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Abstract. We study positive measures that are solutions to an absiptintisa-
tion problem, which is a generalisation of a classical &l problem with a
constraint on information of a Kullback-Leibler type. Tladter leads to solutions
that belong to a one parameter exponential family, and suedsaores have the
property of mutual absolutely continuity. Here we show ttiég property is re-
lated to strict convexity of a functional that is dual to thdtional representing
information, and therefore mutual absolute continuityrebterises other fami-
lies of optimal measures. This result plays an importarg mobroblems of opti-
mal transitions between two sets: Mutual absolute cortiirimiplies that optimal
transition kernels cannot be deterministic, unless infdrom is unbounded. For
illustration, we construct an example where, unlike notedeinistic, any deter-
ministic kernel either has negatively infinite expectedtytfunbounded expected
error) or communicates infinite information.

1 Introduction

Let X := UC:(Q) be the union of spaces of continuous functigng2 — R with com-
pact support in a locally compact topological spa2eThus, X is a normed space
with the Chebyshev normix||. := sup, [x(w)|, and in fact it is an ordered commuta-
tive C*-algebra with pointwise multiplication and ordering. Theatlof X is the space
Y :=.#(Q) of Radon measures d@ [[7], which includess-additive and regular Borel
measures. Thu¥, is a Banach space with the notjm]||1, and in fact it is a module over
algebraX with pointwise multiplication. Given a fixed element X, let {yg}x C Y be

a family indexed by3 > 0, where eaclyg is defined as

yp :=€yo, yo>0 1)

The elementyg correspond to positive one-parameter exponential Radasunes,
and normalised elements :=yg/||yg|/1 are the corresponding exponential probability
measures. A similar construction can be made in the case Xisea non-commutative
C*-algebra, such as the algebra of compact Hermitian operatora Hilbert space.
However, the exponential family can be defined in differeaysy such ags := ebx+inyo

oryg:= eP*/2y,ef%/2 which are not equal in the non-commutative case.

* This work was supported by EPSRC grant EP/H031936/1.
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The exponential family plays an important role in matheowtstatistics, physics
and information theory. Many important probability dibtitions are members of this
family. In fact, the lower bound for the variance of the ursaid estimator of an un-
known parameter, defined by the Rao-Cramer inequalitytésned if and only if the
probability distribution is a member of the exponential fignf@)19]. The Boltzmann
(or Gibbs) distribution is a member of this family, and it isdewn to maximise entropy
of a thermodynamical system under the constraint on end@ly A closely related
variational problem is minimisation of Kullback-Leiblersthnce [[14] (negative rela-
tive entropy) of one probability measure from another stibje a constraint on the
expected value. These problems were studied in informéatieary [21,22,23], and it
was established that exponential distributions maxintisecpacity of an information
channel. More recently, the exponential family has beedgistlin information geome-
try, and it was shown that the family is a Banach space withdieznorm [18]. These
result have been generalised to quantum systeins [6,24].

As will be shown later in this paper, most of the above prdpsidre related to the
fact that exponential measures are optimal solutions tepeeific variational problem.
In this paper, we shall study a generalisation of this pnoblehich we shall refer
to asoptimisation with an information constrainthe abstract information constraint
will be defined using a closed functionl: Y — R U {0}, such that its valueB (y)
are associated with the valubg,yp) of some information resource (or distance) of
measure relative toyg. A specific form of this functional will lead to a specific fami
{yg }x of optimal solutions, such as the exponential faniily (5 () is associated with
the Kullback-Leibler information distance.

The main motivation to study this generalisation was thesplation that measures
in the exponential family have a remarkable property of genutually absolutely con-
tinuous. We remind that measuwygis absolutely continuous with respect to measure
yo if y2(E) = 0 impliesy;(E) = 0 for allE € Z(Q) (here and elsewher# denotes a
o-algebra of subsets @?). Mutual absolute continuity is the case when the implaati
holds in both directions. The main question we investigatthis paper is what other
families of optimal positive measures have the mutual alleaontinuity property.

The answer to this question is related to the propertieseiitftormation functional
F, and in fact to the properties of its dual functio&l. In this paper, we prove that
it is strict convexity ofF* that makes all optimal positive measures mutually abso-
lutely continuous. We argue also that strict convexityéf the dual of an information
functional, is a property that is natural in the context dfimgsation problems. Mutual
absolute continuity becomes particularly interestingpgirty for optimal measures, de-
fined on selQ = A x B representing a composite system. In this case, the optamal f
ily defines Markov transition kernels between element#&\@nd B that realise only
non-deterministic transitions; deterministic transiscare suboptimal if information,
understood broadly here, is bounded. We illustrate thisltrdsy constructing an ex-
ample, where any deterministic kernel either has a nedgiivénite expected utility
(unbounded error) or communicates infinite informatiort,donon-deterministic kernel
can have both finite expected utility and finite information.

In the next section, we introduce the notation, define theegdised optimisation
problem and recall some basic relevant facts. Then we éstiegaveral properties of op-
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timal solutions to the problem and use them to prove the nesinlt on mutual absolute
continuity of optimal positive measures. The proof is basedtandard techniques of
convex analysis, and it does not depend on commutativitgr&fore, the result applies
to a general, non-commutative setting. The last two sestidithe paper are devoted to
optimal probability measures and optimal Markov transikernels. For simplicity, we
study them in the classical (commutative) setting. The papecludes by a discussion
of these results.

2 Preliminaries

Let X andY be complex linear spaces put in duality via bilinear fgrm) : X x Y — C:
(xy)=0,V¥xeX =y=0, xy)=0,VyeY =x=0

The dual space of a locally convex spacavill also be denoted b¥’, and the dual of
a normed spacéX, || - ||) will be denoted byX*. We denote byX* the algebraic dual
space ofX. The same notation applies to the dual spaces of

The main results of this paper are derived using only thetfadtX andY are or-
dered linear spaces in duality. However, in applicationssé spaces can have richer
algebraic structure§|5]. In particular, spaes usually closed with respect to an as-
sociative, but generally non-commutative binary operatioX x X — X (e.g. point-
wise multiplication or matrix multiplication) and involigh as a selfinverse antilin-
ear mapx* : X — X reversing the multiplication ordefx*z)* = z‘x, so thatX is a
x-algebra with the positive cong, of x*x generating<. The dual spac¥ is closed
under the transposed involutien Y — Y, defined agx,y*) = (x*,y)*, has a positive
coneY,, dual of X;, and it has identityy € Y, (also called the reference measure),
which is a strictly positive linear functional such th@atx,yp) > 0 for all x # 0 € X.
The ordering(x,y) > 0 is understood as Rey) > 0 for (x,y) € C. However, we shall
mostly deal with Hermitian elements= x* andy = y* such that(x,y) € R. If the
pairing (-,-) has the property that for eache X there exists a transposed element
Z €Y such that(zxy) = (x,Zy), thenY D X is a left (right) module with respect to
the transposed left (right) action— Zy (y — yz”*) of X onY such that(xz)’ = Zx’
and(x,yz"*) = (x*, 2'y*)* = (z'x*,y*)* = (xzy). In many practical cases, the pairing
(-,-) is central(or tracial) so that the left and right transpositions act identicatiyyg
Z"yo = yoZ* for all z€ X. In this case, the element= z"yy = yoZ* can be identified
with a complex conjugation af< X.

Below are three main examples of pairingoandY by a sum, an integral or trace:

xy) 1:§X(w)y(w)7 xy) 1:/Qx(w)dy(w), xy)=tr{xy} (2

The main examples of are the commutative*-algebrgUC:(Q), || - ||) of continuous
functions with compact support in a locally compact topatayspace® or the non-
commutativeC*-algebra(C(.7), || - ||») Of compact Hermitian operators on a separable
Hilbert spaces. The main examples of = X* are the Banach spa¢e# (Q), || - ||1)

of Radon measures d@ or its non-commutative generalisation? (), || - ||1)-



4 Roman Belavkin, December 15, 2010

LetF :Y — RU{»} be a closed functional — sublevel s¢ts F(y) < A } are non-
empty for some and closed in the weak topolady, X) for eachA < supF (defined in
this way,F is also lower-semicontinuous). In this paper, we shallysgalutionsyg € Y
to an optimisation problem defining the followingtimal value function

X(A) :=sup{(x,y) 1 F(y) <A} ©)

We definex(A) = —o if A <infF. Itis clear from the definition that(A) is isotone.
SetC:={y: F(y) <A} isthe set of feasible solutions, and if it is non-empty, theh)
coincides with its support functiag (x) := sup{(x,y) : y € C}.

Functionx(A ) has the following inverse

X H(v) = inf{F(y) : {xy) > v} (4)

In addition tox(A) and its invers& 1(A), we shall consider also the following func-
tions:

X(A) = inf{{(xy) : F(y) <A} (5)
X 1(u) == inf{F(y) : (xy) < v} (6)

Observe thak(A) = —(—x)(A) = —sup{—(x,y) : F(y) < A} is an antitone function,
andx(A) = if A <infF.

We use function{3) to represent generally optimisatiorbfgms with a constraint
on information, and its inverse functiohl (4) to represemntegally optimisation prob-
lems with a utility constraint. Indeed, consider the cxse (UC:(Q),| - |l») andY =
(A (Q),|-]]1)- Then probability measures on BoelalgebraZz(Q) are positive ele-
mentsp € . (Q) with || p||1 = 1. We shall refer to the set of all probability measures

P(Q)={ye#(Q):y>0,|[yl.=1}

as statistical manifoldby analogy with information geometry|[1.8]18]. In the class
cal probability theory X is a commutative algebra), s is a Choquet simplex —
a compact convex set such that everg &2 is uniquely represented by the extreme
pointsd € 97 [17]. Here,d & denotes the boundary o, and we shall denote by
extZ C 02 the set of all extreme points a®. Thus, in the classical probability the-
ory, we can identify ex” with Q.

In the non-classical probability{(is non-commutative), a similar construction can
be made. For example, X = (Cc(H), || - |) andY = (A (57),]| - ||1), then quan-
tum probability measures, representing states, are yegitementp € .# (.2) with
lIpllx = 1, and theguantum statistical manifolid

D) ={ye M (A):y>0, |y[1=1}

The quantum statistical manifold is also compact and convekit is not a simplex.
This is because representations ®¥ ext<? are not unique. This fundamental dif-
ference of quantum probability is the consequence of nanncotativity. However, our
results will apply to both classical and non-classical cagéch have many similarities.
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Observe that the expected vallig{x} of a classical random variable: Q — R
is a linear functionab(x) = (x,p), p € <. Note that often we can consideras an
element of spac¥’, dual ofY, andEp{x} as a linear functional(p) = (x, p), wherep
is varied over some subset &7, as in function[(B). In quantum physics, operaterY’
is often called arobservableand the linear functiondl,{x} = (x, p) takes values in
the spectruno (x), which is real, ifx is Hermitian.

If x € X is a classical utility functiox: Q — R, then maximisation of linear func-
tional x(p) = (x, p) is the problem of maximisation of the expected utility. Wenned
that given gpreference relationS on Q (a total pre-order), atility function is a pre-
order embedding: (Q <) — (R,<): wn < wyp if and only if x(w;) < X(ap). A non-
classical utility operator is defined similarly using pneter on its eigenstates (seé [4]).
It is well-known that the expected utilitip{x} (linear functional(x,y)) is the only
functional that makes statistical manifol# (linear spacé) totally pre-ordered, and
such that Z, <) C (Y, <) is compatible with the linear structure ¥fand is an Archi-
median pre-ordef [16].

It is clear from the above that the optimal value functidnd@)responds to optimi-
sation under uncertainty over the set of probability measaf NC, whereC is defined
by the constrain (y) < A. In particular, ifF (y) :=1(y,Yo), wherel : Y xY — R U{e}
is some information distance, thé&rfy) < A is the constraint(y,yp) < A on informa-
tion distance. Note that without the constrai{p) is always maximised at least in one
of the extreme pointg, € extZ.

Proposition 1. Let%? be a non-empty compact convex subset of a locally conver spac
Y. Then for any x X C Y? there exist®, € extZ such that

(X, 0) :=sup((x,p) : p€ P} € RU{e} (1)

Proof. If there exist a non-empty subsAtC ext%? of extreme points} such that
(X,0¢) = sup{(x,p) : p€ &} for any &« € A, then by linearity(x, &) = (x, p) for any
p € clcoA (here clco denotes convex closure of a set). Dually, thé seempty only
if there existp such that(x, p) > (x, p) for all p € clcoext??. But clcoext” = &
(Krein-Milman theorem), and therefope¢ 2. a

In many practical applications, finding the optimal extrepmints d solving op-
timisation problems may not be feasible as it may requirergelépossibly infinite)
amount of information. A feasible solution can be found bkirig into account the
information constraint.

Definition 1 (Information (feasibility) constraint). A valueA of a closed functional
F :Y — RU{w} is called aninformationor feasibility constrainin problem [3), if
X(A) < (x,0), wheredy is defined in Proposition]1. Generallipf F < A < F(&) <
SupkF.

It will be shown later that if feasible solutions to probleB) exist, then they are

also solutions to problenl(4), defined by the inverse fumctio'(v). One often seeks
non-trivial solutionsp € & to optimisation problems such that the expected utility is
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greater than that of a solution requiring no informatioe.(a trivial solution). Non-
trivial solutions can be found by taking into account a tytiionstraint.

Definition 2 (Utility (non-triviality) constraint). A valueu of a linear functional
x:Y — R is called an expectedtility or non-triviality constraintin problem [(4), if
x~1(v) > infF. Generally,u > Tp, where

Uo ::AﬂmFsumx,w ‘F(y) <At e RU{—o} (8)

e can show in a way similar to Propositidn 1 and using thealdgu
(A) that there existd_x € extZ such that

Remark 1.0n
X(A) = —(-x)

(X%, 0_x) :==inf{(x,y) :y€ P} e RU{—o} 9)

An information constraint in probleni(5) is such thdf ) > (x,d_x), and generally
infF <A < F(&_x) < supF. A utility constraint in problem[{6) is such that(uv) >
infF, and generallp < v,, where

Ug:= lim inf{(x,y) : F(y) <A} e RU{oo} (10)
AlinfF

Note that often(x, &) # —(x,d_x). Indeed, ifx is a real function o2, then(x, é) =

supx(w) and (x,0_x) = infx(w). Furthermore, generallf (&) # F(d_x) andUg #

—VYo.

Problems[(B) and{4), considered on the statistical mahifé| generalise several
related variational problems in information theory and giby, in whichF (p) corre-
sponds to the Kullback-Leibler information distanig (p,q) := Ep{Inp—Inq} of
probability measurg from a reference measugg An important example is when
IkL(p,q) is Shannon information between random varialklesA andb € B, which is
defined ask. (p,q), wherep = p(A| b) is the conditional and = p(A) is the marginal
probability. Function[(B) in this case defines triue of Shannon informatiomhich
was introduced and studied by Stratonov(ch[[22,23]. Theegariorm of problemd(3)
or (@) allows us to study families of optimal solutions indedent of the way informa-
tion distancd (y,yp) or functionalF (y) is defined.

We shall study the question of existence of feasible andtrigial solutions to
problemx(A ), but not necessarily to-x)(A ). Because solutions may exist even for un-
bounded linear functionaisc Y*, we shall refer to suck € Y* asinformation bounded
or simply asF-boundecelements.

Definition 3 (F-bounded linear functional). An element x Y is bounded relative
to a closed functional EY — RU {»} or F-boundedif X(A) € R for eachA ¢
(infF,F(&)).

Topological questions will not be addressed in this papewéver, the follow-
ing should be noted about the space offadbounded elements. Information distance
I (y,yo) or functionalF (y) =1 (y,Yo) can be used to define a topology¥iandZ CY),
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in which the collection of sublevel se@s:= {y: F(y) < A} of feasible and non-trivial
solutions is the base of closed neighbourhoodgpinfF = F(yp) (e.g. seellB]). The
support functiorsc(x) := sup{(x,y) : y € C}, which is a generalisation of a seminorm,
defines a topology oK C Y* that is compatible with duality. Becausg(x) = X(A), this
topological space is precisely the space offalbounded elements. Such topological
spaces, however, are generally not topological vectorespdecause sefscan be ‘un-
balanced’ ifl (y, o) # | (Yo,Y) (or F(y—Yo) # F (Yo —Y)), and thereforec(x) # sc(—X).
Thus, the topologies o¥ and X, generated respectively by the information distance
I(y,¥o) and support functior:(x), are different from the norm topologi€¥, || - |) and
(Y*, ]| -1I*). In particular,Y* may contain elementsor —x that are nof-bounded, so
that solutions to problem(A) or (—x)(A) may not exist, and se€ can be unbounded
in (Y, |- 1|)- On the other hand, there canbéounded elements outsidé. These facts
will be illustrated on an example later.

In the next section, we show that solutigns if exist, are the elements of subdiffer-
ential of functionalF*, dual of F. We remind thaF* : X — RU{} is the Legendre-
Fenchel transform df :

F* (%) := sup{(x,y) —F(y)}

and it is aways closed and convex (e.g. se€ [20,25]). Camditi* = F impliesF is
closed and convex. Otherwise, the epigrapk 6fis a convex closure of the epigraph
of FinY x R. Closed and convex functionals are continuous on the (edd@binterior
of the effective domain dof := {y: F(y) < o}, and they have the property

XedF(y) < OJF'(x)>y (112)

where seOF (yo) := {x: F(y) > F(yo) + (X,Yy—Yo), Vy € Y} is subdifferentiabf F at
Yo, and its elements are calledbgradientsin particular, Oc dF (yo) impliesF (yo) <
F(y) for all y (i.e. infF = F(yp)). If F is weakly (Gateaux) differentiable (or F* is
strictly convex), the@F (y) = {x}, and the correspondenge» x € dF (y) is a function.
Recall also that subgradients satisfy the following montity condition [11]:

(X1 —X2,y1—Y2) >0, Vyi € dF*(x) (12)

If the inequality is strict for alky # Xo, thendF* is strictly monotone, anB* is strictly
convex.

We remind also thatl : Y — RU{—} is concavef F(y) = —H(y) is convex. By
analogy, one definesupdifferentialof concave function [20], and the correspondence
Xy € dH* is antitone. The dual dfl in concave sense i$*(x) :=inf{(x,y) —H(y)}.

3 General properties of optimal solutions and the optimal véue
function

In this section, we study general properties of the optimhle function[(B) and optimal
feasible solutions — elemenyg such thak(A) = (x,yg) = U < . First, we apply the
standard method of Lagrange multipliers to derive soltignto problem((B).
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Proposition 2 (Necessary and sufficient optimality conditins).Elementy € Y solves
problem [(B) with closed FY — RU {0} if and only if the following conditions hold

yp €OF*(BX), F(yp)=A, B tedx(A), B '>0

Proof. If the solutionys to problem [B) exists, then it belongs to the boundary of the
sublevel se€ = {y: F(y) <A}, becauséx,-) is linear and the sublevel set is closed.
Moreoveryg belongs to the boundary of a convex closure of3etY, because itis the
intersection of all closed half-spacég: (x,y) < (x,yg)} containingC. Observe also
that

cleo{y:F(y) <A} ={y:F"(y) <A}
and therefore solutions satisfy conditietys ) = F**(yg). The latter implies alsaF (yg) =

JdF**(yg) (e.g. seel[20], Theorem 12). Thus, the Lagrange functiothiconditional
extremum in[(B) can be written in termsBf* as follows

K.Y = (xy)+B A =F*(y)l,

where 31 is the Lagrange multiplier for the constraihte (infF,F(é)). Because
x(y) = (x,y) is linear and~** is convex, the Lagrange function is concavefor > 0.
In this case, ConditioﬂK(yB,B*l) 5 0 is both necessary and sufficient f@randﬁ*l
to define its least upper bound, which gives

AK(yp.B~) =x—BIOF(y5) 50, = yp€dF'(Bx)
p-1K(Yp,B~1) =A ~F"(yp) 50, = F"(yp) =2
Note that ifF # F**, then generallyr**(y) < F(y), and conditionF**(yg) = A must
be replaced by the stronger conditiys) = A. Noting thatk(A ) = (x,yg) + B 1A —
F(yp)], the Lagrange multiplier is defined #x(A) > B~1. Note thatdx(A) > 0, be-
causex(A) is isotone (non-decreasing), ad! = 0 if and only if A = F(&y). O

Remark 2.Solutions to probleni{4), defining the inverse function(v), are given by
similar conditions. Indeed, the corresponding Lagrangetion is

K(y,B) =F™(y)+Blu—(xy)]

and the corresponding necessary and sufficient conditiens a
Y €OF*(Bx), (xyp)=v, Bedx*(v), B>0

Functionx(A ), defined by equatiori{5), is antitone, becange) = —(—x)(A). The
necessary and sufficient conditions for the infimunx(a) are identical to those in
PropositioriL 2 with the only exception that! < 0. Similarly, conditions defining the
infimum inx~(v) are identical those ot 1(uv), given above, but witl < 0.

Remark 3.If there existy, € domF such that inF = F(yo) (i.e. 0€ dF(yp)), then
Uo = sup{(x,y) :y € dF*(0)} anduy = inf{{x,y) : y € dF*(0)}. If yo is unique (i.e.
J0F*(0) = {Yo}), thenUg = u; otherwiseDg > Uy,.
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In previous section, we defined &ibounded linear functionad that admits solu-
tions to problem[(B) o {4) for each constraint (infF,F(J)). It was mentioned also
that solutions may not exist even for some Y*, so that the set§y: F(y) <A} are
unbounded in the norm topolodY, || - ||). If they are bounded, then® Int(domF*)
(see [4,15]). Thus, the concept of &rbounded element allows us to consider such
X € Y# that the origin of a one-dimensional subsp&oe= {Bx: 8 € R} is not on the
interior of domF*. Also, conditionk(A) € R does not imply(—x)(A) € R, so thatx is
F-bounded, but-x is not. Furthermore, aR-boundedk can be unbounded relative to
a norm|| - || onY, and therefore it can be outside Banach spécén fact, Y* is pre-
cisely the space df - ||-bounded elements). For an illustration, consider thevalg
example.

Example 1.Let Q = N and letX, Y be the spaces of real sequenée@)} and{y(n)}

with pairing (-,-) defined by the suni12). L& (y) = (Iny—1,y) for y > 0, so that
the gradientF (y) = Iny, andF is minimised at the counting measugn) = 1. The
optimal solutions have the foriy = e?*, and the optimal value functiorgA) and

(—x)(A) are respectively

[

(X,yg) = ilx(n) MW and  — (x,yp) = — le(n) e P Bl>0

In particular, forx(n) = —n, the first series convergesteef (e — 1)~2, but the second
diverges for any3—! > 0. Thusx is F-bounded, but-x is not. Observe also that bath
and—x are unbounded relative to the nofim||1 onY, because there is no real number
IX]|eo ;= sUpP{| (X, ¥)| : [IY]]1 < 1} = sup,{x(n), —x(n)} for suchx. On the other hand, any
constant sequencgn) = a, wherea € (0, ), is bounded, but it is ndt-bounded.

The criteria for arF-bounded element< X follow from the optimality conditions,
obtained in Propositiop 2.

Proposition 3 (Existence of solutions)Solutions ¥ € Y maximising &) = (x,y) on
closed setgy: F(y) < A} exist for eachh € (infF,F(d)), where F: Y — RU {0} is

a closed functional, if and only if there exists at least onenber~—* > 0 such that
F*(Bx) < supF*. In other words, »e X is F-bounded if and only if it is absorbed by
the set{w: F*(w) < A*} for someA* € (infF*, supF*).

Proof. (=) Assume there exists numb@r! > 0 such thaF*(Bx) € (infF*,supF*).
Then there existgg € domF** such thatF*(Bx) = B(x,yg) —F**(yg) > B(X,yg) —
F(yg). In fact, solutions to probleni3) asg such thatF(yz) = F**(yg) andyg €
JF*(Bx) (Property[(1L)), and therefore

(xyp) =B [F*(BX)+F*(yp)] €R

Thereforeyg € dF*(Bx) solve problem[(3) foh = B(x,yp) —F*(Bx) € (infF,F()).

(<) Assume there exists a solutigp to problem[(8) forA € (infF,F(dx)). Then
yg € 0F*(Bx) (Propositiori 2), where & B~ <  (otherwise A = F (&) < SupF or
A =infF).
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The existence of solutioyz implies that sublevel set is bounded by closed half-
space{y: (x,y) < (x,yg)}. Because- is closed, its sublevel sefy : F(y) <A} are
closed for allA, and therefore the existence of a solution for one sudémplies that
solutions exist for alA € (inf F,F(&)). The converse is true and trivial.

Observe also thgBx is on the boundary of the closed convex $et: F*(w) <
F*(Bx)}, which is bounded by the closed half-spgee: (w,yg) < B(X,yg)}. In partic-
ular, elementg;x andBx for 31 < B < B2 are respectively on the interior and on the

exterior of this set, which is equivalentxdeing absorbed by the set. a

Proposition 4 (Monotonicity). Functionsx(A), x(A), X 1(v) and x (v), defined by
equations[(B)[(6)[{4) and6) for a closed ¥ — RU{w} and xs£ 0, have the following
properties:

. The mappinga — B, Bt € 9%(A), andu — B € dx1(v) are isotone.
. Ifin addition F* is strictly convex omlomF*, then these mappings are continuous.
X(A) is concave and strictly increasing far < F (d).
( ) is convex and strictly decreasing far< F(d_x).
( ) is convex and strictly increasing far > Uy.
x1(uv) is convex and strictly decreasing for< vy,

@meNH

wheredy, d_x, Up andu, are defined by equationis] (7] (9)] (8) aindl(10) respectively.

Proof. 1. Letyp,, yp, be two solutions to probleni(3) with constraints < A; re-
spectively, and lety = (X,yg,) anduz = (x,yg,). Using conditionyg € dF*(Bx)
of Propositiod 2 and monotonicity conditidn {12) for cone’ we have

(B2x— B1x,Yp, —Yp,) = (B2 — B1){X,Yp, — ¥p,) = 0

Functionx(A ) is isotone (by the inclusiofly: F(y) < A1} C {y: F(y) <A»}), and
therefored; < Az implies(x,yp, —yp,) = U2 — U1 > 0. It follows from the inequality
above thatA; < A, (or vy < Up) implies 31 < B,, which proves tha — 3 and
U — [3 are isotone.

2. Optimality conditiory € dF*(Bx) is equivalentt@x c dF**(yp) by property[(1L),
and together with conditiof (yg) = A (or (x,yg) = v) it implies that different
B1 < B2 can correspond to the samigv) if and only if 9F **(yg ) includes botiB1x
andf,x. This implies thaf* is not strictly convex onBix, B2x] € dF**(yg). Con-
versely, ifF* is strictly convex on dor*, thenf; # B> impliesA1 # A, (U1 # U2).
Thereforex(A) (x"1(v)) is a differentiable real function, and its derivative isi€0
tinuous.

3. Functionx(A) is strictly increasing, becausix(A) > B~ > 0if A < F(&), and
B~1=0ifand only if A > F (&) (Propositior[ 2). Moreover, the mappiig—
B~ < dx(A) is antitone (because— B is isotone), and thereforéA ) is concave.

4. By the same reasoning as above, funcfiem)(A) is concave and strictly increas-
ing for A < F(J_x). Thusx(A) = —(—x)(A) is convex and strictly decreasing.

5. Functionx—*(v) is strictly increasing foip < v, becaus@x(v) > 8 > 0, and
B =0ifandonly ifu = (x,yo) < Ug for anyyp € dF*(0) (infF = F(yp)). Moreover,
the mapping — B € dx1(v) is isotone, and therefose(v) is convex.
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6. Functionx1(v) is the inverse of convex and strictly decreasing functom).
Thus,x1(v) is also convex and strictly decreasing foK vy,
O

Remark 4 (Strict convexityElassical information distances between probability mea-
sures are often required to satisfy the additivity axid(wz yo) = 1 (y,¥o0) +1(z Yo) [8].
This is why such information distances are representedyusitogarithmic function,
and functionalF*, dual of F(y) = I (y,Yo), is represented using an exponential func-
tion, and it is strictly convex. IF* is not strictly convex, then there may exist different
quantitiesB1x # Box corresponding to the same valdie= F(yg) (or u = (X,yg)). If X

is understood as the objective function of an optimisatimbfem (e.g. a utility), then
without strict convexity oF*, the information functional cannot ‘distinguish’ between
some quantities of. Thus, the requirement fé* to be strictly convex is natural in the
context of optimisation problems.

To distinguish between positive and negative elements, guipespacexX andY
with order relations< in a usual way. LeX, C X be a pointed convex cone of non-
negative elements X so thatw < xif and only if x—w € X ;. We also demand that,
is reproducingX; — X; = X or

X=Xy —X_, Xp,Xo €Xp, VXeX

For example, ifX is a function space, theX, is the set of positive functions with
respect to the natural pointwise orderXlfs the space of operators on a Hilbert space,
thenX, is the cone of elemeniSx € X. The order orY is induced by the dual cone:

Yi:={yeY:(xy) >0, Vx>0}

Proposition 5 (Zero solution). If solutions y to problem [(8) for all values\ of a
closed functional EY — RU {0} are non-negative (i.e.gyc Y, forall A = F(y)) and
yg = 0 for someA, then

x=0 or infF=F(0) or F(&) =F(0)

Proof. Assume the oppositec# 0 and infF < F(0) < F(&). Then functiork(A) =
(x,yg) is strictly increasing (Propositin 4), and s¢ys F (y) < F(0)} and{y: F(0) <
F(y)} are non-emptyR is closed). Thus, there exist solutionsandy, such that

F(y1) <F(0) <F(y2) and (xy1) <0< (Xy2)
Using decompositior = X — X_, X¢, X_ € X; andys, ¥» € Y4, we conclude that

(X —=x,y1) <0 = X <Xo (X =Xy €Xy)
(Xt =X,y2) >0 = X >X (XX €Xy)

This impliesx = 0, which is a contradiction. a
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4 Main result: Mutual absolute continuity

Our interest is in the support set of optimal positive meesigolving problem{3).
We remind tha is a linear algebra, which can be associated with the algeijt)
of subsets of2 in the classical (commutative) setting, or with the algef#@?’) of
subspaces af# in non-classical (non-commutative) setting. A subalgef#(&) of
subsetE C Q or subspac& C . corresponds in each case to a subspdce X.
Thus, we shall treat these cases generally by defining antants linear projection
Pv : X — M C X and using notatioly(M) = 0 to denote measures that are zero on
subset or subspaée

We remind also that i¥ is the dual ofX, then the dual of subspadé C X is the
factor spac&/ /M~ of equivalence classég := {z€ Y : y—zec M+ } generated by the
annihilatoM+ := {y €Y : (x,y) =0, Vx& M}. Thus, the elements &/ M~ correspond
to measures that are equivalentMnlIn particular,[0] € Y/M* is the annihilatoM -,
and it is a subspace ¥fcorresponding to measures such §{&) = 0. The restriction
of F* to M is given byF*(Pux), and the dual of*(Pyx) is defined onY/M* as

F(y]) == inf{F**(y) :y € [y]}.

Theorem 1 (Mutual absolute continuity).Let{yg }x C Y; be a family of non-negative
linear functionals on X that are solutions to problel (3) &k valuesA of a closed
functional F: Y — RU{w}. If F*, the dual of F, is strictly convex for all® domF*,
then:

1. Thereisa subfamil{/y;’g}x C{yp}x containing y, for eachA € (infF,F(J)), and
yE correspond to mutually absolutely continuous positive snezs.

2. If0 e domF* (domF** is closed), then there exis§ (&) in {yg }x such thainfF =
F(yo) (sup{(x,y) : y € domF} = (x,&)), and it is absolutely continuous w.r.t. all
Y-

3. If in addition F** is strictly convex for all yc domF**, then {y;’g}x = {yp}x\
{Yo, 6}

Proof. Letyg be a solution for somg € (infF,F(8,)). Thenyg € dF*(Bx), 0< B~ <

o (Propositio R2). Ley : X — M be a continuous linear projection onto subspace
M C X. Then[yg] € dF*(BRvX), [yg] € Y/M*. Assume that the corresponding measure
yg(M) = 0. Thenyg € [0] € Y/M*, where[0] = M+, and becausf/z] > 0 (v is a
positive operator)yg] = [0] implies by Propositionl5

Pux=0 or infF*=F™([0]) or F**([&])=F™([0])

Observe thabF**([0]) is a singleton set, becauBé (and hencd=*(Ryx)) is strictly
convex on donk*. Therefore, the latter two cases above are false, becahsenite
JF**([0]) would contain the intervalf, BRyx] or [BRux,»), 0 < 8 < . Thus, the
only true case i®yx = 0. But thenBRyx = 0 for all 8, and therefore

[0] € OF*(BPux), VB EeR
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In other words, for each € (infF,F(J)), there is a solutioyg, such that the corre-
sponding measurng (M) = 0.

These measures are not mutually absolutely continuousfahigre exists solution
yp for someA € (inf F,F(d)) such that the corresponding measygéM’) =0on
some larger subspat& > M. The subfamily{y% }x € {yp }x corresponding to mutually
absolutely continuous measures forak (infF,F(d)) is constructed by taking

M = sup{M’ C X: 3yj € {y}x, ¥3(M') =0}

where supremum is with respect to ordering by inclusion.

If 0 € domF* (domF is closed), then irff (sup{(x,y) : y € domF}) is attained at
someyq (Jx) corresponding t@@ = 0 (81 = 0). Becaus®yx = 0 implies thaf3Pyx =0
for B =0 (81 = 0), the measure correspondingt(&) is absolutely continuous with
respect to all measures {; }.

If F** is strictly convex on dorR**, thendF*([3x) contains unique elemeyg for
eachB~* >0, and{yz}x = {yp}x\ {Yo. 3} o

Remark 5.1f F** is continuous ayg € Int(domF**), then it is G-differentiable ayg

if and only if 9F**(yg) is a singleton set (e.g. see [25], Chapter 2, Section 4.1). Ou
interest, however, is in solutioryg € dF*(Bx) that can be on the boundary of déifT,
such as in the case when déift is the positive con&; of (Y, <), and all solutions

yg € Y} correspond to positive measures. In this cygéM) = 0 for someM C X
impliesyg is on the boundary of, . The condition of strict convexity df* on donF*

in Theoreni ]l implies thalF*(x1) # dF *(x2) for all x; # Xz in domF*, even ifdF*(x;)

are on the boundary of dolt*.

Corollary 1 (Support). Under the assumptions of TheorEin 1, the support of element
x € X is a subset of the support of optimal measugeoy all A < (infF,F(d)).

Proof. During the proof of Theoreml 1, we established under its apsioms, that if
A € (infF,F(&)), then conditioryg (M) = 0 impliesRyx = 0 € M. Dually, if Byx # 0
for someM C X, thenyg (M) # 0 for allyg € {yg}x- O

Example 2 (Relative Informatior)et us defind=: Y — RU {0} as

<In yl,y> —(L,y—Yo) ify>0andyy>0

X 0

F(Y) =19 (1,yo) if y= 0 andyp > 0 (13)
00 otherwise

This functional is closed, strictly convex and weakly diéfetiable on the interior of
domF: y

DF(y):Iny— — €y =0F*(x)
0

One can defin€* : X — RU{x} as

F*(x) := (1, €yo)
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which is also closed, strictly convex and weakly differabte for allx € X, where it
is finite (i.e. on donfr*). Solutions to probleni{3) witk defined above belong to the
exponential family[(lL), and they correspond to exponenti@ghsures that are mutually
absolutely continuous.

Note that generally dof* C X. For example, i is the space of sequenceN —

R, then there are unbounded sequences.iHowever, some unbounded sequences are
F-bounded, if there exis{ ! > 0 such thaF *(Bx) < o (e.g. see Examplé 1). Observe
that this property depends on the choice of elerggat OF*(0) minimisingF.

The relative information functiondl (1.3) is a generalisatdf the classical Kullback-
Leibler information distancéx.(p,q) := Ep{Inp—Ing} on &(Q) [14]. Indeed, for
positive measures with equal nofim|, = (1,-), we have(1,y—yp) = 0. Functionall(IB),
however, is non-negative for all elementsand yy (i.e. not necessarily with equal
norms), and the gradient &f has a convenient form. X andY are commutative alge-
bras, such as algebras of real functionghrihen the pairing:,-) is defined by the sum
or the integrall[(R), and_(13) reduces to the classical measufrrelative information.
For non-commutative algebras, such as the algebra of cdrirjgamitian operators on
a separable Hilbert space and the trace paifihg (2), fumatid3) is a generalisation of
some quantum information distances, which depend on thewgéyis defined (e.g. as

exp{Iny —Inyo} or y¥ 2y, 1y/?).
Example 3 (Counter-exampld)his example is based on a counter-example, proposed

by one of the reviewers of an earlier version of the papemiLetX be a fixed ‘weight’
vector, and leF : Y — RU{e} be defined as follows

F(y) == (w |y} — (wiy])
where|y| = sup{—y,y}. Its subdifferential is

(2(wy) — 1w if y>0
IF(y) = { [—w, W] ify=0

(1-2(wy)w if y<0

It is clear from the above that iff = F(0), because & dF*(x). For anyA > infF,
there is a unique solutioyy € dF*(Bx) to problem[(B) such thagkx ¢ [—w,w]. How-
ever, if B1Pux € [—-Puw, Ruw], then all solutions/g, € [0] (andyg, (M) = 0) for the
corresponding\ > infF. If BoRux ¢ [—Ruw, Ruw], thenyp, ¢ [0] (andyg, (M) # 0).
Therefore, solutiongg do not correspond to a family of mutually absolutely continu
ous measures. Itis quite clear, however, that functibrialdefined above in such a way
that its dualF* is not strictly convex, and therefore it does not satisfyabeditions of
Theorent]l. As mentioned in Remark 4, such functionals areseigt good for mea-
suring information in optimisation problems, becausertialues cannot distinguish
between some quantiti¢kx of utility.

5 Optimal probability measures

Let us now consider the case, when the optimisation proliBns (estricted to statisti-
cal manifoldZ? C Y. In this case, solutionsg = yg/||ys||1 are optimal probability mea-
sures maximising expected valg{x} := (x, p) subjecttoF(p) <A and|y||1 =1. In
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this context, we interpref (p) < A as an information constraint. TheorEm 1 and Corol-
lary [ establish general properties of optimal measureshiroad class of functionals
F. However, a little bit more can be said about optimal prolitgbneasures.

As was mentioned earlier, measures suchytidt) = 0 for someM C X belong to
the same subspadé C Y. Therefore, all mutually absolutely continuous measures,
such as the famil‘{y;’;} of optimal solutions in Theorel 1, belong to the same sulespac

in M+ C Y. Recall that statistical manifolé?” is a compact convex set that is the base
of projective positive con¥, . Thus, all mutually absolutely continuous optimal proba-
bility measuresp;’g corresponding tty;’g € {y;’;}X belong to the interior of the base of the

projective subcon®-, or in other words to the interior of a statistical sub-maluf
In the classical case, this sub-manifold is a simpléxQ \ E), and it is a facet of the
simplex#?(Q).

The restriction ofy € Y, to the statistical manifold?” factorises the dual space
X C Y%, Observe that? is a subset of the affine shit

Ni={yeY:(Ly)=1}={1},+q, qe&

where subspacgl} | is the annihilator of linear functional4 X. This unit functional
is the extension of the norft ||1, which is additive on the con¥é. of positive elements,
from Y, to the whole spac¥: (1,y) = ||y||1 if y > 0. Thus, every probability measure
p € & is equivalently represented by elemeyts {1} | asp=y+0q,q € £.

The space of random variables (observables) is the dualbsipsiee{1} |, and it
is the factor spac& /R1, generated by the subspaké := {81:3 € R, 1 € X} of
constant vectors. Random variables are shifts= R1+ x, and they are equivalence
classesxis equivalent to¢ if and only if x— X' € R1 or equivalentlyx—x',p—q) =0
for anyp, q € &. Thus, different random variablég and[w] correspond to elements
X, W € X such thatx—w,p—q) # 0 orx—w¢ R1.

In Corollary(1, it was established that for strictly conFek the support ok € X is
a subset of the support of optimal measwgsor all A € (infF,F(J)). Observe now
that zero in the space of random variab¥e&R1 is subspac®1 of constant vectors.
Therefore, iffux ¢ R1, thenpg (M) > 0. Converselypg (M) = 0 implies thaByx € R1.

In the language of classical probability this result cantages as follows: ifk(w;) #
X(wp) for somewy, wp € E C Q, thenpg(E) > 0 for all optimal probability measures
with A € (infF,F(&)). Converselypg(E) = 0 implies that(w) = const for allw € E.

6 Optimal transition kernels

In this section, we consider a composite syst@m= A x B and the problem of opti-
misation of transitions between the elementé&a@idB. For simplicity, our exposition
will be in the classical setting of commutative algebtaThis is because joint and
conditional probability measures are well-defined and ustded in this setting. In the
non-classical case, the analogue of a conditional prababjberator can also be de-
fined, and the results of this section can then be transfeéoréliis setting. However,
this leads to unnecessary complications, which we shaitiavo

Optimisation problems for composite systems appear inribeof optimal deci-
sions and control, where optimality is defined relative toiliyfunctionx: Ax B — R,
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and the main objective is optimisation of transitions betwthe elements of sefsand
B. In some cases, optimal transitions are deterministicesponding to some functions
a= f(b) orb e f~1(a). Non-deterministic transitions are represented by Matkan-
sition kernels.

Let Z(A) and Z(B) be classical statistical manifolds associated with medsear
sets(A, &) and(B, %) respectively. Recall thattaansition kernelr : B— Z2(A) (e.g.
[8]) is a conditional probability measurgb) = p(A; | b) that is measurable with respect
to #(B) for eachA; € o/ (A). Transition kernel defines linear operafr ?(B) —

P (A) as follows:

TP(B)) = [ p(A|b)dp(b) = p(A)
]
Elementsp € (A x B) are joint probability measurgg(A N B;j) = p(Ai | Bj) p(Bj),
and forp(B;) > 0, the conditional probability is defined by the Bayes foraul
P(AINB))
p(Bj)
A random variablea is statistically independent df if and only if p(A; | b) = p(A)

for eachb € B, A; € <7 (A). In this casep(Ai N Bj) = p(A)p(Bj). On the other hand,
deterministic dependeney= f(b) corresponds to transition kernel

P(A | Bj) =

1 if f(b) € A
P(A | b) = () (AV) = {o Ioth(er\)/vies/;l

In this casep(AiNBj) = &) (A) p(Bj) = 0forall f(b) ¢ Ai. If a= f(b) is aninjective
function, thenp(A)) = p(B;) for eachA; = (Bj), andp(B; | &) = ;114 (Bj). Thus,
we can classifyp € (A x B) into deterministic or non-deterministic.

Definition 4 (Deterministic composite state)A joint probability measure g &2 (A x
B) is deterministi¢ if and only if it defines a deterministic transition kerrgb) =
Or(b)(A) for a measurable function fB — A or f-1: A — B. Otherwise, p ison-
deterministic

Example 4 (Exponential kerneld)et Q = A x B, whereA = (A,da) andB = (B,db)
are equivalent Lebesgue spaces. Ket X(A x B) be a commutative algebra, aid
be in duality withX via {-,-), defined by the integral{2). Le% : Y — RU {0} be
the relative information functional (13), such that for legcs Y., F is minimised at
Yo = Y(A)y(B), wherey(A) = (1,y)|g, Y(B) = (1,y)|a are the corresponding marginal
measures. Then the restrictionfoto 22(Q) is the Shannon mutual informatidn [21]:

o dp(a,b) _ dp(alb)
Fs(p) = /AXBm {W} dp(a,b)_/de(b)/Aln[ i) }dp(a|b) (14)

Solutionspg € &7(A x B) to problem[(B) with constraints on Shannon information be-
long to the exponential family:

dpg(a,b) = €8 X@P+®B N dpa)dp(b),
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where®(B1) is determined from the normalisation condition as

(B =~ nF (B =~ Hn [ @Y dp(a)dp(b)
The solutions define exponential transition kernels:
dpg(a|b) = #HED@E Dl dp(a),  dpy(b| a) =& @E A dp(b)
where®(B~1,b) and ®(B8~1,a) now depend o anda, as they are computed using

partial integrals iPA andB respectlvely Observe also that becadpéa) = [gdp(a,b)
anddp(b) = [,dp(a,b), the following conditions hold

/Beﬁ[x<a,b)+q>(pfl,b)}dp(b) —1, /eﬁ x(ab)+®(B ]dp( a)—

If A= (A,+) andB = (B, +) are groups, and the utility function is translation invatia
x(a+c,b+c) =x(a,b), then it follows from the conditions above that

B OB) g () — < / eﬁx(a’b)db)l . PO A gpa) = ( [epen da>

and the exponential transition kernels take the followingpse form

-1

eﬁ <ab>d eﬁ <ab>db

The normalising integrals above are constant as they doapatre ora or b. In this im-
portant case, one can introduce ffe energjunction®o(B 1) := — 3 1In [;#X@P db
or thefree cumulant generating functicéh(B8) = —B®o(B~1). If one of the marginal
distributions, say(B), is fixed, then Shannon information has the following expi@s

Fe(pp) = [ do(a) [ mdggggy

_ /dp(a) / {In(eﬁx(a’b))—ln /eﬁx(a*mdb—ln[dp(b)/db]} dp(b|a)
A JB JB
— BEpy (X} — %(B) + H{p(B)} (15)

dp(b|a)

Observe also that the expected utility is the derivativig) = In [;eX@P) db

X@b) e ) [
Epy (X} = [ dp(@) fepxabdb db= =357 [ dpi@) = #(B)  (16)

Here,H{p(B)} = — JgIn[dp(b)/dbjdp(b) is the differential entropy op(B) (assum-
ing that the densitd p(b) /dbexists). Also, because Shannon information can be repre-

sented as the differen€g(p) = H{p(B)} —H{p(B|a)}, the quantity(B) — B ¥ (B)
is clearly the conditional differential entrop{{p(B | a)}.
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Remark 6 (Information of deterministic kernelB)ansition kernels define information
in a more traditional sense as communication between theegiis of seté andB. The
maximum amount of information in this sense can be commumichy an injective
functiona = f(b), because the preimade?(a) uniquely determines. If a function is
not injective, therb € f~1(a) is determined up to the probability [if ~*(a)|. Note that
Y act(B) |f~1(a)| = |B|, and the expected value pF~1(a)| with respect to a uniform
distribution ofa € f(B) is |B|/|f(B)|. Therefore, one can pyt(a) = p(b)|f(B)|/|B].
This reasoning demonstrates that for determinigtiec 4?(A x B), information con-
straintsF (p;) < A < supF, understood in the sense of communication, impose con-
straints| f (B)| < |B| on the cardinality of the image of the functionBfis infinite, then
there can be an infinite number of constraihts: supF such that the imagé(B) is
finite. Moreover, ifB is countable, theri(B) is finite for all A < supF. The infimum
of information corresponds to constant functions (inahgdihe empty function). These
facts can be well illustrated using Shannon information:

Fe(pr) = [[anb) [ in 202 =2 o1 (o) -y
B

|
—— [[apto) in(dp(t () = [ dp(o) in (- apiv))
—In[£(8)| ~In|B| + H{p(B)}

wherep; = &(f(b) —b)dp(b), andH{p(B)} is the entropy of(B). As is well-known,
H{p(B)} <In|B|, and therefor€s(ps) <In|f(B)|. Moreover, becaudd{p(A|b)} =0
for p(A|b) = &) (A), we haveFg(ps) =H{p(A)} <H{p(B)}. The maximum amount
of informationFs(ps) =H{p(B)} is communicated if and only if : B— Ais injective
on the support op(B).

The application of Theoref 1 to the ca@e= A x Byields the following result.

Corollary 2 (Optimal transition kernels). Let{pg}x C &(Ax B) be a family of joint
probability measures that are optimal solutions to probl@i for all valuesA of a
closed functional E Y — RU {e}. If F*, the dual of F, is strictly convex otiomF*
and F is minimised at gpec dF*(0) C Int(#?(Ax B)), then g is deterministic if and
only if A > F (&) or (X, pg) = (X, ).

Proof. Assume there existgg € {pg}x for A <F(d«) (and hencex, pg) < (x,d)) and
such that the corresponding transition kernel is detestimipg (A | Bj) = 1 if Aj =
f(Bj) andpg(A\ A | Bj) = 0. In this casepg(A\ A, Bj) = 0, and therefore it is not on
the interior of (A x B), pg ¢ dF*(0) andF (pg) = A € (infF,F(d«)). Butthenpg(A\
Ai,Bj) =0forall A € [infF,supF] by TheorenlL. In particular, there exigtgc dF *(0)
such thatpg = 0 if f(b) ¢ A, and thereforgy is not on the interior of? (A x B). Thus,
by contradiction we have provén> F () (and hencéx, pg) = (x, &)). Conversely, if
A > F (&), then by there exist solutiady € extZ (A x B) (PropositiofiIL) corresponding
to some functiorf (b) = a. O

Remark 7.The assumptions of Corolldry 2 are quite general. Stricverity of F* was
justified in Remarkl4, and conditiomy € Int(£?(A x B)) is very natural. Indeed, each
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facet of the simplex??(A x B) is also a simplex of some subset® B. Therefore,
the elementy is always in the interior of some simple® (A x Bj), unlesspy =0 €
extZ (A x B). In all practical cases, information is minimisedmt# J. In particular,
one often chooseg = p(Ai)p(B;), so thata andb are independent, and the support of
p(A)) andp(B;) includes more than one element.

Corollary 3 (Strict inequalities). Let {pg}x C #(AxB) and F:Y — RU{} be
defined as in Corollarff]2. Then, for any F-bounded elemenixx

<Xv pf> < <X7 pB>

for all deterministic p € ?(A x B) such that Kps) = F(pg) € (infF,F(&)). Simi-
larly,

F(pr) > F(pp)
for all deterministic p € &2(A x B) such that(x, ps) = (X, pg) € (Uo, (X, &))-

Proof. For allx € X andy €Y, the Young-Fenchel inequality holds:

(xy) <F*(x)+F(y)

Moreover, the above holds with equality if and only & dF *(x) (e.g. se€[[25]). Ike X
is F-bounded andr (y) = A € (infF,F(&)), thendF*(Bx) is non-empty by Proposi-
tion[3. Assumepg € dF*(Bx). Then(x, pg) = BLF*(Bx) + F(pg)]- On the other
hand, if p; is deterministic, themps ¢ dF*(Bx), unlessF(ps) > F(&) (Corollary2).
Thus, for anypt such thaf (pr) = F(pg), we have(x, pr) < B [F*(BX) + F(pg)],
which proves the first inequality.

By definition of the Legendre-Fenchel transforft;(y) > (x,y) — F*(x), and the
equality holds if and only iff € dF*(x). Thus, if ps is deterministic, thep; ¢ 0F*(x),
unless(x, ps) = (x, &) (Corollary[2). Moreover > 0 for anyA > infF corresponding
to (X, pg) > To. In this caseF**(ps) > B(X, ps) — F*(Bx) = B(X, pg) — F*(Bx) =
F*(pg). Using the facts thak (ps) > F**(ps) andF**(pg) = F(pg) for solutions
pg € dF*(BX), we obtain the second inequality. O

Strict inequalities of Corollaryl3 present an interestipgaortunity for constructing
an example such thak, p;) = —o or F(ps) = o for any deterministic transition ker-
nel satisfying a given information or utility constrainth& inequalitiegx, pg) > —o
or F(pg) < o would imply the existence of a non-deterministic transitiernel sat-
isfying the same information or utility constraints and imava finite expected utility
and information. Such an example can be relevant in the kbotéhe computational
complexity theory. Let us consider one prototypical exampl

Example 5 (Optimal communicatio)et a € A andb € B be real variables, and let
us consider the problem of information transmission betw&andB that is optimal
with respect to a measurable utility functienAx B— R. If be (R, %, p) is arandom
variable with known distribution, then the expected wtilit,{x} is:

Ep{x} = // (a,b)dp(a,b) = /dp / (a,b)dp(alb) = /Ep{x|b}dp()
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HereEp{x | b} denotes conditional expected utility, and it is maximisgdchoosing
the optimal conditional probabilitd p(a | b). The maximum of information is com-
municated by an injective functiom= f(b), represented by a deterministic transition
kernel. The optimal function is defined by the utility furesti On the other hand, if no
information aboub € B can be communicated, theip(a | b) = dp(a), and one can
only consider constant functions. Note, however, that arestill choose the optimal
constant functiom = f(b). Indeed, ifx(a, b) is differentiable and concave @ thenais

a solution to the equatidia [gx(a,b)d p(b) = 0. In particular, ifx(a,b) = — 3 (a—b)?,
thenOa [gx(a,b)dp(b) = [zg(b—a)dp(b), anda= [gbdp(b) = Ey{b}, which is the
well-known classical method minimising mean-squaredatem. Therefore

£ (X} = —3 [ (a-b)2dp(b) < —ZVar(b}

The value on the right depends on the distributgB), and there are many examples
of distributions with unbounded variance, suchdagb) = [r1(b? 4+ 1)]~*db (Cauchy
distribution). Indeed, the integrgl(a— b)?(b? + 1)~1db does not converge oB =
(—o,00). We note thaffp{b} is also undefined in this case. Howeverp{B) is uni-
modal and symmetric, then one can choase be the mode op(B).

Let us assume now that some limited information about theevafb can be com-
municated so thadp(a | b) # dp(a) (and hencelp(b | a) # dp(b)). For example, this
can be the information thdit belongs to some subset Bf such ad >0 orb < 0. In
each case, one can choose a different optimal v@lwnda,. A more ‘precise’ infor-
mation aboub would correspond to a larger number of subd®ts B, and therefore
one could choose a larger number of optimal valyje¥he expected utility in this case
is

B =33 [ (G-brdp0)

The cardinality| f (B)| of the image of the optimal functioa = f(B;) is bounded
by the amount of information that can be communicated. Ttiesminimum of infor-
mation corresponded to the optimal constant funcligib} = f(b). The maximum
of information would imply that the value df can be communicated exactly, and one
could select the optimal injective functia= b. If, however, all information cannot
be communicated, then the function cannot be injectiveahtiqular, for an infiniteB,
there can be an infinite number of constraints such|th@)| is finite (see Remarlk 6).
In this situation, one can choose only a finite number of ogtimaluesa;, such as
choosing two valuea; anda; if the information partition® into two subsets.

Observe now that the integrfila— b)?(b? + 1) db does not converge on the inter-
valsB; = (—,0] or B, = [0, ). In fact, for any finite partition of the real line, there are
some unbounded intervals on which the integral does notergev Thus, in our exam-
ple,bis distributed in such a way, that the expected value otytilia, b) = —%(a— b)2
cannot be larger thano for any deterministig; satisfying constraintd < supF such
that | f(B)| is finite. To achieve a finite expected utility, a function mhbave infinite
image f(B). But this means that the function will transmit an infinite@mt of in-
formation. Let us now demonstrate that there exist nonraetéstic transition kernels
for this problem achieving finite expected utility and commumating finite amount of
information.
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Indeed, lef be the Shannon information as in Exanidle 4. In this case,fitimal
transition kernels belong to the exponential family. Mareo because the utility func-
tion x(a,b) = —%(a— b)? is translation invariank(a+ c,b+ c) = x(a,b), we can use
simplified expressions from Examjle 4. In particutéy(3) = In /218 ~1, and optimal
transition kernetl p(a | b) is Gaussian

dpp(a|b) = 2 exp{ - 3p(a—b)} da

v2nB-1

Conditional expectatiofip, {x| b} is constant for alb € B:

]Ep {X| b} — _}#/oo (a_ b)zeféﬁ(afb)zda: _}7"27-[[373 — _} -1
P 2./2nB-1/)-w 2./2nB-1 2
and therefore 1
Epy X} = [ Ep, {x| b}dp(b) = 5B

The expression above can also be easily obtained from equdi®) as the derivative
of Yp(B) = In\/2mB 1. The optimal valugd— > 0 depends on the amouhtof infor-
mation, representing divergencedyi(a | b) from d p(a), and it can be found using the
inverse of functiom = Fs(pg). Thus, using equatiofiL(IL5), we obtain

B — 2met-2H{p(B)} 2]

The value off3 depends on the differendé{p(B)} — A, which equals to the condi-
tional differential entropyH { p(B | a) }, becausd = Fs(pg) =H{p(B)} —H{p(B|a)}.
Therefore, itH{p(B | a)} is finite, thenB > 0 (371 < ), andEp, {x} is finite for all
A > 0. In fact, one can easily check that the following integaiwerges

L ¥B>0
/7m(a_ i 9 p>

Thus, in our example, the expected utility of any deterntioigs is (X, pf) = —oo, un-
less the imagé (B) and the amount of informatiops communicates is infinite. A non-
deterministicog communicating finite amount of information was shown to hiaviee
expected utility(x, pg). We point out also that the utility functior(a, b) = —%(a— b)2
is unbounded, but it i& -bounded becaude’ (Bx) = B(x, pg) —A = —% —A < oo for
all A € (infF,F(dy)).

Remark 8.As mentioned in RemafK 6, B is countable, then any constraht supF
implies that the imagé (B) is finite. Thus, one can use the same ideas of Exahiple 5
to construct an example such that the expected utiiifys) = —oo for all A < supF

and any deterministips with F(ps) = A. For instance, iA = B=N, then the example
can be constructed by using utilitfa, b) = —(a—b)2 and takingp(b) = [b3(3)] 7%,
where {(K) = Spen b~k is the Riemann zeta function. The expected utility of a de-
terministic ps is negatively infinite for allA < supF; the expected utility of a non-
deterministicpg is finite for allA > 0.
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7 Discussion

We studied optimal Radon measures using a generalisatitre aflassical variational
problem of information theory. The main result is the exiseof families of mutually
absolutely continuous measures that are optimal solutmpeoblems with constraints
on an abstract information resource with a strictly convealdThus, we showed that
this property of optimal measures, which was known for a pasmeter exponential
family, is related to a geometric rather than algebraic prtypof information. Moreover,
we argued that strict convexity of the dual functional is tural property of information
in the context of optimisation. Our method does not dependanmutativity of the
algebra of observables, and for this reason the result lattsfor classical and non-
classical (i.e. non-commutative or quantum) measures.

In many ways, this work can be seen as a generalisation ofidssical results on
variational problems in information theoty [21]22] andtistical physics[[10]. Indeed,
standard formulae of these theories relating Gibbs messfrez energy, entropy and
channel capacity can be recovered simply by defining inftionaonstraints using the
Kullback-Leibler divergence. However, the general apphoallowed us to show that
some properties of the optimal families of measures, suandsal absolute continuity
and support sets, do not depend on how the information @inttrare defined.

Our results about classification of optimal transition lesrcan have applications
not only to optimisation problems, but also to some theoattijuestions in the the-
ory of computational complexity, where much of the effortdisvoted to the ques-
tion of whether non-deterministic procedures give any ath@e over deterministic.
It was shown here that in a broad class of optimisation probl@ith information con-
straints optimal deterministic kernels do not exist. As larsiration, an example was
constructed where any deterministic kernel can only hagatieely infinite expected
utility (or equivalently unbounded expected error or rigkyless it communicates an
infinite amount of information. On the other hand, it was shahkat non-deterministic
kernels can both give finite expected utility and commumidatite information in the
same problem.

The results about sub-optimality of deterministic kermigsiot contradict the estab-
lished understanding in the classical theory of statistlegisions that asymptotically
randomised policies cannot be better than deterministic éeel[23] or more recently
[13]). Indeed, a randomisation of the function’s output ceuty decrease (loose) the
amount of information it communicates. However, our resalte about determinis-
tic and non-deterministic kernels that communicate theesamount of information.
Moreover, asymptotic results are concerned with obtaialhgpossibly infinite infor-
mation, in which case there are deterministic optimal kistre non-trivial claim that
we can make here is that under information constraints iohétéstic kernels are not just
suboptimal, but may fail to provide any meaningful soluti@tause of an unbounded
below expected utility, as was shown in Example 5. This seem®nfirm common
intuition in the field of applied optimisation, where numesgroblems exist on which
non-deterministic algorithms outperform all known detaristic methods (e.gL[12]).
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