

(5.2.55)

U(z + t, z̄ + t) =

(
uz(z + t, z̄ + t)/4 −(λ−1/2) ·H · eu(z+t,z̄+t)/2

λ−1 ·Q(z + t) · e−u(z+t,z̄+t)/2 −uz(z + t, z̄ + t)/4

)
,

V (z + t, z̄ + t) =

(
−uz̄(z + t, z̄ + t)/4 −λ ·R(z̄ + t) · e−u(z+t,z̄+t)/2

(λ/2) ·H · eu(z+t,z̄+t)/2 uz̄(z + t, z̄ + t)/4

)
.

Let us compare the 12-entry of U with the 21-entry of V in (5.2.54) and (5.2.55). Then one

has d4 = 1, whence d = ±i, ±1. This means that kC(t, z, z̄) ∈ S(U(1)× U(1)) = H1. �
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