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Abstract—This paper investigates universal polar coding
schemes. In particular, a notion of ordering (called convolu-
tional path) is introduced between probability distributions to
determine when a polar compression (or communication) scheme
designed for one distribution can also succeed for another one.
The original polar decoding algorithm is also generalized to
an algorithm allowing to learn information about the source
distribution using the idea of checkers. These tools are used to
construct a universal compression algorithm for binary sources,
operating at the lowest achievable rate (entropy), with low
complexity and with guaranteed small error probability.

In a second part of the paper, the problem of sketching
high dimensional discrete signals which are sparse is approached
via the polarization technique. It is shown that the number of
measurements required for perfect recovery is competitive with
the O(k log(n/k)) bound (with optimal constant for binary
signals), meanwhile affording a deterministic low complexity
measurement matrix.

I. INTRODUCTION

A new technique called ‘polarization’ has recently been
introduced by Arıkan in [3] to construct efficient channel cod-
ing schemes. The codes resulting from this technique, called
polar codes, have several nice attributes: (1) they are linear
codes generated by a low-complexity deterministic matrix (2)
they can be analyzed mathematically and bounds on the error
probability (exponential in the square root of the block length)
can be proved (3) they have a low encoding and decoding
complexity (4) they allow to reach the Shannon capacity on
any discrete memoryless channels (DMC). These codes are
indeed the first codes with low decoding complexity that are
provably capacity achieving on any DMC.

Since [3], the polarization technique has been generalized
to various settings. For example, it has been used in [18] for
rate-distortion via duality with test channels, in [19], [16], [20]
for wiretap channels and information secrecy, and in [24], [2]
for a multi-user problem (multiple accessing).

In this paper, we investigate the problem of robustness
of the polar coding schemes with respect to the knowledge
of source or channel distribution. The perfect knowledge of
this distribution is never available, and it is important that
any potentially practical scheme shows some robustness to
this knowledge. We hence develop several tools to construct
universal polarization schemes.

We then consider the problem of sketching high-
dimensional sparse signal using the polarization technique.
The hope being to leverage properties (1)-(4) to construct a
deterministic low-complexity sketching matrix and an efficient
sparse recovery algorithm. Since the method is defined for
signals valued in finite sets, it is of interest to lift the

construction to the real setting. Yet in this paper, we focus
our attention on the sketching problem for signals that are
discrete, motivated by applications dealing with such signals.
This occurs for example in network monitoring problems [12],
[13]. We will see that, just like one can exploit sparsity in the
domain, the sparsity in the magnitude (signals taking values in
finite sets) can be exploited to develop an efficient sketching
method via the polarization technique.

Some results in this paper have been presented in [1].

A. Channel and source polarization

Arıkan shows in [3] that an arbitrary binary input discrete
memoryless channel W can be polarized as follows: n in-
dependent uses of W can be transformed into n successive
uses of synthesized binary input channels that have (except
for a vanishing fraction) a symmetric capacity which tends to
either 0 or 1 (with n). In [23], this result is generalized to q-
ary input alphabets where q is prime, and in [2] it is extended
to q being powers of two (considering q to be a power of
two has computational advantages, but the case of powers of
prime follows too). We state here the result of [23] for q prime.
Notation: Xn := (X1, . . . , Xn).

Theorem 1. Let W be a q-ary input discrete memoryless
channel with q prime, n a power of 2, and let Un be i.i.d.
uniform random variables on Fq . Let Xn = UnGn, where
Gn =

[
1 0
1 1

]⊗ log2(n), and Y n be the output of n independent
uses of W when the input is Xn. Then, for any δ ∈ (0, 1),

1

n
|{i : I(Ui;Y

nU i−1) > δ}| n→∞−→ I(W ), (1)

where I(W ) is the mutual information of W (with a uniform
input distribution).

Theorem 1 can then be used to show the following polar-
ization phenomenon for sources.

Theorem 2. Let Xn be n i.i.d. random variables with distri-
bution p on Fq , n a power of 2, and let Un = XnGn, where
Gn =

[
1 0
1 1

]⊗ log2(n). Then, for any δ ∈ (0, 1),

1

n
|{i : H(Ui|U i−1) > δ}| n→∞−→ H(p), (2)

where H(p) is the entropy of the distribution p.

We will see in Section III that previous result follows from
Theorem 1 via a duality argument. A slightly more general
result is presented in [5].
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Note that all entropies and mutual informations are com-
puted with logarithms in base q (where q is the input or source
alphabet size).

A coding scheme from Theorem 1. The limit in the theorem
implies that for n large enough and except for a vanishing
fraction of indices i, I(Ui;Y

nU i−1) must be close to either
0 or 1. Hence, this suggests a coding scheme: on the indices
i for which the channel is good, i.e., I(Ui;Y

nU i−1) is close
to 1, put uncoded information bits in Ui, and for the other
indices, put frozen bits that are predetermined and revealed
to the decoder. This defines the vector Un. Then, the vector
Xn is sent over n independent uses of the channel. Note that
the rate of this code is given by the logarithm of the number
of information bits in Un divided by n, and by Theorem 1,
this can be made arbitrarily close to I(W ). Now the receiver
knows two things: the location1 of the indices i containing
information and frozen bits, and the value of the frozen bits
(on symmetric channels, the frozen bits can be all chosen to be
zero). Hence, from the output Y n of Xn, the receiver starts by
decoding the first component Ui which is not frozen. By virtue
of Theorem 1, one of the two possible value of Ui will have
(w.h.p.) a probability close to one and hence, the decoder has
a small probability of decoding Ui incorrectly. This process is
then iterated to decode successively the entire vector Un. An
analysis of the scaling2 of the bit error probability (decoding
wrongly a component in Ui) allows to conclude that w.h.p.
errors cannot propagate in this scheme, and hence, this scheme
achieves the uniform mutual information of the channel. A
remarkable feature of this coding scheme is that the encoding
and decoding complexity is shown to be O(n log n).

A coding scheme from Theorem 2. The limit in the theorem
implies that for n large enough and except for a vanishing frac-
tion of indices i, H(Ui|U i−1) is close to either 0 or 1. Hence,
the transformation Gn extracts the randomness in Xn, which
is initially uniformly dissipated over the n components, into
specific components indexed by the i’s such that H(Ui|U i−1)
is close to 1. Lossless compression can then be performed as
follows: from a given source output Xn, compute Un and store
the components of Un which do not have an entropy close to
0. Note that, from Theorem 2, the compression rate can be
made arbitrarily close to H(p) (lowest possible rate). For the
reconstruction, since the components with entropy close to
0 can be recovered correctly with high probability given the
past components, we can proceed successively in an analogue
manner as for the channel decoding problem. The speed of
polarization is shown to scale similarly as in the channel
case, and again, the encoding and decoding complexity of this
source coding scheme is only O(n log n).

B. Goals

In this paper, we are interested in analyzing how sensitive
the performance of the previous source/channel coding scheme

1No analytical formula is known to compute these indices. They are found
with algorithms, as in [25]

2To show achievability, the speed of convergence to the polarized channels
matters, and it is shown to be roughly 2−

√
n in [4].

is to the knowledge of the source/channel distribution. The
knowledge of source/channel distribution is used at two mo-
ments for each problem. In the channel coding problem, it is
first used to identify the location of the “good channels”, or
equivalently, the location of the indices i where the informa-
tion bits shall be sent. It is then used again in the decoding
process, to compute the probabilities that an information
bit Ui is equal each element of Fq (from the polarization
phenomenon, we know that one of these probabilities should
have a probability close to 1, but one still needs to compute
which one it is). Similarly, for source coding, the knowledge
of the source distribution is first used to find the components
of Un which must be stored, and then in the reconstruction
part, to compute the value of each non-stored components.

We will hence address the problem of constructing polar
coding schemes which can compress losslessly sources with-
out requiring perfect knowledge of their distributions, or which
can communicate reliably over channels without requiring
perfect knowledge of the channel distribution. The application
to the channel setting follows then from Section III, where
the duality between the source and channel problem is made
explicit.

We will then consider the problem of sparse data recovery,
using polar codes. From the discussion on the source polar-
ization theorem above, a connection to the sketching problem
is apparent: if we sense the signal Un only in the components
i for which H(Ui|U i−1) is close to 1, we obtain a sampling
of the signal which allows perfect recovery of the full signal,
with a significantly reduced number of measurements. There
are however several differences between a compressed sensing
setting [7], [11] and the source polarization setting; in partic-
ular, in the latter setting the source is random with a known
distribution and it is valued in a finite field (of arbitrarily
large cardinality), whereas it is real and with no prior (besides
sparse) in compressed sensing. Hence, a first question is to
ask how sparsity, i.e., the property of having many components
that are 0, is modeled for such random signals, and how much
the choice of a specific sparse probability distribution matters.
This part can be investigated using our results on universal
source polarization, which establishes the connection between
the two parts of this paper.

II. RESULTS

A universal compression algorithm for binary sources is
introduced in Section V-A. Theorem 3 shows that this algo-
rithm performs at the lowest achievable rate (entropy), with
a O(n log2 n) complexity and (roughly) a O(2−

√
n) error

probability.
Partial generalizations are discussed for non-binary sources

in Section V-B.
In Section VI-B, a low-complexity deterministic sketching

matrix is constructed. It is shown in Theorem 4 that for
k-sparse signals in Fna , O(k loge n/k) measurements taken
with the proposed sketching matrix are sufficient to re-
cover perfectly the original vector with a probability at least
1 − O(2−

√
n), and a reconstruction algorithm of complexity



O(a log2 a · n log2 n). An improved version of this Theorem
(regarding the dependence in a of the constants) is investigated
in Section VI-E.

III. DUALITY BETWEEN SOURCE AND CHANNEL
POLARIZATION

In this section, we connect Theorem 1 and Theorem 2. Let
p be a distribution on Fq and consider using Theorem 1 for an
additive noise channel, i.e., Y = X⊕Z for Z distributed under
p and independent of X . We then have Y n = GnU

n ⊕ Zn
and

I(Ui;Y
nU i−1) = 1−H(Ui|Y nU i−1)

= 1−H((GnY
n 	GnZn)i|Y n(GnY

n 	GnZn)i−1)

= 1−H((GnZ
n)i|(GnZn)i−1). (3)

Equality (3) uses the fact that Y n is independent of Zn

because Un, and hence GnUn, are uniformly distributed over
Fq . We also use the fact that G−1n = Gn. Hence, Theorem 1
and (3) imply Theorem 2.

Stated as such, Theorem 2 does not imply Theorem 1,
since additive noise channels are not representative of all
possible channels. In [5] a slightly more general result than
Theorem 2 is stated, where an auxiliary random variable Y
(side-information), which is a random variable correlated with
X but not intended to be compressed, is introduced in the
conditioning of each entropy term. This could be used for the
reverse implication.

In this paper, we focus mostly on the source setting, since
it is the “simplest” setting, hence the one to start with. Using
previous expansions, the results obtained in the source setting
will directly admit a counter-part in the channel setting, for
the case of additive noise channels.

IV. DEFINING ORDERINGS AND MATHEMATICAL
PRELIMINARIES

Definition 1 (Measures). Let a be a prime integer, Fa :=
{0, 1, . . . , a− 1} and M(a) be the set of probability measures
on Fa. For any k ∈ Fa, let

M̂k(a) := {p ∈ M(a) : p(i) = p(j), ∀i, j 6= k, p(k) ≥ a− 1

a
}

and M̂(a) := ∪k∈FaM̂k(a). We refer to the measure in M̂(a)
as the the spike measures.

Definition 2 (Matrices). We denote by Doub(a) the set of
doubly stochastic matrices of size a × a, and by Circ(a) the
set of circulant stochastic matrices of size a× a.

Definition 3 (Orders). We define

p1 ≺h p2 if h(p1) ≥ h(p2), (4)
p1 ≺d p2 if p1 = Dp2 for D ∈ Doub(a), (5)
p1 ≺c p2 if p1 = Cp2 for C ∈ Circ(a). (6)

Note that ≺d is the majorization order and p1 ≺c p2 is
equivalent to p1 = c ? p2 for c ∈ M(a), where ? denotes
the circular convolution on Fa.

Note that we use the term “order” in a broad sense here
(not a mathematical order).

Lemma 1 (Orders hierarchy).

p1 ≺c p2 ⇒ p1 ≺d p2 ⇒ p1 ≺h p2. (7)

Proof: The first implication follows from the fact that
Circ(a) ⊂ Doub(a) and the second implication follows from
the Schur-concavity of the entropy [21].

One can easily find examples showing that there is no
reverse implications in Lemma 1. In this paper, we are
interested in the ≺c order, and previous Lemma gives a first
idea on how this order compares to the majorization order.
But we will only work with ≺c in this paper. Also note that
the set of measures which are worst than a given p ∈ M(a)
with respect to ≺c is given by the convex hull of the orbit of
p through cycles, whereas it is given by the convex hull of the
orbit of p through permutations when considering ≺d. Note
that if p ∈ M̂(a), these two sets are the same.

Definition 4. For p ∈ M(a), we define the Fourier transform
of p by

F(p)(ω) =

a−1∑
k=0

p(k)e−2πikω/a, ω ∈ Fa (8)

and the inverse Fourier transform of h : Fa → C by

F−1(h)(k) =
1

a

a−1∑
w=0

h(w)e2πikω/a, k ∈ Fa. (9)

Remark 1.
1. F(p ? q) = F(p)F(q) for any p, q ∈ M(a).
2. If p ∈ M̂k(a) with p(k) = 1 − P , we have that F(p) is
given by F(p)(0) = 1 and

F(p)(ω) = (1− aP

a− 1
)e−2πikω/a, ω 6= 0. (10)

3. From previous remark, note that (M̂(a), ?) is a semi-group.

Definition 5. For p ∈ M(a), let DOMc(p) be the set of
probability measures which dominate p with respect to ≺c,
i.e., DOMc(p) = {q ∈ M(a) : p ≺c q}.

Remark 2. Note that it is easier to describe the set of
measures that are dominated by a fixed measure p than the
reverse. However, we can write DOMc(p) = {q ∈ M(a) :
F−1(F(p)/F(q)) ≥ 0}, and we can use the FFT algorithm
to compute DOMc(p) efficiently.

Lemma 2. For any a ≥ 1,

p1, p2 ∈ M̂(a), p1 ≺h p2 ⇒ p1 ≺c p2. (11)

Proof: Assume that p1 ∈ M̂k(a) and p2 ∈ M̂l(a) for
k, l ∈ Fa, and p1 ≺h p2. Then, denoting 1− P1 = p1(k) and
1− P2 = p2(l),

F(p1)(ω)/F(p2)(ω) =
1− aP1

a−1

1− aP2

a−1
e−2πi(k	al)/a. (12)



Hence, if (1 − aP1

a−1 )/(1 − aP2

a−1 ) ∈ Im(f), where f : P ∈
[0, 1] 7→ (1 − aP/(a − 1)), we have that (12) is the Fourier
transform of an element in M̂(a). This is easily verified since
Im(f) = [0, 1] and since by assumption 1− P1 ≤ 1− P2.

Since M̂(2) = M(2), we have the following corollary.

Corollary 1.

p1, p2 ∈ M(2), p1 ≺h p2 ⇒ p1 ≺c p2. (13)

We now introduce one more ordering notion.

Definition 6. We define for p1, p2 ∈M(a)

p1 ≺cp p2 iff p1 = p2 ? ν where ν is an infinitely divisible
probability distribution.

Definition 7. A probability distribution p ∈ M(a) is infinitely
divisible if for any k ≥ 1, there exists pk ∈ M(a) such that

p = ?ki=1pk,

or equivalently, if F(F(p)1/k) ≥ 0.

Note that checking the infinitely divisibility condition for a
large enough k implies the result for smaller k’s (by grouping
the pk’s). Hence, denoting ε = 1/k, we need to check that
F(p)ε has a valid inverse Fourier transform when ε tends to 0.
Let z = F(p) and denote the component of z by zj = rje

iθj .
Then

zεj = rεje
iεθj = (1 + ε loge rj)(1 + iεθj) + o(ε)

= 1 + ε(loge rj + iθj) + o(ε).

Hence, by the linearity of F−1,

F−1(zε) = (1, 0, . . . , 0) + εF−1((loge rj + iθj)
a−1
j=0 ) + o(ε)

and to ensure F−1(zε) ≥ 0 for any ε > 0, we need to ensure
that

y(1), . . . , y(a− 1) ≥ 0 (14)

where y = F−1((loge rj + iθj)
a−1
j=0 ).

Note that the dependency in k has been removed in previous
condition.

To summarize: we have defined a notion of ‘convolution
ordering’, with ≺c, where one can reach a distribution from
another one with a circular convolution, and a notion of
‘convolutional path ordering’, with ≺cp, where one can reach
the second distribution with small convolutional steps.

V. UNIVERSALITY IN POLARIZATION

As mentioned in the introduction, there are two parts which
require the knowledge of the source distribution in the source
polar coding scheme: one in the compression and one in the
reconstruction part. We present in this section two lemmas to
be used for each of these parts in universal results. We start
with the compression part.

Definition 8 (Polar storage sets). Let δ ∈ (0, 1), n a power
of 2 and p ∈ M(a),

Sδ,n(p) := {i ∈ [n] : H(Ui|U i−1) ≥ δ}

where Un = XnGn, Gn =
[
1 0
1 1

]⊗ log2(n), Xn iid∼ p. We use
the notation

S(p1) ⊇ S(p2) if Sδ,n(p1) ⊇ Sδ,n(p2) ∀δ ∈ (0, 1), n.

(We will sometimes call the components of Un on S
the information bits.) The reason why we are interested in
nested storage sets is clear: if one stores the components of a
source distributed under p1, it will also store the information
components of any source p2 with S(p1) ⊇ S(p2) (it will
consume more rate than required for compressing a source
under p2 specifically, but it will allow lossless compression for
both). However, for the reconstruction, it is not clear whereas
the nested structure is sufficient to induce a universal decod-
ing process. But let us postpone for now the reconstruction
problem and focus on the nested structure only.

Lemma 3. For any a ≥ 1,

p1 ≺c p2 ⇒ S(p2) ⊆ S(p1). (15)

Proof: By assumption, there exists c ∈ M(a) such that
p1 = p2 ? c. Let Xn iid∼ p2, Zn iid∼ c independent of Xn and
X̃n = Xn ⊕ Zn iid∼ p1. Define Un = GnX

n, Ũn = GnX̃
n

and Wn = GnZ
n, hence Ũn = Un ⊕Wn. We have

H(Ũi|Ũ i−1) ≥ H(Ũi|Ũ i−1,Wn) (16)

= H(Ui|U i−1,Wn) (17)

= H(Ui|U i−1) (18)

where the last equality follows from the fact that Un is
independent of Wn since Xn is independent of Zn.

Note that the ordering in (18) indeed holds for all indices.
We now investigate the reconstruction problem. We first recall
the decoding algorithm used in [3]

Definition 9. [polar-dec algorithm [3], [5]]
Inputs: p ∈ M(a), n ∈ Z+, S ⊆ [n] and u[S] ∈ F|S|a .
Output: polar-dec(p, u[S], n) ∈ Fna .
The algorithm proceeds as follows:
(0) Initialize M = S;
(1) Find the smallest integer i in Mc and compute
ui = arg maxx∈Fa Pp{Ui = x|u[M]};
(2) Update M =M∪{i} and go back to (1) until M = [n];
(3) Output xn = unGn where un = u[M].

The term Pp{Ui = x|u[M]} is the probability that Ui = x

when U [M] is observed, where Un = XnGn and Xn iid∼ p.
It is shown in [3], [5] that the computational cost for each
of these probabilities, as well as the overall algorithm, is
bounded as O(n log2 n) (more precisely O(a2n log2 n) for the
dependence in a and O(a log2(a) · n log2 n) if [2] is used
and a is power of 2). We refer to [3], [5] for the recursive
procedure to compute these probabilities, which uses a “divide
and conquer” procedure based on the Kronecker structure of
Gn.

Definition 10. Let p1, p2 ∈ M(a), δ ∈ (0, 1), n ≥ 1, Xn iid∼
p2, and X̂n = polar-dec(p1, U [Sδ,n(p1)], n), where Un =



XnGn. We define

Pe(p1|p2) = P{Xn 6= X̂n}.

Lemma 4. For any a ≥ 1, δ ∈ (0, 1/2), n ≥ 1,

p1 ≺cp p2 ⇒ Pe(p1|p2) ≤ Pe(p2|p2).

Proof: Fix n and δ < 1/2. If p1 is the uniform distribu-
tion, Sδ,n(p1) = {1, . . . , n} and the claim is clear: since we
store all components, the left-hand side error probability is 0.
Hence, assume that p1 is not the uniform distribution.

Let us assume that a = 2, the proof for a > 2 is similar.
Let p2 ∈ M(2) and q = p2 ? 1ρ, where 1ρ = [1− ρ, ρ]. Since
q ≺c p2, we have Sδ,n(q) ⊇ Sδ,n(p2) and for the components
i to be decoded

δ > H(Ui|U i−1) ≥ H(Vi|V i−1),

where the Ui’s (resp. Vi’s) are i.i.d. under q (resp. p2). For
W1, . . . ,Wn i.i.d. under p and w,w1, . . . , wi−1 ∈ {0, 1},
define the mapping

fw|wi−1 : p 7→ P (Wi = w|W i−1 = wi−1). (19)

Note that fw|wi−1 is continuous over M(2) (with the topology
induced by R2) for any w,w1, . . . , wi−1 ∈ {0, 1}.

Also note that H(Ui|U i−1) < δ implies that there exist ξ(δ)
with ξ(δ) δ→0→ 0, such that for any ui−1 ∈ {0, 1}n,

P (Ui = 0|U i−1 = ui−1) ∧ P (Ui = 1|U i−1 = ui−1) < ξ(ε).
(20)

Hence, using (20) and the continuity of fw|wi−1 , we have for
ρ small enough and any i in the complement of Sδ,n(q),

arg max
u∈{0,1}

P (Ui = u|U i−1 = ui−1) (21)

= arg max
u∈{0,1}

P (Vi = u|V i−1 = ui−1). (22)

For p1 ≺cp p2, we have that p1 = p2 ?
k
i=1 1δ for any k

where δ depends on k and is decreasing with k increasing.
We now want to iterate previous argument, but we have to
use the continuity of (19) at different distribution q’s, namely
q = p2 ?

l
i=1 1δ for l = 1, . . . , k. Since this is a compact set

of q’s (the entire path from p2 to p1), we can pick k large
enough such that the continuity argument remains effective
along the entire path, and (22) is proved by (20). It is important
to assume that p1 is not uniform, so as to keep ρ bounded
below from 0.

Finally, from (22), we have that the algorithm polar-dec
used with the mismatched distribution still leads to the same
output than when used with the matched one. Since in the mis-
matched scenario we observe more components than needed,
strictly speaking we have an inequality in the error probability
as in the lemma’s statement.

For a ≥ 3, the proof is identical, except that we are moving
along p2 ?ki=1 ν where ν is close to a delta function over Fa,
and (20), resp. (22), holds when the minimum, resp. maximum,
include all elements of Fa.

This result tells us that, if we do the compression and the
reconstruction using the distribution p1, we can compress and
reconstruct losslessly any source distribution which are better
than p1 in terms of ≺cp.

If one were to use a compression scheme ignoring any
complexity considerations, then, simply by knowing that the
source distribution has an entropy at most R, it would be
possible to compress and reconstruct the source losslessly,
using the method of types for example, at rate R. And the set
{p ∈ M(a) : h(p) ≤ R} are essentially the largest sets which
can be compressed losslessly at a fixed rate. It is ambitious
to ask for such a “broad universality” with polar codes,
since these are structured codes with complexity attributes,
in contrast to the codes derived with the method of types. We
may have to give up some extra rate to achieve this goal, or
we may universally compress only certain subsets of source
distributions. We now investigate these points.

A. Results for binary sources

For binary sources, it is possible to achieve a broad universal
result with polar coding.

Notation: For a given 0 ≤ R < 1, let p0(R), p1(R) be the
two binary probability distributions such that H(p0(R)) =
H(p1(R)) = R.

Definition 11 (Universal polar compression algorithm).
A. Compression:

Inputs: R ∈ [0, 1] (the rate of compression), δ (the target error
probability), x ∈ Fn2 (the data).
Output: v ∈ FnR+o(n)

2 (the stored data).
The compression algorithm proceeds as follows:
1. Compute u = Gnx
2. Store u[Sδ,n(p0(R))] and u[n]

B. Reconstruction:
Inputs: n, R, u[Sδ,n(p0(R))] and u[n]
Outputs: polar-dec-adapt(p0(R), p1(R), u[Sδ,n(p0(R))],
u[n], n)

Definition 12 (polar-dec-adapt algorithm).
Inputs: p1, . . . , pk ∈ M(a), n ∈ Z+, S ⊆ [n], T ⊆ Sc (called
the set of checkers) and u[T ∪ S] ∈ F|T |+|S|a .
Output: polar-dec-adapt(p1, . . . , pk, u[S], u[T ], n) ∈
Fna .
The algorithm proceeds as follows:
(1) For j = 1, . . . , k, run un(j) = polar-dec(pj , u[S], n)
(2) Find t = arg minj=1,...,k dH(u(j)[T ], u[T ]) (pick one at
random for ties)
(3) Output polar-dec(pt, u[S], n). (Variant: output
polar-dec(pt, u[S ∪ T ], n).)

Theorem 3. [Universal polar compression] Let Xn =
[X1, . . . , Xn] be i.i.d. Bernoulli with H(X1) ≤ R. The
universal polar compression algorithm allows to compress Xn

at rate R, with error probability O(2−n
β

), for any β < 1/2,
and compression/reconstruction complexity O(n log2 n).

(Note: Using the duality argument of Section III, this
theorem admits an analogue for universal coding over binary



symmetric channels.)
For the proof of this theorem, we show that:

1. Any binary source which is known to have entropy at most
R can be compressed universally with polar codes by storing
the information bits on S(p∗), where p∗ is one of the two
distributions with entropy R.
2. If it is known on which symbol the source distribution puts
more mass, the source can also be losslessly reconstructed
with polar-dec using a checker.
3. If it is not known on which symbol the source distribution
puts more mass, the source can also be losslessly reconstructed
using the modified decoding algorithm polar-dec-adapt.

Proof of Theorem 3: Let D(R) ⊆ M(2) be the set of
binary distributions with entropy at most R, and as before,
denote by p0(R) and p1(R) the two distributions of entropy
equal to R (assume R < 1, the result is otherwise trivial).
Note that, by Corollary 1, for i = 0, 1

pi(R) ≺c D(R),

and by Lemma 3

Sδ,n(pi(R)) ⊇ Sδ,n(p), ∀p ∈ D(r), δ, n.

Hence, by storing the components on Sδ,n(p0(R)), we are not
loosing any information bits. We have to set δ = δn = 2−n

α

with α < 1/2 large enough to reach the desired β in the
Theorem.

Let Di(R), i = 0, 1, be the two regions of D(R) containing
distributions putting more mass on 0, respectively 1, assuming
consistent indexing with p0(R) and p1(R). Note that for i =
0, 1

pi(R) ≺cp Di(R).

Hence, if we know that the source distribution be-
longs to D0(R), we can conclude from Lemma 4 that
polar-dec(p∗, u[Sδ,n(p∗)], n) leads to an exact recovery,
with error probability at most equal to the error probability
of the source polar scheme designed with perfect knowledge
of the source distribution, which is from [5], O(2−n

β

), for
any β < 1/2. From the same paper, we conclude that the
compression and reconstruction complexity O(n log2 n).

If we do not know whether the true distribution is in D0(R)
or D1(R), we can learn it as follows. Assume that the type
of Xn is close to its Bernoulli distribution; this is not the
case with an exponentially small probability. Notice that the
observed data U [Sδ,n(p0(R))] corresponds to an equally likely
string under both a distribution in D0(R) and D1(R), since the
distribution on Sδ,n(p0(R)) when Xn is drawn under p0(R)
or p1(R) is uniform. Say w.l.o.g. that the true distribution, p∗,
is in D0(R). If we use p0(R) for polar-dec, we will get the
right output (modulo the error probability). If we use p1(R),
we will recover X̃n which is typical under p̃∗, the measure
obtained by p∗ by exchanging the probability mass at 0 and
1. To see this, note that for a typical Xn under p∗, Xn+1n is
typical under p̃∗ (where 1n is the n-dimensional vector filled
with 1’s). Moreover,

1nGn = [0n−1, 1],

and the last component of Un cannot be in Sδ,n(p) (the last
component of Un is the one with least conditional entropy)
unless p is the uniform distribution. Hence Xn and Xn + 1n

are both typical upon observing U [Sδ,n(p0(R))], and we must
have been able to recover correctly Xn or Xn + 1n when
knowing if the true distribution was in D0(R) or D1(R) and
decoding with respectively p0(R) or p1(R). Hence, by storing
the value of U [n] (even if it has low entropy) and running the
algorithm polar-dec-adapt with both p0(R) and p1(R),
we can check which one of the two models provides the
correct estimate for U [n] and learn whether p∗ is in D0(R) or
D1(R). Indeed, there is no need to run twice the algorithm,
it is sufficient to run it once and use the value of U [n]
which had been stored. In any case, we will make en error, if
polar-dec fails, which happens from [5] with probability
O(2−n

β

), for any β < 1/2, and the complexity of this scheme
is O(n log2 n).

B. Results for a-ary sources

Definition 13. For D ⊂ M(a), let

pc(D) := arg min
p∈M(a):p≺cD

H(p), (23)

p̂c(D) := arg min
p∈M̂(a):p≺cD

H(p). (24)

In any of the above minimization, if the minimizer is not
unique, pick one arbitrarily.

We clearly have that p̂c(D) ≺h pc(D); however, it is trivial
to find p̂c(D) while finding pc(D) is more difficult.

Let us assume for instance that the exact source distribution
is unknown for the compression part, but is known for the
reconstruction part. If the source distribution is known to
belong to a set D ⊂ M(a), one way to construct the
storage set is to pick S(pc(D)). Then, from Lemma 3 and
Corollary 1, this retains the information bits of any source
in D. Of course, this may consume more rate than needed
with an optimal source code, in other words, if we define
Hmax(D) := maxp∈DH(p), we have in general

H(pc(D)) ≥ Hmax(D). (25)

The inequality can be strict since p1 ≺h p2 does not imply
in general p1 ≺c p2, and there are examples where equality
holds in the above, in which case a compression designed for
pc(D) requires the minimal rate to compress any source in D.

Remark 3. Let D ⊂ M(a) be such that arg maxp∈DH(p)
is unique (denoted ph(D)) and satisfies ph(D) ≺c D. Then
a source polar code designed for ph(D) can compress any
source in D at the lowest achievable rate maxp∈DH(p)
without loosing any information bits.

(Note that ph(D) ≺c D implies that pc(D) = ph(D).) The
set DOMc(p), plotted in Figure 1, satisfies (by definition)
the condition of Remark 3 for any p. Comparing Figure 1
with the plot of DOMh(p) := {q ∈ m(a) : q ≺h p} also
shows that there are sets for which (25) holds with a strict
inequality. One can also check how much rate is lost by



Fig. 1. Plots of DOMh([0.2, 0.2, 0.6]) (red region) included in
DOMc([0.2, 0.4, 0.4]) (blue region).

compressing for a distribution that is dominated in terms of
≺c as opposed to ≺h, for example the gap between the rate
needed to compress BR := {p ∈ M(a) : H(p) ≤ R} using
pc(BR) and the minimal rate R needed with the method of
types, i.e., H(pc(BR))−R. This gap can be computed using
Remark 2, in the case of Figure 1 for example, it is 0.095 for
R=0.865 and a = 3.

Also note that p1 ⊀c p2 may not imply S(p2) * S(p1),
and there may be other ways to construct storage sets which
contain the information bits for several distributions (than
using ≺c). We investigate this point in Section VI-E and now
move to the decoding part for a-ary sources.

Definition 14. For D ⊂ M(a), let

pcp(D) := arg min
p∈M(a):p≺cpD

H(p). (26)

If the minimizer is not unique, pick one arbitrarily.

The following follows by definitions.

Lemma 5. A source distribution known to belong to a set D ⊂
M(a) can be compressed and reconstructed losslessly at rate
H(pcp(D)), using a polar code designed for the distribution
pcp(D).

C. Non-universality of a-ary source polar codes

In this section, we show that in general, polar codes cannot
achieve the lowest rate for lossless compression of compound
sources when a ≥ 3, no matter how the storages sets are
constructed (i.e., not necessarily via ≺c). A similar result has
been derived in [15] for channel coding, however, it is not
possible to leverage the counter-example found in [15] to
the source case (since the channel polarization results have
a source counter-part only for additive noise channels, and the
counter-example in [15] does not use only with additive noise
channels). In this section, we assume that for the decoding
part, we have the aid of a genie that provides the exact source
distribution.

We consider two source distributions p and q on Fa, and we
are interested in finding the rates at which one can compress
these two sources without loosing the information bits of any
of them. We denote by Cpol(p, q) the infimum of these rates,
and we provide different bounds on this quantity. Clearly

C(p, q) := H(p) ∨H(q) ≤ Cpol(p, q).

From previous section, we have the upper bound Cpol(p, q) ≤
H(pc(p, q)), where pc(p, q) is as defined in (23) for the set
D = {p, q}. In our definition, Cpol(p, q) is given by the limit
inferior of

1

n
|Sδ(p) ∪ Sδ(q)|.

Let n = 2`, Un = GnX
n where Xn is i.i.d. under p, and

V n = GnY
n where Y n is i.i.d. under q. Let us also denote by

P (resp. Q) the additive noise channel whose noise distribution
is p (resp. q). We then have from Section III

H(Ui|U i−1) = 1− I(Pi), H(Vi|V i−1) = 1− I(Qi) (27)

where Pi (resp. Qi) are the channels corresponding to Pσ for
σ ∈ {−,+}`, as defined in [3] with the tree construction.
Moreover, if we define for δ ∈ (0, 1) Gδ(P ) = {i ∈
{1, . . . , n} : I(Pi) ≥ δ}, we have

Sδ(p) ∪ Sδ(q) = (Gδ(P ) ∩ Gδ(Q))
c
. (28)

This shows that the compound capacity for source or channel
coding are related and we can use the result of Section III and
Theorem 5 in [15] to get the following bounds.

Lemma 6.

Cpol(p, q) ≤
1

2`

∑
σ∈{−,+}`

I(BEC(Z(Pσ)) ∨ I(Z(Qσ))) (29)

Cpol(p, q) ≥
1

2`

∑
σ∈{−,+}`

H(pσ) ∨H(qσ) (30)

where P (resp. Q) is the additive noise channel with noise
distribution p (resp. q). Moreover each bound is monotonically
approaching Cpol(p, q).

Note that the upper bound is straightforward, and the
notation H(pσ) refers to H(Ui|U i−1) for the index i corre-
sponding to σ. It is interesting to note that if BECs can be
used to compute previous bounds, we cannot use the counter-
example of [15] to show that polar codes do not achieve
compound capacity in source coding, since BECs do not
correspond to a valid source distribution via the duality of
Section III. However, we can use the duality and BECs to
construct storage sets which are included in Sδ(p)∪Sδ(q), in
a different manner than done in previous section. Let us give
an example with ` = 1. For two source distributions p and q,
consider finding the BECs with parameter Z(P ) and Z(Q) (P
and Q as defined above). Then, as in [15], the good indices
for P and Q satisfy

G(P ) ∩ G(Q) ⊃ G(BEC(Z(P ))) ∩ G(BEC(Z(Q))) (31)
≡ G(BEC(Z(P ) ∨ Z(Q))) (32)



and from (28), G(BEC(Z(P ) ∨ Z(Q))) gives a storage set
to compress p and q without loosing information bits. This
provides an interesting and different approach to constructing
universal polar codes, although it may not be practical and
has the drawback of requiring the source distribution for the
reconstruction (as opposed to the ≺cp ordering). In a work
in progress, we propose the use of spike measures M̂(a) to
replace the “worst BECs” directly with “worst source distri-
butions”. The common feature between the spike measures
and BECs is that they are both families that have a nested
structures for the storage/good index sets and that span the
whole range of entropy/mutual information between 0 and 1.
Also note that as opposed to the channel polarization case,
degradedness in source polarization is less restrictive, since
there are less degrees of freedom for source distributions than
channels.

Now, to show that polar codes do not achieve the compound
capacity in source coding, we can still use the lower bound
of Lemma 6, but we need to pick two source distributions on
ternary source alphabets.

Proposition 1. Polar codes do not achieve the compound
capacity for source coding when the source alphabet has
strictly more than 2 elements.

Counter-example: Let p = [0.08, 0.36, 0.56], q =
[0.11, 0.62, 0.27], such that H(p) = 0.8143, H(q) = 0.8126
and C = H(p) ∨H(q) = 0.8143. The LHS of Lemma 6 for
` = 1 evaluates at 0.8174 which is strictly larger than C.

VI. SKETCHING AND SPARSE RECOVERY

In compressed sensing (CS), a k-sparse signal of high
dimensionality n can be recovered with overwhelming prob-
ability from a small number of random measurements m =
O(k log(n/k)) with a convex optimization method [7], [11].
If the use of random measurement matrices simplifies the
mathematical analysis, a drawback is that they have a heavy
structure and it there is no efficient way to check if a given
matrix realization satisfies the desired property (RIP) for the
reconstruction (although one can show that this happens with
high probability). Other drawbacks of random sensing matrices
are discussed in [17], [6]. It has hence become a challenging
problem to construct explicit matrices that, yet, can perform
competitively (in terms of measurement rate) with the random
ones. Different deterministic matrices have been proposed in
the literature, but in [8], [22], [10] the number of rows is at
least quadratic in k and in [9] one needs Ω(n) bits to specify
a matrix entry. In [17], binary matrices with m brought down
to k2O(log logn)E = kno(1), with E > 1, are proposed and in
[6], a rather general condition for constructing deterministic
matrices satisfying a statistical restricted isometric property
(STRIP) is given.

In this section, we are interested in designing an explicit
measurement matrix using the polarization technique. The
motivation being that the matrix used in previous section
for polar source compression is deterministic and easily con-
structed. Of course, in the basic source compression problem,

the compression matrix is designed adaptively to the source
distribution, whereas the CS results are universal as long as the
signal is sparse. Hence, we would like to construct an explicit
matrix with the polarization technique that is also universal.
The tools of previous section for universal polarization will
hence be used.

Note that there are a few more distinctions between CS
and the problems of previous sections. First, the source in
our case is a random process, whereas in the original works
on compressed sensing, the signal is deterministic. The case
of random signals has been considered in several subsequent
works for compressed sensing, such as in [6]. Another im-
portant difference, is that the source in our setting is valued
in Fa, as opposed to R for arbitrary sparse signals. One way
to address this problem is via quantization, which requires
a careful treatment. It is related to the fact that in the CS
setting, measurements can be done with arbitrary precision
whereas in our setting they are quantified in bits. On the
other hand, we focus here on applications where the signal
is valued in a discrete set to start with, such as in certain
network monitoring problems [12], [13]. For example, if one
wishes to track the number of packets flowing between the
different IP addresses of a network (e.g. to detect unusual
behaviors), the state vector can be of dimension up to 232.
Since it is not feasible to maintain such a huge dimensional
vector, one wishes to use a much smaller sketch vector that is
still carrying all the significant information of the state vector,
by exploiting the fact that the state vector is sparse. We hence
keep such applications as our motivation and focus mainly on
the sketching (sensing) and sparse recovery of such discrete
signals. A possible lifting of the results in this paper to the
real field setting is investigated in a work in progress.

Before attacking the problem of constructing a universal
deterministic sketching matrix via the polarization technique,
we consider a specific example by choosing a particular
distribution for the signal to get started.

A. Assuming knowledge of the signal distribution

In this section, we assume that the distribution of the signal
is known. The case of unknown distributions is discussed in
Section VI-B. Assume that X1, . . . , Xn are i.i.d. under the
following spike distribution

pε := (1− ε, ε/(a− 1), . . . , ε/(a− 1)) ∈ M̂0(a). (33)

Note that for n i.i.d. samples drawn under pε, the number of
non-zero components is in expectation nε.

Definition 15 (Polar sketching matrix for a single distribution).
Let δ ∈ (0, 1) and φδ,n(pε) = IS ·Gn be the matrix obtained
by deleting the rows of Gn which are not indexed by S =
Sδ,n(pε) (cf. Definition 8).

Rephrasing the source polarization result, we obtain the
following.

Lemma 7. Let n be a power of 2, X be an n-dimensional
vector drawn i.i.d. under pε, and let φ = φδn,n(pε) be the



polar sketching matrix defined for pε and δn = 2−n
β

with
β ∈ (0, 1/2) (cf. Definition 15). For any α ∈ (0, 1/2), there
exists β ∈ (0, 1/2) such that the number of rows of φ is given
by

m = n(1− ε) loga(
1

1− ε
) + nε loga(

a− 1

ε
) +O(2−n

α

)

and using the polar decoding algorithm for pε, we can recover
X from Y = φX with probability O(2−n

α

) and with a
complexity bonded as O(a2n log2 n) (and if a is a power of
2, the complexity can be reduced to O(a log2 a · n log2 n) by
using the approach in [2].).

Discussion: Note that m is simply the cardinality of S,
which is approximately nH(pε). Defining nε = k, we have

m = k loga
n

k
+ o(loga

n

k
) (34)

=
1

loge a
k loge

n

k
+ o(loge

n

k
). (35)

This expression is similar to the O(k loge
n
k ) expression

encountered in the CS literature ([7]) for the number of
measurements. It is even a tighter form since the constant
is less than 2; of course, for the reasons discussed at the
beginning of Section VI, the comparison is inappropriate, since
(in particular) we are modifying the assumption on the signal:
it is drawn from a specific known distribution. The reason why
the number of measurements decreases when a increases may
seem strange; however notice that a measurement for signals
in Fa is made with a precision of a bits. Hence, to compare
the number of measurements for different values of a, one
should use the same unit for the measurement. Let us check
how the number of measurements scale with a. Rewriting (34)
with the dependency in a, we have

m = k(1 + loga(a− 1)) + k loga
n

k
= 2k + oa(1). (36)

Hence, if we allow infinite precision for the measurements,
for large a we only need 2k measurements, but of course, the
complexity blows up. If we express all measurements in nats,
we have

m = k(1 + loge(a− 1)) + k loge
n

k
(37)

and m, as a function of a, grows like k loge a.
Of course, Lemma 7 requires knowledge of the signal

distribution whereas CS results are universal. There is no
reason to assume that (33) is distribution of the signal.
The exact knowledge of the source distribution is in general
unrealistic, and as discussed in previous section, even with an
estimate of the distribution, it is crucial to show at least some
robustness with respect to possible mismatched distributions.
For applications, it may actually be interesting to have adaptive
results, but this is also changing the rules of the game. We now
investigate the universality problem.

Fig. 2. The simplex with Spa(3, ε) (lower triangle, in red) for ε ≈ 1/5 and
the spike measures at 0, namely M̂0(3) (middle line, in blue).

B. Universal prior

A possible way of defining k-sparse random sources, is to
ask that the source distribution leads to an expected number
of at most k non-zero values. Specifically, let a be a prime
number and let Fa = {0, . . . , a−1}. Let Xn = (X1, . . . , Xn)
be i.i.d. samples from a distribution µ, with µ(0) = 1 − ε.
Then, the number K(Xn) of components of Xn which are
not equal to 0 is in expectation

EK(Xn) = nε. (38)

Let

Spa(a, ε) := {µ ∈ M(a) : µ(0) ≥ 1− ε}, (39)

and consider samples Xn = (X1, . . . , Xn) that are i.i.d. from
a distribution in Spa(a, ε). From previous remark, the number
of components in Xn that are not equal to 0 is bounded by
nε. If we are interested in ε as a measure of sparsity, then
K(Xn)/n concentrates exponentially fast around ε. The set
Spa(a, ε) is pictured in Figure 3 for a = 3.

The results that we will derive do not depend on the fact
that 0 is the special value for the distributions in Spa(a, ε), in
other words, we could equally well consider sources that are
sparse with respect to an arbitrary i ∈ Fa. For simplicity, we
stick with i = 0 for now, although considering arbitrary i’s
may be useful when dealing with the problem of quantizing a
signal to Fa. Also note that Spa(a, ε) contains sources which
can be supported on any subset of Fa (e.g., a may be large
but this set still contains sparse binary sources). It may be
reasonable to assume that there is no such variation in the
probability mass assigned to the non-special values, this will
be discussed later.
Remark 4. From an information-theoretic point of view, we
can ask the question of finding the smallest rate at which one
could compress a source whose distribution is in Spa(a, ε)
without any further knowledge on the distribution (and irre-
spectively of the compression scheme employed). As discussed



in Section V, the answer to this question is given by the
maximal entropy that can be reached with a distribution in
Spa(a, ε). It turns out that the distribution with maximal
entropy is precisely (33), as in Section VI-A. Hence, theo-
retically, the strong performances presented in Section VI-A
can still hold in the universal setting. However, the scheme
used to achieve such Shannon limiting performance may be
highly complex, whereas the whole point here, is to consider
explicit schemes of low complexity.

Theorem 4. Let Xn, with n a power of 2, be an n-sample
drawn i.i.d. from a distribution which has at most ε mass on
the non-zero entries of Fa, and let φ(a, ε) be the m×n polar
sketching matrix constructed deterministically for a and ε (cf.
Definition 16). We have

m = C(a, ε) · k loge
n

k
+O(k), k = nε,

with

lim
ε→0

C(a, ε) =
a− 1

loge a

and with probability 1 − O(2−n
β

), β ∈ (0, 1/2), Xn can
be exactly reconstructed from φXn using the polar decoding
algorithm (cf. Remark 5) with a complexity of O(a2n log2 n)
(or O(a log2 a ·n log2 n) if a is a power of 2 and [2] is used).

Remark 5.
1. The polar decoding algorithm (cf. Definition 9) must be
evaluated as

polar-dec(pcp(Spa(a, ε)), φxn[Sδ,n(pcp(Spa(a, ε)))], n)

for δ = δn = 2−n
α

with α < 1/2 large enough to reach
the desired β in the Theorem, and where pcp(Spa(a, ε)) is the
distribution of minimal entropy that is dominated by the entire
set Spa(a, ε) for ≺cp as in (26), and S as in Definition (8).
2. The multiplication φXn is carried out over Fa.
3. The same result holds if the distribution of Xn has at most
ε mass on an arbitrary i ∈ Fa.
4. In Section VI-E, we discuss improvements of the constant
C.

Definition 16. Given a set D of probability measures on
Fa, we construct a sketching matrix φ(D) of dimension n
as follows:
(i) Find pcp(D) as defined in (26)

(ii) Find S = Sδ,n(pc(D)) as in Definition 8 for 0 < δ < 1

(iii) Define φ = ISGn, where Gn =
[
1 1
0 1

]⊗ log2 n and where
IS is the matrix whose columns indexed by S form the
identity matrix and whose other columns are filled in with
zeros. Note that φ is an m× n matrix, where m = |S|.

In particular, we define φ(a, ε) := φ(Spa(a, ε)) and to have
the optimal error decay we pick δ = 2−n

α

with α < 1/2.

Implementation of φ.
1. Step (i) can be easily computed, cf. Remark 2 and the proof
below.
2. Step (ii) requires a comment: finding S with an analytic

formula is a hard open problem in polar codes. However, it is
mostly a mathematical challenge, since one can run simula-
tions to determine S with a good accuracy, or find arbitrarily
tight bounds on the entropy terms in S in polynomial time
[25].
3. The construction of Gn is straightforward because of its
Kronecker structure, which also allows an efficient decoding
algorithm running in O(n log2 n).

C. Interpretation of Theorem 4

In view of
lim
ε→0

C(a, ε) =
a− 1

loge(a)
,

for a fixed small ε, the quantization level a should be at most
1/ε in order to have a dimensionality reduction. Hence, if
a signal sparser in its domain than its magnitude, where we
define the magnitude-sparsity of a signal taking a possible
values by 1/(a − 1), and the domain-sparsity as before by
ε = k/n, then the approach of Theorem 4 gives interesting
results.

For a small, this is interesting for most ε. In particular for
a = 2, the sparsity in magnitude is maximal, namely 1, and
for any ε we have an optimal dimensionality reduction

m = 1.44 · k loge(n/k),

where the optimality refers here not only to the order
k loge(n/k) but also to the constant 1.44 (recall that the mea-
surements are taken in bits). By Shannon, one cannot further
improve this bound (even with schemes of high complexity).

For a large, e.g. a = 257, we get reasonable dimensionality
reduction for very sparse data, for example, if ε = 10−3

and n = 106, we get a reduction of 68% for the number of
measurements (compared to n). But for a = 257 and ε = 0.1,
there is almost no dimensionality reduction. However, we will
see in next section that this is due to the analysis employed in
the proof of Theorem 4 rather than the use of the polar matrix.

D. Proof of Theorem 4

Proof: The number of measurements m is given
by nH(pcp(Spa(a, ε))) + o(n). Note that by symmetry,
pcp(Spa(a, ε)) is a spike measure (i.e., an element of M̂0(a)).
We have

pcp(Spa(a, ε)) = (1− η(ε), η(ε)/(q − 1), . . . , η(ε)/(q − 1))

where η(ε) is the smallest positive η ensuring

(1− η, η/(q − 1), . . . , η/(q − 1)) ≺cp p

for any p ∈ Spa(a, ε). Moreover, it is sufficient to check

(1− η, η/(q − 1), . . . , η/(q − 1)) ≺cp (1− ε, ε, 0, . . . , 0),

i.e.,

F−1
(
F(1− η, η/(q − 1), . . . , η/(q − 1))

F(1− ε, ε, 0, . . . , 0)

)1/k

≥ 0



for any k ≥ 1. Using (42), the dependence in k can also be
removed. Defining

z =
F(1− η, η/(q − 1), . . . , η/(q − 1))

F(1− ε, ε, 0, . . . , 0)
(40)

=
(1, 1− η q

q−1 , . . . , 1− η
q
q−1 )

(1− ε+ εe−2πit/a)a−1t=0

, (41)

and denoting the component of z by zj = rje
iθj , we need to

ensure

y(1), . . . , y(a− 1) ≥ 0 (42)

where y = F−1((loge rj + iθj)
a−1
j=0 ).

Numerically, one can then easily find η(ε) by means of the
FFT algorithm. In Figure 4, we have plotted ε 7→ η(ε) for
different values of a. Note that one can also find analytically
η(ε) using the following approach. Assume a = 3. Let us
first find pc(Spa(3, ε)). Here also, we have pc(Spa(3, ε)) =
(1 − η̄(ε), η̄(ε)/2, η̄(ε)/2) where we need to find η̄(ε). Note
that all distributions that are worst than (1−ε, ε, 0) for ≺c are
given by the convex hull of the orbit of (1 − ε, ε, 0) though
cycles, that is hull((1 − ε, ε, 0), (0, 1 − ε, ε), (ε, 0, 1 − ε)).
Hence, the projection pcp of (1− ε, ε, 0), i.e., the distribution
in this convex hull which belongs to the spike measures
and has minimal entropy is found by taking the intersection
between the line connecting (1 − ε, ε, 0) to (ε, 0, 1 − ε) and
the line of spike measures parametrized by (1− d, d/2, d/2).
An elementary computation yields

η̄(ε) = 1− 2ε(1− ε) = 1− 2ε+ o(ε). (43)

Note that the scaling 1−2ε+o(ε) is clear, since for small ε the
line connecting (1−ε, ε, 0) to (ε, 0, 1−ε) is almost parallel to
the line connecting (1, 0, 0) to (0, 0, 1). Indeed, one can easily
generalizes this for a > 3 to

η̄a(ε) = 1− (a− 1)ε+ o(ε). (44)

To find the projection pcp of (1 − ε, ε, 0), we need to
move from (1 − ε, ε, 0) towards spike measures with tiny
convolutional steps. But once we have made a small step in
the direction (1 − ε, ε, 0) − (ε, 0, 1 − ε) to reach (x, y, z),
we need to move next in the rotated picture, i.e., in the
direction (x, y, z) − (y, z, x), as illustrated in Figure ??.
Defining f(x) = x + γ(Π − I)x, where Π = ◦(0, 1, 0), we
are interested in fk(x) where x = (1 − ε, ε, 0). Hence, we
look for Ak where A = I + γ(Π − I). Since Π is circulant,
so is A and the eigenvector of A are the Fourier (DFT) basis
elements and the eigenvalues are 1 + γ(λi − 1), where λi are
the corresponding 3 roots of unity. Therefore, the eigenvalues
of Ak are [1 + γ(λi − 1)]k, and keeping γk = c, we obtain

lim
k→∞

[1 + c/k(λi − 1)]k = exp(c(λi − 1)).

Hence,

τ(c) = F3 diag(exp(c(λi − 1)))F ∗3 (1− ε, ε, 0)t,

for c ≥ 0, and where F3 is the Fourier (DFT) matrix of
dimension 3, parametrizes the path starting at (1 − ε, ε, 0)

Fig. 3. The simplex with the pc projection (first point in red) and the pcp
projection (second point in blue) of [1− ε, 0, ε].

and obtained with incremental convolutional steps which are
“targeting” spike measures. Equating the second and first
components of τc, i.e., solving τ(c)2 = τ(c)3 gives a closed
form expression for c and for η(ε) = 2τ(c)2, and we get as
for η̄(ε),

η(ε) = 2ε+ o(ε). (45)

That is, for small ε, the penalty endured by considering the pcp
projection rather than the pc one (for Spa) is negligible. This
is not surprising, since for ε small, the path from (1− ε, ε, 0)
to spike measures is anyway small (as required for the pcp
projection). With similar arguments, we conclude that for any
a,

ηa(ε) = (a− 1)ε+ o(ε). (46)

Finally, we need to evaluate H(pη(ε)) where

pη(ε) = (1− η(ε), η(ε)/(a− 1), . . . , η(ε)/(a− 1)).

Note we can compare the cost for universality of a low com-
plexity scheme (obtained with the pcp analysis and the polar
matrix) with respect to the limiting performance (Shannon):
instead of nH(pε) we need nH(p(a−1)ε) measurements, when
ε is small. For a = 2, these two are identical, and this is
consistent with Theorem 3. For arbitrary a, we get

H(pη(ε)) =
a− 1

loge a
ε loge

1

ε
+O(ε) (47)

as opposed to

H(pε) =
1

loge a
ε loge

1

ε
+O(ε). (48)
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Fig. 4. Plots of ε 7→ η(ε) for different values of a = q. Note that (a− 1)ε
is an upper bound to η(ε), tight for small ε as shown in the proof of Theorem
4. Hence for ε not too small η(ε) provides a better measurement rate than
what is obtained with the crude bound of Theorem 4.
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Fig. 5. Plots of ε 7→ η∗(ε) for different values of a = q

E. Improving Theorem 4

In Remark 4, we concluded that the minimal number of
measurements (in a-ary bits) needed to recover a source
from Spa(a, ε) is given by nH(pε) where pε is the spike
measure with mass 1 − ε at 0 and ε/(a − 1) elsewhere.
To approach this performance with a polarization scheme of
low complexity is challenging. We have shown that, for the
universal problem of recovering sources from any distribution
in Spa(a, ε), one could still use the adaptive setting but
designed for a specific distribution; namely pcp(Spa(a, ε)).
This distribution is dominated by the entire set Spa(a, ε)
with respect to ≺cp, and we showed that because of this
property, a scheme designed for pcp(Spa(a, ε)) guarantees
successful recovery for any distributions in Spa(a, ε). In a
sense, pcp(Spa(a, ε)) is the worst case scenario. Of course,
there may be other ways (than using ≺cp) to order distributions
and find a worst case distribution which has lower entropy
(one may attempt to replace ≺c with ≺d). There may even
be other ways of tackling the universal problem than looking
for an ordering and a worst case distribution. The advantage

of using a worst case approach, is that we can then inherit
the complexity attributes and convergence rate property from
the adaptive setting. Ordering also allows to give a ‘hierarchy’
between the different distributions, and helps designing robust
schemes (by backing off from the estimated distribution to
guarantee performances).

One point is that it may not be needed to consider the
entire set Spa(a, ε) for a given problem. For example, the
set of distributions that are dominated by pcp(Spa(a, ε)) (w.r.
to ≺cp), is already quite large and contains most distributions
of sparsity ε. It does not contain the distributions of sparsity ε
which have small supports, but if these can be ruled out, then
we can bring back the constant C(a, ε) to 1/ loge(a), which
is the Shannon limiting performance.

We now discuss another approach to construct a universal
sketching and reconstruction method for Spa(a, ε). A before,
there are two parts to discuss. First the sketching, i.e., to know
which rows of Gn can be deleted without loosing information
about Xn. Then the reconstruction, i.e., to know how to run
a decoding algorithm that ignores the exact distribution.

1) Sketching: Here is a brut-force approach to achieve
universal sketching.

Definition 17 (brut-univ-sketching algorithm).
Inputs: ε (the sparsity degree), a (the size of the signal
alphabet), n (the dimension).
Outputs: η∗(ε).

We present two variants of the algorithm.
Variant A:
For η from ε until η(ε) (with a given step size);
if S(pη) ⊇ S(q) for any q in the convex hull of (1 −
ε, ε, 0, . . . , 0), (1− ε, 0, ε, 0, . . . , 0),...,(1− ε, 0, . . . , 0, ε);

output η;
otherwise increase the step size.
Variant B:
For η from ε until η(ε) (with a given step size);
if S(pη) ⊇ S(q(ε)) where q(ε) = (1− ε, ε, 0, . . . , 0);

output η;
otherwise increase the step size.

Note: one could also consider a dichotomic approach for
the search of η∗(ε), and by symmetry, one can restrict the
search of q to only one portion of the convex hull. One also
has to specify the precision ξ for the computations of the
sets S = Sξ,n, we omitted it in the algorithm to simplify the
notation.

Variant B has low complexity, since it conducts a search in
a one-dimensional space (for η) and since the computation of
S can be done at low computational costs. Variant A requires
a larger search for q, which can be constraining for a large.

Result: Variant A of brut-univ-sketching provides
η∗(ε) such that

S(pη∗(ε)) ⊇ S(p), ∀p ∈ Spa(a, ε).

Conjecture: Variant B of brut-univ-sketching leads to
the same output than Variant A.



In Figure 5, we show η∗(ε) (obtained with Variant B of
brut-univ-sketching) and the Shannon limit consisting
of the diagonal, and reached for a = 2. As observed, the
improvement is significant with respect to η(ε) (obtained
with the pcp projection). Indeed, this brings the number of
measurement very close to the optimal performance. Emre
Telatar is gratefully acknowledged for his help in producing
these plots.

For the decoding part, there are no guarantees that decoding
with pη∗(ε) allows a correct recovery. One can use the algo-
rithm polar-dec-adapt to learn the distribution, but one
needs to first add checkers in the set of stored components.
Checkers are components that need not to be stored (because
they have low conditional entropy) but that we still store to
help the decoder get information about the source distributions.
As long as the number of checkers is o(n), the measurement
rate is not affected.

2) Reconstruction: We now proceed to use
polar-dec-adapt to decoder the sensed components of
previous part. We first proceed to a patching of Spa(a, ε).
Consider a uniform discretization of the convex hull of
(1− ε, ε, 0, . . . , 0), (1− ε, 0, ε, 0, . . . , 0),...,(1− ε, 0, . . . , 0, ε).
Enumerate a uniform discretization of this convex hull as
Dk := {p1, . . . , pd}. Call Spad(a, ε) the sets of distributions
that dominates any of the elements in Dk with respect to
≺cp. We then have

Spad(a, ε)→ Spa(a, ε),

meaning that the set Spad(a, ε) is dense in Spa(a, ε). For a
targeted ε, we then pick a ε′ slightly larger than ε and a d
large enough such that

Spad(a, ε
′) ⊇ Spa(a, ε).

We then use polar-dec-adapt with the output of
brut-univ-sketching and o(n) checkers to learn which
of the distributions pk is a good ‘model’ for the sensed
data. The term model is used because by construction of
Spad(a, ε

′), the sensed data on the checkers must look typical
with at least one of the pi’s, although there might be more
than one, and although none of these pi’s may be the true
distribution of Xn (but they will be dominated with respect
to ≺cp by the true distribution, which is good enough to
ensure correct decoding). One has to pick ε′ − ε small
enough and d large enough to ensure a small increase in the
number of measurements (one needs to study the scaling of
these parameters for a more precise statement). The overall
complexity of this decoding scheme scales multiplicatively
with d. Hence, as long as d is not of the order of n log2 n, the
overall complexity remains low.

In a work in progress, we also consider another approach
for universal decoding via an algebraic characterization of the
possible likelihood ratios computed in polar-dec.

VII. DISCUSSION AND EXTENSIONS

A. Universal polar coding

We summarize here two ideas introduced in this paper to
construct universal polar coding schemes

1) Convolutional path ordering: to tell when a polar coding
scheme designed for one distribution can succeed for
another one

2) Checkers: to learn some information about the distri-
bution by storing components that did not need to be
stored

In particular, we developed an algorithm which allows to
compress universally binary sources at the lowest achievable
rate, with low complexity and with guaranteed low error
probability.

B. Sparse recovery and sketching

We applied the tools developed for universal polar coding
to the problem of sketching sparse signals, constructing a
deterministic sketching matrix by deleting appropriate rows
of the polar matrix Gn. We summarize here some conclusions
and extensions on this approach.

1) An sketching method tuned to discrete signals.
Compressed sensing exploits the sparsity of signals in
their domain to acquire them efficiently. If for the
application of interest, the signal is also sparse in its
magnitude, that is, if it takes values in a set of small
cardinality, this can also be exploited as shown in this
paper. For example, if the signal is binary, we developed
a sketching method with a deterministic low complexity
matrix, an optimal number of measurements (for the
scaling and the constant) and a low complexity recovery
algorithm with a proved exponentially small (in

√
n)

probability of error. We extended this results to a-ary
vectors, noticing a better fit for small a and proposing
an improved approach for larger a (Section VI-E). We
also underline that, for a given application, the method
proposed here can be used adaptively by designing an
appropriate probabilistic model for the signal. This can
improve the measurement rate.

2) Lifting this work to the reals?
Most works in the CS literature constructing explicit
sensing matrices are based on algebraic constructions
[17], [10], [6]. In these works, matrix acting on the
reals can then be obtained. Of course, we also made
the point (previous item) that for certain application, it
may be more natural to work with the discrete setting
directly. Yet, an interesting extension would be to study
a lifting of our results to the real case. A possible
approach would be via a quantization procedure, where
problems of robustness to noise must be investigated.
Another possible problem would be to attempt detecting
the signal support only (which is a binary signal).
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