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Abstract

In this paper, motivated by mathematic finance we introduce the multiple G-1t6
integral in the G-expectation space, then investigate how to calculate. We get the
the relationship between Hermite polynomials and multiple G-It6 integrals which
is a natural extension of the classical result obtained by It6 in 1951.
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1 Introduction

A multiple stochastic integral with respect to the classical Brownian motion was con-
structed by Wiener in Ref. [I0] as a polynomial chaos in independent Gaussian random
variables. A more general construction was due to It6 in Ref. [3]. Actually, the theory
and applications of It6 multiple stochastic integrals are fairly rich, for example, Engel
[2] for the history and framework of multiple integration, Cheridito et al. [I] for appli-
cations in finance and Soner et al. [9] for applications in stochastic target problems.
However, the classical Brownian motion was constructed in a linear expectation space,
such linearity assumption is not feasible in many areas of applications because many
uncertain phenomena can not be well modelled using additive probabilities or linear
expectations. More specifically, motivated by the risk measures and stochastic volatil-
ity problems in finance, Peng in Ref. [4] introduced the sublinear expectation space
and initiated the G-normal distribution under a sublinear expectation space. He also
introduced the notions of G-Brownian motion as the counterpart of classical Brownian
motion in the linear case and G-It6 integral with respect to G-Brownian motion. He
introduced a class of sublinear expectation space called G-expectation space as well and
proved there exist G-Brownian motion in G-expectation space. Now more and more
people are interested in G-expectation space and the applications of G-It6 integral will
be more and more widely. A natural question is the following: how to define and calcu-
late the multiple G-It6 integral. The purpose of this paper is to solve this problem. We
not only introduce the multiple G-It6 integral of symmetric function in L%([0,7]™) but
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also obtain the relationship between Hermite polynomials and multiple G-It integrals.
All of them are natural and fairly neat extensions of the classical It6’s results, but the
proof here is different from the original proof of the classical multiple It6 integrals.

The remainder of this paper is organized as follows. In section 2, we recall some
notions and results in G-expectation space which will be useful in this paper. In section
3, we introduce the multiple G-It6 integral. In section 4, we state and prove the main
result of this paper which is the relationship between Hermite polynomials and multiple
G-It6 integrals.

2 Preliminaries

We recall some notions and results in G-expectation space. Some more details can be
found in Refs. [4-8].

A

Definition 2.1 A random variable X on a sublinear expectation space (2, H,E) is
called G-normal distributed, denoted by X ~ N(0,[c?,5?]), if

aX +bX ~ Va2 +b2X, Va,b >0,

—R[—X?2]. Here the letter
G denotes the function G(a) = ;E[aX2] = %(62a+ —c?a7):R—=R.

Definition 2.2 Let G(-) : R — R,G(a) = 3(6%a™ — g?a™), where 0 < 0 < 5 < <.
A stochastic process (Bt)i>0 in a sublinear expectation space (Q,H,E) is called a G-
Brownian motion if the following properties are satisfied:

(1) Bo(w) = 0;
(i) For each t,s > 0, the increment Byyrs — By is N(0,[sa?, s52])-distributed and is
independent to (By,, By, -+ ,By,), for eachn € N and 0 <t; <ty <--- <t, <t.

In the rest of this paper, we denote by 2 = Cy(R™) the space of all R-valued continuous
paths (w¢)cr+ With wp = 0, equipped with the distance

22 max ]wt — W2 A1)

For each fixed T € [0,00), we set Qp := {w. 7 : w € Q},
Lip(QT) = {(;D(Btll\T7 e 7Btn/\T) ne N7t17 e 7tn S [07 00)7 2 S Cl,lip(Rn)}7

Lip(Q) == U5 Ly (2,,), where B, denote the canonical process, that is, B (w) = wy.

For any given monotonic and sublinear function G(-) : R — R, consider the G-
expectation E[-] : L;,(2) — R defined by Peng in Ref. [4]. He proved that the corre-
sponding canonical process (B)¢>o on the sublinear expectation space (€2, L;(12),E)



called G-expectation space is a G-Brownian motion. In the sequel, G-Brownian motion
means the canonical process (B;)¢>o under the G-expectation E.

We denote the completion of L;(£2) under the norm || X||, := (E[\X!f”])% by LL,(Q),p >
1. Let Mg’O(O, T') be the collection of processes in the following form:

Z Ee (W) ity ) (1),

where 0 =ty <ty <--- <ty =T is any given partition of [0,T],& € L% (), k =
0,---,N — 1. For each n € Mg’O(O,T), let |[nllpz = [E(fOT\nslpds)]% and MZ(0,T)
denote the completion of Mg’O(O, T) under norm || - || ME-

Let (By);>0 be a G-Brownian motion with G(a) = 3(62a™ —o?a™), where 0 < g <
o < Q.
Definition 2.3 For each n € Mé’O(O,T) of the form m(w) = Zg:_ol fk(w)I[%tkH)(t),

we define
N-1

T
I(T}) = /0 ﬁtdBt = Z éj(Btj+1 - Btj)'

=0

Proposition 2.1 The mapping I(-) : Mé’O(O,T) — L%(Qr) is a continuous linear
mapping under norm || - HMé and || - ||2, thus I(-) can be continuously extended to

MZ(0,T). For anyn € MZ(0,T), we denote fOT ndBy = I(n). And we have

T T
f2]( /0 mdBtﬁga?E[/o ], (1)

Definition 2.4 The quadratic variation process of G-Brownian motion (Bi)i>o is de-
fined by

o 2
(Bt._u(gm ZBJ+1 Byx)?,

where p(m]) = max{|tl+1 | 0=ty <ty <---<tny=t}

Definition 2.5 For each n € Mcl;’o(O,T) of the form ny(w) = Zg:_ol Ek(@) gy 1,00) (1),
we define

N-1

T
Q) = /0 nd(B &((Bys — (B)r) - MEY(0,T) — L ().
=0

.

Proposition 2.2 The mapping Q(-) : Mé’O(O,T) — L&(Qr) is a continuous linear
mapping under norm || - HM%; and || - |1, thus Q(-) can be continuously extended to

ML(0,T). For anyn € MZ(0,T), we denote fOT ned(B)¢ := Q(n).
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Proposition 2.3 G-It6’s formula: Let ® € C?(R") with 8%1_%_(1) satisfying polyno-
mial growth condition fori,j =1,--- . n, and X; = (X}, , X[*) satisfying

t
Xf:Xé—l—/ozds+/ /ﬁsst, i=1,---,n,
0

where o', n', B' be bounded processes in Mé(O,T). Then for each t > 0 we have, in
Lg()

O(Xy) —P(Xs) = Zn:[/t D, ®( Xy )0, du + /t 02, ®(X,)B.dB,]

+ / YILELERE Z 2, B(X,)B.A1d(B)..

1,7=1

3 Multiple G-Ito6 integrals

In order to introduce the definition of multiple G-1t6 integral, we introduce the following
usual spaces of function:

L*([0,T]") := {glg [0, T]" = R, llgll2 (0 7yny < o0}

L2([0, 7)) == {glg is a Symmetrlc functlon in L2([0, T|™)},

where H9”2L2([0,T] f[o 7 9 2y, zn)day - - doy,.

For any fon S, = {(x1, -+ ,2p) € [0,T]": 0< 21 < <--- <2, <T} (n>1),
we define

||f||%2(sn) = /S f2(1131,"' 7117n)d331"-33n.

For || f1|2, (5,) < 00 We can form the (n—fold) iterated G-It6 integral

T tn t3 to
N Y L
0 0 0 0

It is easily to show that at each G-It6 integration with respect to dB(t;) is included in
MZ(0,t;41) by equality (). Moreover, by equality () we have

tn to
</ / f t17 t27 tn)dBt1 dBtz e dBtn>
tn to 2
/ </ f(t1,ta, -+ t,)dBy,dBy, - - dBtn1> dty,
tn
/ / f tlv t27 tn)dtl e dtn

= s, < .

2

E[(J](£))%]

IN

IA



For any constant ¢, we define Jy(c) = c. Notice that for any g € L([0,T]"), we
have

1

2 2

||9\|L2(sn) - HHQHL%[O,T}")‘

Thus we give the following definition of multiple G-It6 integral.

Definition 3.1 For any g € L*([0,T]"), define
IN(g) = /[ } g(t1,+  ta)dBy dBy, - dBy, = nlJ. (g)
07T n

Notice that for all g € L([0,T]"), we have I (g) € L%(Qr) because of

E[(Iy (9))*] = E[(n)*(J (90)] < 3" ()?llgl1Z2 s,y = 72 Il o,z

4 Main Result

We start by introducing the Hermite polynomials A, (z) which are defined by

12 d"
PR

dx™

2

ha(z) = (—1)"e (e72%"), n=0,1,2, - . (2)

Obviously the first three Hermite polynomials are:
ho(x) =1, hi(z) =z, ho(z) = 2 — 1.
We claim the main result as the following theorem:

Theorem 4.1 For any f € L2([0,T)), let gn(ti,ta, - ,tn) = f(t1)f(t2) - f(tn), then
gn € L2([0,T]"), and in LZ,(Qr)

Teo ) — Il flnp (97
I (9n) = || fll7hn( IIfIIT)’ (3)

where || f|lr = [fOT fz(s)d(B>5]% be a nonnegative random variable and O = fOT f(t)dBy.

Proof It is easy to check that g € ﬁz([O, T]|"™). We now prove the theorem in two steps.
Step 1: Equality (8] holds if and only if the following equality (@) is true:

Iy (9n) = 07151 (9n-1) — (n = DI fIFL3_2(gn-2), n>2. (4)

On the one hand, if equality (@) holds, using the Hermite polynomials’s recurrence
relation:

hn(y) = yhn-1(y) — (n — Dhn—2(y), n>2. (5)



For n > 2 we have:

O
T

= 0| fII% l(HfH ) = (0 = D[ fllrhn—2(7F
= 071} 1 (gn—1) — (n = DI fIIFIr_o(gn—2)-

We obtain that the equality (@) holds for any n > 2.
On the other hand, if equality (@) holds, obviously we have

I (gn) £ 117Pn(

HfH )

Or
1 fllT

Ig (90) = 1 = |1°ho(5)s (6)

I (91) = 07 = | f |l (77)- (7)

||f Iz
When n = 2, applying G-Itd’s formula to 67, we get

a2 = 2 /0 F($)dB)F(£)dB, + FA(8)d(B),,

that is 62 =2 [ [* f(s)f(t)dBdB; + [, f2(t)d(B);. Hence,

Or _ 2
||f||Th2(HfH ) = HfHT[(HfH )7 —1]
= - / P(t)d(B
Therefore,
1 £1Fha(==) = I3 (g2). (8)

HfH

From equality (6)-(8]) it follows that equality (B]) holds for n = 0, 1,2. For n > 2 equality
@) can easily been proved by mathematical induction using equality (@) and (&), we
omit it.

Step 2: We shall show that equality () holds under the assumption of the theorem.
We deduce from equations (@)-(8) that equation (] holds true in case n = 2. We make
use of the mathematical induction with regard n. Now suppose equality (@) holds when
n <m — 1, we have to prove equality () being true when n =m.

Let
m—1
X, = / / 7 F) - f(t)dBy - B, .

0



By G-Itd’s formula, we get

do;X; = (// / f(t1)-- f(tm_1)dBy, ---dBy, )f( )dB,
+0, < / / / f(t1) - f(tm_2)dBy, ---dBy, ) f(t)dB,
(// / f(ty) - f(tm_2)dBy, ---dBy, 2) fA(t)d(B),.

Thus,
OTI (gm 1 )
(m 1 'HTXT

(m —1)! / / / " / £(t1)- (1)dBy, ---dB,, ,dB;
i ([ [ [0 sensas,as, ) P,
- 1/@(//% - Jro
o[ [ s, ) P,
< / /tm / F(t1) - f(tm_s)dBy, - dBm) F(t)dB;
(m — 1)(m — 1)! / //tm /ftl (t)dBy, ---dB,, ,dB,
= 2o + om0 [ ([ [ [ s s, as, ) P,

+(m = 1)im,

where

¢m:/0 [m 2'9t<//tm /ft1 F(tys)dB, - Bl2>
(m —1)! //tm /ft1 Fltmo1)dBy, ---dBy, 1}f(t)dBt

:/0 [et[m 2(gm 2) Im 1(gm 1)]f( )dBt

=11 (gm)

From equality (), we have

T
Y = / (m = 2 FIETE s (gm-s))) f (1)dB,
0

Al () (L o o



Let YV} = fo fm=2 t2 f(t1) - f(tm—2)dBy, -+ -dBy,, ,, using G-It6’s formula to
| £17Y2, we get:

(m = D7 —a(gm—2) = (m —1)'||f||TYT

—(m / ( / / -0 ") f<tm_2>dBt1---dBtm2)f2<t>d<B>t
(m - 1) / </ F2(s)d(B )(/ / - it f(tm_s,)dBtl---dBtm3>f<t>dBt

— (m / (/ [ - Sltm2)dBy dBa, ) POUBN+ (0= )i,

Therefore, O71L 1 (gm-1) = IL(gm) + (m — V|| fII321L _5(gm—2), in other words, the
equality () has been established for n = m. By mathematical induction, equality (@)
holds for any integer n > 2. The proof of theorem [£1]is complete. [

Remark 4.1 G-Brownian motion degenerate to the classical Brownian motion when

52 = 0% = 1. In that case, equality ([3) becomes the relation between the classical multiple

1t6 integrals and Hermite polynomials.

The next corollary gives the general formula of fOT g" e 52 dBy, ---dDBy,.

Corollary 4.1

T tn to L%J (_1)m 9
A B, ---dB, = B\™m gr—2m
/0 /0 ; d t1 d tn m§:0 me'(n — 2m)| ( >T T )

where |x| is the largest integer not greater than x.

Proof  From theorem (1] it follows that

T rtn to 1 n BT
— —(B)2h, (—L
/0 /0 o P B =B >Th"(<B>1T/2)'

It is easily to get the corollary since the Hermite polynomials can be written explicitly
as

15) m
hn(z) = n! Z o (=1) g,
m=0

m!(n —2m)!

The proof of corollary d.1]is complete. [J
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