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Abstract

Tuza conjectured that for every graph G, the maximum size ν of
a set of edge-disjoint triangles and minimum size τ of a set of edges
meeting all triangles, satisfy τ ≤ 2ν. We consider an edge-weighted ver-
sion of this conjecture, which amounts to packing and covering triangles
in multigraphs. Several known results about the original problem are
shown to be true in this context, and some are improved. In particular,
we answer a question of Krivelevich who proved that τ ≤ 2ν∗ (where ν∗

is the fractional version of ν), and asked if this is tight. We prove that
τ ≤ 2ν∗ − 1

4

√
ν∗ and show that this bound is essentially best possible.

1 Introduction

We shall assume in this paper that graphs are simple, and use the term multi-
graph when parallel edges are permitted. Let G = (V,E) be a graph and let
T = T (G) be the set of triangles of G. We define a packing to be a set of
edge-disjoint triangles and a transversal to be a set of edges which meets ev-
ery triangle. (These are the usual packing and transversal parameters for the
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hypergraph with vertex set E and hyperedges corresponding to T .) We define
the following parameters:

ν(G) = max{|Z| : Z ⊆ T (G) is a packing in G} and

τ(G) = min{|F | : F ⊆ E(G) is a transversal in G}.

It is immediate that ν(G) ≤ τ(G) ≤ 3ν(G) since given a maximum set
T ′ of ν(G) edge-disjoint triangles, every transversal must contain at least one
edge from each triangle in T ′, and on the other hand, the set of all edges in T ′
is a transversal. The following conjecture was proposed by Tuza [5] in 1981. It
asserts that the trivial upper bound 3ν on τ can be improved.

Conjecture 1.1 (Tuza). 2ν(G) ≥ τ(G) for every graph G.

It is worthwhile to interpret ν(G) and τ(G) as solutions to integer programs,
so let us pause to do so now. Let A be the edge-triangle incidence matrix of
G, i.e., Ae,t = 1 if the triangle t contains the edge e and otherwise Ae,t = 0.
Then we have:

ν(G) = max{〈1, x〉 : Ax ≤ 1 and x ∈ ZT+},
τ(G) = min{〈1, y〉 : A>y ≥ 1 and y ∈ ZE+},

where 1 ∈ ZT or 1 ∈ ZE denotes the all-1 function (it is clear from the context
which of the two possibilities applies), and the inner product 〈·, ·〉 is the usual
one, 〈u, v〉 =

∑
t∈T u(t)v(t) if u, v ∈ ZT+ or

∑
e∈E u(e)v(e) if u, v ∈ ZE+.

Relaxing the integrality constraints, we find the following dual linear pro-
grams:

ν∗(G) = max{〈1, x〉 : Ax ≤ 1 and x ∈ RT
+}, (1)

τ ∗(G) = min{〈1, y〉 : A>y ≥ 1 and y ∈ RE
+}, (2)

whose optimal values ν∗(G) and τ ∗(G) are called the fractional packing and
fractional transversal number , respectively. This gives us the following mean-
ingful chain of inequalities:

τ(G) ≥ τ ∗(G) = ν∗(G) ≥ ν(G).

Although Tuza’s Conjecture 1.1 remains wide open, there have been a number
of useful partial results. Below we highlight three of these.

Theorem 1.2 (Krivelevich [3]). For every graph G we have:

(i) 2ν(G) ≥ τ ∗(G).
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(ii) 2ν∗(G) ≥ τ(G).

Theorem 1.3 (Tuza [6]). Conjecture 1.1 holds whenever G is planar.

Theorem 1.4 (Haxell [1]). For every graph G, we have 2.87 ν(G) ≥ τ(G).

There is a natural weighted analogue of our triangle packing problem.
Namely, if w : E → Z+ is an edge-weighting , then using the edge-triangle
matrix A introduced above, we define

νw(G) = max{〈1, x〉 : Ax ≤ w and x ∈ ZT+},
τw(G) = min{〈w, y〉 : A>y ≥ 1 and y ∈ ZE+}.

In other words, νw(G) is the largest number of triangles such that each edge e
is contained in at most w(e) of them, and we say that such a set of triangles is a
(weighted) packing . Similarly, τw(G) is the maximum weight of a transversal,
where the weight of an edge-set is defined as the sum of the weights of its
elements, w(R) =

∑
e∈R w(R).

As before, relaxing the integrality constraints gives us dual linear programs:

ν∗w(G) = max{〈1, x〉 : Ax ≤ w and x ∈ RT
+} (3)

τ ∗w(G) = min{〈w, y〉 : A>y ≥ 1 and y ∈ RE
+} (4)

and we have the chain of inequalities:

τw(G) ≥ τ ∗w(G) = ν∗w(G) ≥ νw(G).

Admissible solutions x and y to the linear programs (3) and (4) are called
fractional packing and fractional transversal , respectively.

Given a weighting w of a graph G, we can define a multigraph G′ by re-
placing each edge e in G with w(e) parallel edges. We consider a triangle in G′

to be a K3-subgraph of G′ (i.e. no multiple edges), and define the packing and
transversal numbers ν and τ for G′ accordingly. Any weighted packing in G
corresponds naturally to a packing of same size in G′ and vice versa, implying
that νw(G) = ν(G′). Also any transversal with weight k in G corresponds nat-
urally to a transversal of size k in G′, but the other direction is not generally
true. However, if C is an any optimal transversal in G′ and e ∈ C then C
also contains all edges that are parallel to e. Hence C corresponds naturally
to a transversal of weight |C| in G. Consequently, we have τw(G) = τ(G′).
Similarly, the fractional packing and covering parameters for (G,w) and G′

are the same. Thus it is admissible to investigate packings and transversals in
multigraphs instead of the weighted problems in simple graphs. We will do so
in Sections 3 and 5.

The subject of this paper is the following weighted version of Tuza’s con-
jecture.



4

Conjecture 1.5. For every graph G = (V,E) and w : E → Z+, we have

2νw(G) ≥ τw(G).

First we generalize Krivelevich’s Theorem 1.2 to the weighted case. For
Krivelevich’s result, the inequality between ν and τ ∗ is tight for K4 and we
show that the same bound holds in the weighted case. On the other hand, the
inequality between τ and ν∗ is not tight and we show that an improvement can
be made.

Theorem 1.6. For every graph G = (V,E) and w : E → Z+ we have

(i) τw(G) ≤ 2τ ∗w(G)− 1
4

√
τ ∗w(G), and

(ii) 2νw(G) ≥ τ ∗w(G).

Although (i) may appear to be a rather small improvement on Krivelevich’s
original result, we show that this improvement is best possible up to a loga-
rithmic factor (even for the unweighted case). See Section 3. This answers a
question of Krivelevich about the tightness of his bounds.

We also prove weighted analogues of Tuza’s and Haxell’s theorems. In-
terestingly, the introduction of weights seems to simplify the proof of Tuza’s
theorem, while it appears to make things more difficult for Haxell’s theorem
(in fact we get a slightly larger constant factor). See Section 5.

Theorem 1.7. For every graph G and w : E → Z+, we have

2.92 νw(G) ≥ τw(G).

We shall extend Tuza’s Theorem 1.3 to weighted graphs embedded in an
arbitrary surface. We refer to [4] for standard terminology concerning graphs
on surfaces. A cycle C of a graph embedded in a surface is said to be surface-
separating if cutting the surface along C disconnects the surface. Note that
every facial cycle (i.e. a cycle bounding a face) is surface-separating.

Theorem 1.8. Suppose that a graph G is embedded in a surface such that
every triangle is surface-separating. Then for every w : E → Z+, we have

2 νw(G) ≥ τw(G).

Since every cycle in a graph embedded in the plane is surface-separating,
Theorem 1.8 yields the following extension of Tuza’s Theorem 1.3.

Theorem 1.9. For every planar graph G = (V,E) and every w : E → Z+, we
have 2 νw(G) ≥ τw(G).
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For a positive integer k, we let νk = νw (τk = τw) where w : E → Z+ is the
constant function of value k. It is immediate from the rationality of the matrix
A that for every graph G there exists an integer k so that ν∗(G) = 1

k
νk(G) and

τ ∗(G) = 1
k
τk(G). It is natural to consider the question of whether there exists

a fixed integer k which might work for all graphs. We resolve this question in
the negative with the following result, whose proof is given in Section 4.

Theorem 1.10. There does not exist a fixed integer k so that ν∗(G) = νk
k

for
every graph G, and similarly there is no fixed k so that τ ∗(G) = τk

k
for every

graph G.

2 Graphs on a surface

In this section we prove that the weighted version of Tuza’s conjecture holds
for planar graphs by proving a more general statement, Theorem 1.8. Tuza
himself proved the unweighted version of the planar case (Theorem 1.3). Our
argument is quite similar to his proof, but in some ways the introduction of
weights simplifies the situation.

Proof of Theorem 1.8. Let G and w be a counterexample for the counterex-
ample of Theorem 1.8 so that |E| + w(E) is minimum. We shall establish
properties of G,w in a few steps. Let us observe that none of these properties
uses embeddability in a surface, but all reductions used in the proofs preserve
embeddability and do not introduce new triangles.

(1) w(e) > 0 for every e ∈ E.

Suppose (for a contradiction) that w(e) = 0, and consider the graph G′ =
G − e and the weight function w′ obtained by restricting w to E \ {e}. Since
adding e to a transversal of G′ yields a transversal of G with the same weight,
we have 2νw(G) = 2νw′(G

′) ≥ τw′(G
′) = τw(G) which is a contradiction.

(2) Every e ∈ E is in at least two triangles.

If e is not in any triangle, then G − e is a smaller counterexample, which
is contradictory. Next suppose that e is in exactly one triangle with edge
set {e, f1, f2}. Now modify w to form a new weight function w′ by setting
w′(e) = w(e) − 1 and w′(fi) = w(fi) − 1 for i = 1, 2. Let R be an (inclusion-
wise) minimal transversal of G with w′(R) = τw′(G). Clearly, if R contains f1
or f2, then it does not contain e. Thus, we conclude:

2νw(G) ≥ 2νw′(G) + 2 ≥ τw′(G) + 2 = w′(R) + 2 ≥ w(R) ≥ τw(G).

This contradiction proves (2).
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(3) If e ∈ E is in exactly two triangles, then w(e) ≤ 1.

Suppose (for a contradiction) that (3) fails and the edge e with w(e) ≥
2 is in exactly two triangles with edge sets {e, f1, f2} and {e, f3, f4}. Next,
modify w to form a new weight function w′ by setting w′(e) = w(e) − 2 and
w′(fi) = w(fi) − 1 for 1 ≤ i ≤ 4. Let R be a minimal transversal of G with
w′(R) = τw′(G). By minimality, R cannot contain e and at least one of f1, f2
and at least one of f3, f4. It follows from this that w(R) ≤ w′(R) + 4. This
gives us

2νw(G) ≥ 2νw′(G) + 4 ≥ τw′(G) + 4 = w′(R) + 4 ≥ w(R) ≥ τw(G)

which is a contradiction.

(4) G does not contain a vertex v so that the set N(v) of its neighbors induces
a cycle.

Suppose (for a contradiction) that (4) is false and that N(v) induces a cycle
with (cyclic) order u1, u2, . . . , uk. Note that by (1) and (3) we have w(vui) = 1
for every 1 ≤ i ≤ k. Now set G′ = G − v and let w′ be the function obtained
from the restriction of w to E(G′) by setting w′(u2i−1u2i) = w(u2i−1u2i)− 1 for
1 ≤ i ≤ bk

2
c. Let R′ be a transversal of G′ with w′(R′) = τw′(G

′). If R′ does
not use any of the edges u2i−1u2i for 1 ≤ i ≤ bk

2
c then we may extend R′ to

a transversal R of G by adding dk
2
e edges of the form vuj and we have that

w(R) ≤ w′(R′)+dk
2
e ≤ w′(R′)+2bk

2
c. On the other hand, if R′ uses an edge of

the form u2i−1u2i, then we may extend R′ to a transversal R of G by adding bk
2
c

edges of the form vui. In this case we have w(R) ≤ w(R′)+bk
2
c ≤ w′(R′)+2bk

2
c.

This gives us

2νw(G) ≥ 2νw′(G
′) + 2bk

2
c ≥ τw′(G

′) + 2bk
2
c

= w′(R′) + 2bk
2
c ≥ w(R) ≥ τw(G)

which is a contradiction.

Let us now consider the embedding of G. If every triangle is facial (i.e., it
bounds a face), then it follows from (2) that every edge of G is in exactly two
facial triangles and then applying (4) to any vertex gives us a contradiction.
Otherwise, we may choose a non-facial surface-separating triangle t so that the
number of edges in one of the surface components of t, say S, is minimal. Now
every edge properly inside S is in exactly two facial triangles (again by (2))
and then applying (4) to any vertex properly inside S gives us a contradiction.
This completes the proof.
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3 Comparing τw and ν∗w
In this section we establish Theorem 1.6. We prefer to work in the setting
of multigraphs, rather than weighted graphs (see the discussion in the in-
troduction about their equivalence). Given this correspondence, part (ii) of
Theorem 1.6 follows immediately from Krivelevich’s original proof applied to
multigraphs. To show part (i), we require several preliminary lemmas.

Lemma 3.1. If G is a triangle-free multigraph with v vertices, then G has an
independent vertex set of size at least 1

2

√
v.

Lemma 3.1 is well-known. To prove it, observe that either there is a vertex
of degree ≥ 1

2

√
v (whose neighbors form an independent set), or we can greedily

choose a vertex and remove it and its neighbors from the graph. To complement
Lemma 3.1, we also want a result guaranteeing a large edge-cut in a multigraph.
The following two lemmas provide such a cut. Let us recall that an (edge)-cut
in G is a set F ⊆ E(G) for which there exists a vertex set W ⊆ V (G) such that
F is the set of edges with one end in W and one end in V (G) \W . We denote
the cut associated with W by δ(W ), and call W and V (G) \W the shores of
δ(W ).

Lemma 3.2. If G is a connected multigraph with e edges and v vertices, then
G has an edge-cut of size at least e

2
+ v−1

4
.

Proof. We will actually show that if G has a vertex of odd degree, then G has
an edge-cut of size at least e/2 + v/4, and otherwise G has an edge-cut of size
at least e/2 + (v− 1)/4. We proceed by induced on v+ e, noting that if G has
only one or two vertices the statement holds trivially.

Suppose that G has a vertex x of odd degree, say of degree d. If G − x is
connected, then by induction G−x has an edge-cut of size at least (e− d)/2 +
(v − 2)/4. Adding x back to one of the shores of this edge-cut will yield and
edge-cut in G with additional (d+1)/2 edges (or more), which is as desired. On
the other hand, if x is a cut vertex, then there is a component C of G−x such
that x has odd degree in C∪{x}. If C∪{x} has eC edges and vC vertices, then
by induction, C ∪ {x} has an edge-cut of size at least eC/2 + vC/4. Moreover,
G−C has an edge-cut of size at least (e−eC)/2+(v−(vC−1)−1)/4. There is a
natural way to combine these two edge-cuts to get an edge-cut of G. Moreover,
since the two smaller cuts are edge-disjoint, the edge-cut of G has size at least
e/2 + v/4, as desired.

Now suppose that all vertices in G have even degree. If the multiplicity of
every edge is even, then consider the graph G′ obtained by deleting exactly half
of the edges between each pair of vertices. Since G′ is connected, by induction
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it has an edge-cut of size at least e/4 + (v−1)/4. The shores of this cut induce
an edge-cut in G of size 2(e/4+(v−1)/4) > e/2+(v−1)/4. So, we may assume
that there exists a pair of adjacent vertices x, y in G with an odd number of
edges between them.

Consider the graph G− x. Since y has even degree in G, it has odd degree
in G− x. So, if G− x is connected, then by induction we get that G− x has
an edge-cut of size at least (e− d)/2 + (v − 1)/4, where d is the degree of x in
G. Adding x back to one of the shores of this edge-cut will yield and edge-cut
in G with an additional d/2 edges, which is as desired. On the other hand,
if x is a cut vertex, then consider a component C of G − x. If C ∪ {x} has
eC edges and vC vertices, then, by induction, C ∪ {x} has an edge-cut of size
at least eC/2 + (vC − 1)/4. Moreover, G − C has an edge-cut of size at least
(e− eC)/2 + (v− (vC − 1)− 1)/4. As before, there is a natural way to combine
these two edge-cuts to get an edge-cut of G. Moreover, since the two smaller
cuts are edge-disjoint, the edge-cut of G has size at least e/2 + (v − 1)/4, as
desired.

Lemma 3.3. If G is a multigraph with e edges, then G has an edge-cut of size
at least e/2 +

√
e/4.

Proof. By the convexity of the function x/2 +
√
x/4, we may assume that G is

connected. By Lemma 3.2, if G has v vertices then it has an edge-cut of size
at least e/2+(v−1)/4. If (v−1)/4 ≥ √e/4, this implies our desired result. In
particular, we get our result when v ≥ 2

√
e. To handle the case when v < 2

√
e,

we take an alternative approach.
Suppose that v is either 2n or 2n + 1, and choose a random n-subset W

of the vertex set. Our plan is to compute the expected size of δ(W ) and show
that it is sufficiently large. To this end, consider an edge xy ∈ E(G). If G has
2n vertices, then whether or not x ∈ W , there are exactly n possible choices
for y that would cause xy ∈ δ(W ), out of the 2n−1 total possible choices for y.
Hence, the probability that xy ∈ δ(W ) is exactly n/(2n− 1). By the linearity
of expectation, we get

E
(
|δ(W )|

)
= e

(
n

2n− 1

)
=
e

2
+

e

4n− 2
>
e

2
+

e

2v
.

When v < 2
√
e, we get an edge-cut that is sufficiently large.

If G has 2n + 1 vertices, then for x ∈ W the probability that xy ∈ δ(W )
is exactly (n + 1)/(2n), while for x 6∈ W , the probability that xy ∈ δ(W ) is
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exactly n/(2n). In this case,

E
(
|δ(W )|

)
= e

[(
n

2n+ 1

)(
n+ 1

2n

)
+

(
n+ 1

2n+ 1

)( n
2n

)]
=
e(n+ 1)

2n+ 1
=
e

2
+

e

4n+ 2
=
e

2
+

e

2v
.

Again, when v < 2
√
e, we get an edge-cut that is sufficiently large.

Note that the constant 1/4 in Lemma 3.3 could be somewhat sharpened,
as could be the constant 1/4 below. Our next result establishes property (i) in
Theorem 1.6.

Theorem 3.4. If G is a multigraph, then τ(G) ≤ 2ν∗(G)− 1
4

√
ν∗(G).

Proof. Let E = E(G) and let T = T (G). Fix an optimal fractional transversal
g : E → R and an optimal fractional packing f : T → R so that we have
f(T ) = ν∗(G) = τ ∗(G) = g(E). If a triangle t ∈ T has edges e1, e2, e3, we say
that t is tight if g(e1) + g(e2) + g(e3) = 1. Similarly, we say that an edge e ∈ E
is tight if

∑
t∈T ,e∈t f(t) = 1. Observe that by the complementary slackness for

dual linear programs (1) and (2), g(e) > 0 implies that e is tight, and f(t) > 0
implies that t is tight. Hence, when computing f(T ) and g(E), we need only
consider tight triangles and tight edges, respectively.

Let Z denote the set of all edges e ∈ E having g(e) = 0. All edges in E \Z
are tight by complementary slackness, and we partition them into three sets
A,B,C as follows: for every edge e ∈ E \ Z, let e ∈ A if 0 < g(e) < 1/2;
e ∈ B if g(e) = 1/2; e ∈ C if g(e) > 1/2. The tight triangles of G can then be
partitioned into five sets, T1, . . . , T5 where for i ∈ {1, 2, 3}, a tight triangle t is
a member of Ti if t has exactly i edges in A. Since A is a set of tight edges, if
we let |A| = a this immediately implies that

a =
∑
e∈A

( ∑
t∈T ,e∈t

f(t)
)

= f(T1) + 2f(T2) + 3f(T3). (5)

Tight triangles with no edges in A have either two edges in Z and one edge
in C, or one edge in Z and two edges in B. Let T4 denote the former set and
let T5 denote the latter. Note that each triangle in T1 has one edge in each of
A, Z and B ∪ C, and each triangle in T2 has two edges in A and one edge in
B ∪C. The triangles of T3 are the only tight triangles with no edges in B ∪C.
Since B ∪ C is a set of tight edges, if we let |B| = b and |C| = c, we thus get

b+ c =
∑

e∈B∪C

( ∑
t∈T ,e∈t

f(t)
)

= f(T1) + f(T2) + f(T4) + 2f(T5). (6)
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We now use (5) and (6) to get a lower bound for ν∗(G), as follows:

ν∗(G) = f(T )

= f(T1) + f(T2) + f(T3) + f(T4) + f(T5)
≥
(
1
4
f(T1) + 1

2
f(T2) + 3

4
f(T3)

)
+
(
1
2
f(T1) + 1

2
f(T2) + 1

2
f(T4) + f(T5)

)
=
a

4
+
b+ c

2
.

To complete the proof we will show that G has a transversal of size at most

2

(
a

4
+
b+ c

2

)
− 1

4

√
a

4
+
b+ c

2
(7)

and use the fact that the function 2x− 1
4

√
x is increasing for x ≥ 1

4
combined

with the inequality of the previous paragraph.
Let H be the graph with vertex set B, where two elements e, e′ of B are

adjacent if e, e′ are two edges of some tight triangle in G. Note that a tight
triangle with two edges in B must its third edge in Z. Since g is a fractional
transversal, no triangle can have all three edges in Z, which implies that H is
triangle-free. Hence, by Lemma 3.1, H has an independent vertex set I ⊆ B
of size at least 1

2

√
b. We claim that (B \ I) ∪ C, along with the complement

of any edge-cut in G′ = G[A ∪ I], is a transversal of G. To see this, first note
that any triangle containing an edge of Z has to contain either an edge of C,
or two edges of B (in which case it is tight and thus contains at least one edge
of B \ I). Any triangle containing no edges of Z either contains an edge of
(B \ I) ∪ C or only edges of A ∪ I (in which case at most two of them are in
an edge-cut of G′).

By Lemma 3.3, if G′ has e′ = |A| + |I| edges, then it has an edge-cut S of
size at least e′/2 −

√
e′/4. Let R be the edge-complement of S in G′, and let

L = (B \ I) ∪ C ∪R. Then L is a transversal of G, and moreover,

|L| ≤ c+ (b− |I|) +
(
e′ − (e′/2−

√
e′/4)

)
= c+ (b− |I|) + (a+ |I|)−

(
a+ |I|

2
+

1

4

√
a+ |I|

)
≤ a

2
+ b+ c−

( |I|
2

+

√
a

4

)
≤ a

2
+ b+ c−

(√
b

4
+

√
a

4

)

≤ 2

(
a

4
+
b+ c

2

)
− 1

4

√
a+ b .
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If a ≥ c, then the right-hand side in the above inequality is at most (7), as
desired. Thus it suffices to prove that a ≥ c is implied by the optimality of the
fractional transversal g. To see this, note that if a < c, then we may define
gε : E → R from g by adding ε > 0 to each edge in A and subtracting ε from
each edge in C. Every tight triangle has at least as many edges in A as in
C, so g′ is a transversal of the tight triangles for every ε > 0. Given that the
remaining triangles are not tight, there is a sufficiently small value of ε such
that g′ is a fractional transversal of G. However then g′(E) < g(E), so the
optimality of g yields the desired contradiction.

Although the constant 1/4 in the above theorem could be somewhat sharp-
ened, the result is best possible up to a logarithmic factor. To see this, let G be
a graph formed by taking any n-vertex triangle-free graph H and adding one
apex vertex completely joined to H. Taking each edge incident to the apex with
value 1/2 gives a fractional transversal in G. This shows that τ ∗(G) ≤ n/2.
Suppose now that R is a transversal for G. If R contains an edge xy of H,
we may replace this edge by the edge joining the apex with x, and this would
still be a transversal. Therefore, we may assume that R contains only edges
incident with the apex. Let U ⊆ V (H) be the set of endvertices of the edges in
R (excluding the apex). Since R is a transversal, the set V (H) \ U is an inde-
pendent set in H. If H is a Ramsey graph (a largest triangle-free graph without
an independent set of size k), then the known estimates for triangular Ramsey
numbers r(3, k) (cf. [2]) show that k = Θ(

√
n log n) where n = r(3, k)− 1. In

particular, |V (H) \U | < k, so |R| = |U | ≥ n−Θ(
√
n log n ). This implies that

τ(G) ≥ 2 τ ∗(G)−Θ
(√

τ ∗(G) log τ ∗(G)
)
.

4 Integrality

The goal of this section is to prove Theorem 1.10 which states that there
does not exist a fixed integer k so that every graph has an optimal fractional
transversal (fractional packing) with value in the set {n

k
: n ∈ N}.

The proof of Theorem 1.10 relies on the family of graphs {Gk}k∈N defined
below. Each graph Gk has two distinguished vertices called terminals which
are joined by an edge called the terminal edge. The graph G0 consists of a
single edge which is its terminal edge. For k ≥ 1 the graph Gk is constructed
as follows (see Figure 1 below). Start with the 5-wheel graph W5 consisting
of a 5-cycle with vertices v1, v2, . . . , v5 and an additional vertex u joined to
v1, v2, . . . , v5. To obtain Gk, take a copy of Gk−1 for each edge xy of W5 and
identify the terminal vertices of this copy with x and y. We define v1, v2 to be
the terminal vertices of Gk (so the edge v1v2 is the terminal edge).
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Gk−1 Gk

v1 v2

Figure 1: Recursive construction of graphs Gk.

Lemma 4.1. For every k ∈ N, we have

τ ∗(Gk) = ν∗(Gk) =
5

2k

(
20k − 1

19

)
.

Proof. For every triangle t in Gk, we define the height of t to be the smallest
integer i so that t appears in a copy of Gi used in the recursive construction.
It is straightforward to verify that for 1 ≤ j ≤ k the graph Gk has exactly
5 · 10k−j triangles of height j. We now define the function fk on the triangles
of Gk by the rule that fk(t) = 2−j where j is the height of the triangle t. It
is straightforward to verify inductively that the triangles of height ≤ j give a
total value of ≤ 1 to each edge and a value of 1− 2−j to each edge which is a
terminal edge in a copy of Gj. Thus, fk is a fractional packing with value

k∑
j=1

5

2j
10k−j =

5

2k

k∑
j=1

20k−j =
5

2k

(
20k − 1

19

)
.

Next, for a real number 0 ≤ a ≤ 1, we give a recursive description of a
function gk,a on the edges of Gk which assigns the terminal edge of Gk the
value a. We let g0,a assign the only edge of G0 the value a, and for k ≥ 0 we
define gk+1,a recursively as shown in Figure 2.

It is immediate that for every triangle of height k, the sum of gk,a over
its edges is equal to one. Then, recursively, the same property holds for every
triangle in Gk, so gk,a is a fractional transversal. We claim that the value of gk,a
is equal to 5

2k
(20

k−1
19

) + a
2k

. This is immediate for the base case when k = 0 and
then follows inductively from the following computation (here we use φ(gk,a)
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gk,a

gk,0

gk,0gk,0

gk,0

gk+1,a

gk,1−a
2

gk,1+a
2

gk,1−a
2

gk,1+a
2

Figure 2: A fractional transversal on Gk.

to denote the value of this fractional transversal):

φ(gk,a) = φ(gk−1,a) + 4φ(gk−1,0) + 3φ(gk−1, 1−a
2

) + 2φ(gk−1, 1+a
2

)

= 10 · 5

2k−1

(
20k−1 − 1

19

)
+
a+ 31−a

2
+ 21+a

2

2k−1

= 20 · 5

2k

(
20k−1 − 1

19

)
+

5

2k
+

a

2k

=
5

2k

(
20k − 1

19

)
+

a

2k
.

We now have that gk,0 is a fractional transversal of Gk with value 5
2k

(20
k−1
19

)
which matches the value of our fractional packing, thus completing the proof.

Proof of Theorem 1.10. It follows from Lemma 4.1 that 2kτ ∗(Gk) is an odd
integer for every k ∈ N. It follows easily from this that 1

m
τm(Gk) 6= τ ∗(Gk)

and 1
m
νm(Gk) 6= ν∗(Gk) whenever m < 2k.

5 Comparing τw and νw

In this section we will establish Theorem 1.7. As in Section 3, we prefer to work
in the setting of multigraphs, rather than weighted graphs (see the discussion
in the introduction about their equivalence).
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Theorem 5.1. Let G be a multigraph. Then τ(G) ≤
(
3− 2

25

)
ν(G).

In the case of (unweighted) simple graphs, Haxell [1] proved that τ ≤ cν,
where c ≈ 2.866. Our constant 3− 2

25
= 2.92 is slightly larger. The rest of this

section is devoted to the proof of Theorem 5.1. The proof structure follows
roughly the same lines as in [1], and we have kept similar notation when it was
possible. The proofs of Lemmas 5.3 and 5.5 are taken directly from [1], and
are included here for completeness.

We say that a family F of triangles in a graph is independent if the elements
of F are pairwise edge-disjoint. Let B be an independent family of triangles in
G of size ν = ν(G). We say that a triangle in G is of type (B, i) if it has exactly
i edges in common with the set E[B]. Note that every triangle in G is of type
(B, i) for some i ∈ {1, 2, 3}. Let B1 be an independent family of triangles of
type (B, 1) of maximum size in G, and let γ be defined by |B1| = γν.

Lemma 5.2. τ(G) ≤ (3− 2
3
γ)ν.

Proof. For each T ∈ B1, let T̂ denote the triangle in B that shares an edge
with T , let e(T ) denote the edge shared by T and T̂ , let v(T ) be the unique
vertex of T which is not incident to e(T ), let v̂(T ) be the unique vertex of
T̂ which is not incident to e(T ), and let E ′(T ) be the set of edges between
v(T ) and v̂(T ) (see Figure 3). Let B̂1 = {T̂ : T ∈ B1}. From the maximality

T̂

T

e(T )

v(T )

v̂(T )

E′(T )

Figure 3: Triangles T and T̂ .

of B it follows that |B̂1| = |B1|. Since every family of triangles of the form
(B \ B̂1)∪{T or T̂ : T ∈ B1} is an independent family of triangles of size ν(G),
for every triangle S that is edge-disjoint from B \ B̂1, there exists T ∈ B1 such
that S shares an edge with T as well as with its counterpart T̂ ∈ B̂1. Then
such a triangle contains either e(T ) or an edge from E ′(T ). Consequently, the
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set C = C1 ∪ C2, where

C1 = E[B \ B̂1] ∪ {e(T ) : T ∈ B1} and

C2 =
⋃

T∈B1
E ′(T ),

is a transversal of G. We will show that |C| ≤ (3− 2
3
γ)ν. Clearly, |C| ≤ |C1|+

|C2\C1| = (3−2γ)ν+ |C2\C1|. We define the set J = {T ∈ B1 : E ′(T ) ⊆ C1},
and we define γ0 by |J | = γ0ν.

Now consider a triangle U ∈ B1. If |E ′(U) \ C1| 6= 0 then U ∈ B1 \ J .
Consider the case that |E ′(U)\C1| ≥ 2. So there are edges f1, f2 ∈ E ′(U)\C1.
Then these two edges together with the four edges in (E(U)∪E(Û)) \ {e(U)}
form two edge-disjoint triangles, say T1(U) and T2(U). Hence at least one
of f1, f2, say f1, must belong to E[B]; otherwise (B \ {Û}) ∪ {T1(U), T2(U)}
would be an edge-disjoint family of triangles, contradicting the maximality
of B. Since f1 /∈ C1, we conclude that f1 ∈ E(T̂ ) \ e(T ) for some triangle
T ∈ B1. If f2 /∈ E(T ) \ {e(T )}, then (B \ {Û , T̂}) ∪ {T, T1(U), T2(U)} is a
family of edge-disjoint triangles, contradicting the maximality of B. So f2 ∈
E(T )\{e(T )}. Since f1 and f2 have the same endpoints, it follows that the edge
f2 is uniquely determined and that v(T ) = v̂(T ). This implies that E ′(T ) = ∅
and, therefore, T ∈ J . Since we could not get the same conclusion for a third
edge in E ′(U) \ C1, this also implies that |E ′(U) \ C1| = 2.

The above proof shows that, for any triangle U ∈ B1, the set E ′(U) \ C1

contains at most two edges and, therefore, |C2 \ C1| ≤ 2(γ − γ0)ν. Moreover,
if E ′(U) \ C1 contains two edges, then one of them belongs to E[J ] \ C1.
Therefore, we also have |C2 \C1| ≤ (γ− γ0 + 2γ0)ν = (γ+ γ0)ν. Consequently,
we have

|C2 \ C1| ≤
1

3
(2γ − 2γ0)ν +

2

3
(γ + γ0)ν =

4

3
γν

and hence |C| ≤ (3− 2γ)ν + |C2 \ C1| ≤ (3− 2
3
γ)ν.

Next, we let G′ = G − E[B1]. Note that ν(G′) = (1 − γ)ν, and that all
triangles in G′ are of type (B, 2) or of type (B, 3). Let B2 be an independent
family of triangles of type (B, 2) of maximum size in G′, and let β be such that
|B2| = βν.

Lemma 5.3. τ(G) ≤ (3
2

+ 5
2
γ + 2β)ν.

Proof. Let H = G[E[B]\(E[B1]∪E[B2])]. Maximality of B1 and B2 imply that
every type (B, 1) triangle in G contains an edge of E[B1], and every triangle
of type (B, 2) contains an edge of E[B1] ∪ E[B2]. Consequently, every triangle
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that is edge-disjoint from E[B1]∪E[B2], is of type (B, 3) and, therefore, also a
triangle in H. Hence, if C ′ is a transversal of H, then the set

C = E[B1] ∪ E[B2] ∪ C ′

is a transversal of G. Now, we know that H has a bipartite subgraph S with at
least 1

2
|E(H)| edges. Thus, C ′ = E(H) \E(S) is a transversal of H. It follows

that |C ′| ≤ 1
2
|E(H)| = 1

2
(3− γ − 2β)ν. Thus, |C| ≤ (3

2
+ 5

2
γ + 2β)ν, which we

were to prove.

We let B′ be an independent family of triangles in G′ of maximum size,
subject to the condition that |E[B′] \E[B]| ≥ βν. We know that such a family
exists, because B2 satisfies the condition. Observe that B′ is an inclusion-
maximal independent family of triangles in G′. We define α by |B′| = αν.

From now on, we use the same notation as in Figure 3, but where the set
B′ plays the role that the set B was playing before. More precisely, if T is a
triangle of type (B′, 1) in G′, we let T̂ be the triangle in B′ that shares an edge
with T , we let e(T ) be the edge shared by T and T̂ , we let v(T ) be the unique
vertex of T which is not incident to e(T ), we let v̂(T ) be the unique vertex of
T̂ which is not incident to e(T ), and we let E ′(T ) be the set of edges between
v(T ) and v̂(T ) in G′.

We let B′1 be an independent family of triangles of type (B′, 1) in G′ such
that for each T ∈ B′1, we have e(T ) 6∈ E[B], and such that B′1 has maximum
cardinality with these properties. We define δ by |B′1| = δν.

Lemma 5.4. Let S be any subset of B′1. Then the family of triangles:

B̃′ = S ∪ B′ \ {T̂ : T ∈ S}, (8)

is an independent family of triangles in G′ such that E[B̃′] \E[B] ≥ βν. More-
over, B̃′ has maximum size with this property.

Proof. Let T ∈ S. By definition of B′1, we have e(T ) 6∈ E[B], and since there
are no triangles in G′ of type (B, 1), we have E(T ) ∪ E(T̂ ) \ {e(T )} ⊂ E[B].
This implies that E[B̃′] \ E[B] = E[B′] \ E[B], which proves the first assertion
of the lemma. The second assertion is immediate since |B̃′| = |B′|.
Lemma 5.5. τ ≤ (3γ + 3δ + 3α− β)ν.

Proof. We let
C = E[B1] ∪ E[B′1] ∪

(
E[B] ∩ E[B′]

)
.

Then clearly |C| ≤ (3γ + 3δ + 3α − β)ν. To complete the proof, it suffices to
show that C is a transversal of G. Since E[B1] ⊆ C, it suffices to prove that
every triangle in G′ has an edge in C.
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First, let T be a triangle of type (B′, 1) in G′. If e(T ) ∈ E[B], then e(T ) ∈
E[B] ∩ E[B′], so E[T ] intersects C. Else, we know that E[T ] intersects E[B′1]
since otherwise adding T to B′1 would contradict the maximality of B′1; so every
triangle of type (B′, 1) in G′ intersects C.

Now, let T be a triangle of type (B′, 2) or (B′, 3) in G′. Since in G′ all
triangles have type (B, 2) or (B, 3), E[T ] necessarily contains at least one edge
in E[B] ∩ E[B′]. Therefore E[T ] intersects C, which concludes the proof that
C is a transversal of G.

In G′, we define the set of triangles B̂′1 = {T̂ : T ∈ B′1} ⊆ B′ and we consider
the edge-set E0 defined by

E0 = E[B′ \ B̂′1] ∪
⋃

T∈B′1
{e(T )}. (9)

We are now going to define a subset I of B′1, and a function f : I → 2E[G′] that
associates to each triangle in I a set of edges of G′. The set I and the function
f are chosen simultaneously according to the following properties:

– for each T ∈ I, we have f(T ) ⊆ E ′(T ) \ E[B′] and |f(T )| = 2;
– the sets (f(T ))T∈I are pairwise disjoint, and so are the sets (E(T ))T∈I ;
– for any T, U ∈ I, the sets f(T ) and E(U) are disjoint;
– I has maximum cardinality subject to these properties.

By Lemma 5.4, any set B̃′ of the form of Eq. (8) satisfies the hypotheses
of the definition of B′. Replacing B′ by B̃′ may change the cardinality of the
set I defined above. From now on we will assume that, among all sets B̃′ of
the form of Eq. (8), the set B′ is the one for which the set I has the maximum
cardinality. We let Î = {T̂ : T ∈ I} and we define η by |I| = |Î| = ην.

Lemma 5.6. α + η ≤ 1− γ.

Proof. For T ∈ I, the two edges of f(T ), together with the four edges in
(E(T )∪E(T̂ )) \ {e(T )} form two edge-disjoint triangles, say T1(T ) and T2(T ).
Now, by definition of I, the family of triangles

A = {T1(T ), T2(T ) : T ∈ I} ∪
(
B′ \ Î

)
is an edge-disjoint family of triangles in G′. Since |A| = |B′|+ |Î| = (α + η)ν,
we have (α + η)ν ≤ ν(G′) = (1− γ)ν.

Now, we let K = {T ∈ B′1 : E ′(T ) ⊆ E0}, we let K̂ = {T̂ ∈ B′ : T ∈ K},
and we define δ0 by |K| = |K̂| = δ0ν.

Lemma 5.7. τ ≤ (3γ + 3α− 2δ0)ν ≤ (3− 3η − 2δ0).
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Proof. We define the set of edges

C = E[B1] ∪ E[B′ \ K̂] ∪ {e(T ) : T ∈ K},

and we observe that |C| ≤ (3γ + 3α− 2δ0)ν ≤ (3− 3η − 2δ0)ν (for the second
inequality we have used Lemma 5.6).

Now we prove that C is a transversal of G. Since E[B1] ⊆ C, it suffices to
prove that C is a transversal in G′. By Lemma 5.4, every family of triangles
of the form (B′ \ K̂) ∪ {T or T̂ : T ∈ K} is an inclusion-maximal independent
family of triangles in G′. Therefore for every triangle U in G′ that is edge-
disjoint from B′ \ K̂, there exists T ∈ K such that U shares an edge with T as
well as with its counterpart T̂ ∈ K̂. Then the triangle U contains either e(T )
or an edge from E ′(T ). In the first case, E(U) intersects C; in the second case,
since by the definition of K, E ′(T ) is contained in E0 ⊆ C, E(U) intersects C
as well.

Lemma 5.8. τ ≤ (3− δ + 4η + δ0)ν.

Proof. First we define a subset I ′ of B′1 \ I by

I ′ = {T ′ ∈ B′1 \ I : E(T ) ∩ (
⋃
T∈I

f(T )) 6= ∅}.

We define η′ by |I ′| = η′ν. Since I ′ is a family of edge-disjoint triangles, it
follows that |I ′| ≤ |⋃T∈I f(T )| = 2|I|, hence η′ ≤ 2η. Let A = B′1\(I∪I ′∪K)

and Â = {T̂ : T ∈ A} ⊆ B′. We now recall the definition (9) of the edge-set
E0 and define the following set of edges of G:

C = E[B1] ∪ E0 ∪ E1 ∪ E2 ∪ E3 ∪ E4,

where

E1 =
⋃
T∈I

(
E(T ) ∪ E(T̂ ) ∪ f(T )

)
,

E2 =
⋃
T∈I′

E(T̂ ),

E3 =
⋃
T∈K

E(T̂ ),

E4 =
⋃
T∈A

E ′(T ).

We claim that C is a transversal of G. Since E[B1] ⊆ C, we only have to
consider triangles in G′. Clearly, every triangle in G′ that is not edge-disjoint
from B′ \ A intersects C. By Lemma 5.4, every family of triangles of the form
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(B′ \ A) ∪ {T or T̂ : T ∈ A} is an inclusion-maximal independent family of
triangles in G′. Therefore, for every triangle U in G′ that is edge-disjoint from
B′ \ A, there exists T ∈ A such that U shares an edge with T as well as with
its counterpart T̂ ∈ Â. Then the triangle U contains either e(T ) or an edge
from E ′(T ). In the first case, E(U) intersects E0; in the second case, E(U)
intersects E4. Hence C is a transversal of G.

It remains to show that |C| ≤ (3− δ + 6η + δ0)ν. Clearly,

|C| ≤ |E[B1]|+ |E0|+ |E1 \ E0|+ |E2 \ E0|+ |E3 \ E0|
+ |E4 \ (E0 ∪ E1 ∪ E2 ∪ E3)|

≤
(
3γ + 3α− 2δ + 6η + 2η′ + 2δ0

)
ν + |E4 \ (E0 ∪ E1 ∪ E2 ∪ E3)|.

Let us consider a triangle U ∈ A. We claim that |E ′(U) \ (E0 ∪ E1 ∪
E2 ∪ E3)| ≤ 1. Assume to the contrary that there are two distinct edges
f1, f2 ∈ E ′(U) \ (E0 ∪ E1 ∪ E2 ∪ E3). If f1 ∈ B′ then f1 ∈ E(T̂ ) for a triangle
T ∈ A. Since T /∈ I ′, the set E(T ) ∪ E(T̂ ) is disjoint from {f(T ′) : T ′ ∈ I}.
Hence the set B̃′ = (B′ ∪ {T}) \ {T̂} not only satisfies the hypothesis of the
definition of B′, but the sets I, I ′, K, E0 . . . E4, C satisfy the hypotheses of
their definition also with respect to B̃′ instead of B′. Moreover, since T /∈ K,
we have v(T ) 6= v̂(T ) and, therefore, f2 /∈ E(T ) ∪ E(T̂ ). Hence f2 belongs to
B̃′ exactly if it belongs to B′. So we can work with B̃′ instead of B′ without
affecting the involved edge sets or the status of f2. Since f1 /∈ B̃′, we may
assume in the first place that f1 /∈ B′ and, by a similar argument, that also
f2 /∈ B′. However, then we can define f(U) = {f1, f2} and the set I ∪ {U}
satisfies the hypotheses of the definition of I, contradicting the maximality of
|I|. This proves the claim.

Consequently, we have |E4 \ (E0 ∪E1 ∪E2 ∪E3)| ≤ |A| = (δ− η− η′− δ0)ν
and, therefore, |C| ≤ (3γ + 3α− δ + 5η + η′ + δ0)ν. Using Lemma 5.6 and the
fact that η′ ≤ 2η, we obtain |C| ≤ (3− δ + 4η + δ0)ν.

Proof of Theorem 5.1. Combining inequalities in Lemmas 5.2–5.8, we have:(
1
5

+ 4
75

+ 8
75

+ 8
25

+ 8
25

)
τ ≤ 1

5

(
3− 2

3
γ
)
ν + 4

75

(
3
2

+ 5
2
γ + 2β

)
ν

+ 8
75

(3γ + 3δ + 3α− β) ν + 8
25

(3γ + 3α− 2δ0) ν

+ 8
25

(3− δ + 4η + δ0) ν,

which gives τ ≤
(
41
25

+ 32
25

(γ + α + η)− 8
25
δ0
)
ν ≤ 73

25
ν =

(
3− 2

25

)
ν.
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