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SOME COMPLETELY MONOTONIC FUNCTIONS INVOLVING THE

POLYGAMMA FUNCTIONS

PENG GAO

Abstract. Motivated by existing results, we present some completely monotonic functions involv-
ing the polygamma functions.

1. Introduction

The digamma (or psi) function ψ(x) for x > 0 is defined to be the logarithmic derivative of
Euler’s gamma function

Γ(x) =

∫

∞

0
txe−t dt

t
.

The function ψ and its derivatives are called polygamma functions.
There are many interesting inequalities involving the polygamma functions in the literature,

many of which are closely related to the fact that ψ′ is completely monotonic on (0,+∞). Here we
recall that a function f(x) is said to be completely monotonic on (a, b) if it has derivatives of all

orders and (−1)kf (k)(x) ≥ 0, x ∈ (a, b), k ≥ 0 and f(x) is said to be strictly completely monotonic

on (a, b) if (−1)kf (k)(x) > 0, x ∈ (a, b), k ≥ 0.
A general result of Fink [4, Theorem 1] on completely monotonic functions implies that for

integers n ≥ 2,
(

ψ(n)(x)
)2

≤ ψ(n−1)(x)ψ(n+1)(x), x > 0.

The following inequality of the reverse direction is given in [8]:

1

2
ψ

′

(x)ψ
′′′

(x) ≤
(

ψ
′′

(x)
)2
, x > 0.

A short proof of the above inequality is given in [3].
For integers p ≥ m ≥ n ≥ q ≥ 0 and any real number s, we define

Fp,m,n,q(x; s) = (−1)m+nψ(m)(x)ψ(n)(x)− s(−1)p+qψ(p)(x)ψ(q)(x),

where we set ψ(0)(x) = −1 for convenience.
In [2, Theorem 2.1], Alzer and Wells established a nice generalization of the above results. Their

result asserts that for n ≥ 2, the function Fn+1,n,n,n−1(x; s) is strictly completely monotonic on
(0,+∞) if and only if s ≤ (n − 1)/n and −Fn+1,n,n,n−1(x; s) is strictly completely monotonic on
(0,+∞) if and only if s ≥ n/(n+ 1).

We denote

αp,m,n,q =
(m− 1)!(n − 1)!

(p− 1)!(q − 1)!
, q ≥ 1; αp,m,n,0 =

(m− 1)!(n − 1)!

(p− 1)!
; βp,m,n,q =

m!n!

p!q!
.

Note that 0 < αp,m,n,q, βp,m,n,q < 1 when p+ q = m+ n, p > m.
In [5, Theorem 5.1], the following generalization of the result of Alzer and Wells is given:
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Theorem 1.1. Let p > m ≥ n > q ≥ 0 be integers satisfying m + n = p + q. The function

Fp,m,n,q(x;αp,m,n,q) is completely monotonic on (0,+∞). The function −Fp,m,n,q(x;βp,m,n,q) is also
completely monotonic on (0,+∞) when q > 0.

For a given function f(x), we denote for c > 0,

∆f(x; c) =
f(x+ c)− f(x)

c
.

We define for integers p ≥ m ≥ n ≥ q ≥ 0, real number c > 0 and any real number s,

Fp,m,n,q(x; s; c) = (−1)m+n∆ψ(m−1)(x; c)∆ψ(n−1)(x; c) − s(−1)p+q∆ψ(p−1)(x; c)∆ψ(q−1)(x; c),

where we set ψ(0)(x) = ψ(x), ψ(−1)(x) = −x for convenience. We further define Fp,m,n,q(x; s; 0) =
limc→0+ Fp,m,n,q(x; s; c) and it is then easy to see that Fp,m,n,q(x; s; 0) = Fp,m,n,q(x; s).

It’s shown in [7] that on (−min(s, t),+∞), the function F2,1,1,0(x+s; 1; t−s) (resp. its negative)
is completely monotonic when |t − s| < 1 (resp. when |t − s| < 1) and it is further given in [6] a
necessary and sufficient condition on λ, t, s for F2,1,1,0(x+s;λ; t−s) or it’s negative to be completely
monotonic on (−min(s, t),+∞). We point out here that one can easily deduce these results on
F2,1,1,0(x+ s;λ; t− s) from similar results on F2,1,1,0(x;λ; t) by a change of variable.

Motivated by the above results, it is our goal in this paper to prove the following:

Theorem 1.2. Let p > m ≥ n > q ≥ 0 be integers satisfying m+ n = p+ q and let c > 0. Then

(1) For 0 < c ≤ 1,
(a) The function Fp,m,n,q(x; s; c) is completely monotonic on (0,+∞) if and only if s ≤

αp,m,n,q.

(b) The function −Fm+n,m,n,0(x; s; c) is completely monotonic on (0,+∞) if and only if

s ≥ αm+n,m,n,0/c.
(2) For c ≥ 1,

(a) The function −Fp,m,n,q(x; s; c) is completely monotonic on (0,+∞) if and only if s ≥
αp,m,n,q.

(b) The function Fm+n,m,n,0(x; s; c) is completely monotonic on (0,+∞) if and only if

s ≤ αm+n,m,n,0/c.
(3) The function −Fp,m,n,q(x;βp,m,n,q; c) is completely monotonic on (0,+∞) for all c > 0 when

q ≥ 1 .

2. Lemmas

The first Lemma lists some facts about the polygamma functions. These can be found, for
example, in [1, (1.1)-(1.3), (1.5)]:

Lemma 2.1. For x > 0,

ψ(x) = −γ +

∫

∞

0

e−t − e−xt

1− e−t
dt, γ = 0.57721...;(2.1)

(−1)n+1ψ(n)(x) =

∫

∞

0
e−xt tn

1− e−t
dt, n ≥ 1;(2.2)

ψ(n)(x+ 1) = ψ(n)(x) + (−1)n
n!

xn+1
, n ≥ 0;(2.3)

(−1)n+1ψ(n)(x) =
(n− 1)!

xn
+

n!

2xn+1
+O(

1

xn+2
), n ≥ 1, x→ +∞.(2.4)

Lemma 2.2 ([5, Lemma 2.9]). Let m > n ≥ 1 be two integers, then for any fixed constant 0 < c < 1,
the function

a(t;m,n, c) = tm−n + tn − c(1 + tm)

has exactly one root when t ≥ 1.
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Lemma 2.3. Let a, c > 0, then the function

u(s; a, c) =
1− e−ac(1−s)

1− e−a(1−s)
·
1− e−ac(1+s)

1− e−a(1+s)

is decreasing on s ∈ (0, 1) if 0 < c ≤ 1 and increasing on (0, 1) if c ≥ 1.

Proof. For fixed c, it’s easy to see that

u′(s; a, c)

u(s; a, c)
= a (vc (a (1− s))− vc (a (1 + s))) ,

where

vc(x) =
1

ex − 1
−

c

ecx − 1
.(2.5)

It’s also easy to see that v′c(x) = z(x, c) − z(x, 1) where

z(x, c) =
c2ecx

(ecx − 1)2
.

Now, we have

∂z

∂c
=
f(cx)cecx

(ecx − 1)3
,

where f(t) = (2 − t)et − (2 + t). It’s then easy to see that f(t) ≤ 0 for t ≥ 0 and it follows that
v′c(x) ≥ 0 when 0 < c ≤ 1 and that v′c(x) ≤ 0 when c ≥ 1. We then deduce that u′(s; a, c) ≤ 0 when
0 < c ≤ 1 and u′(s; a, c) ≥ 0 when c ≥ 1 and this completes the proof. �

3. Proof of Theorem 1.2

We first prove assertions (1) (a) and (2) (a) of the theorem. Note first that if Fp,m,n,q(x; s; c) is
completely monotonic on (0,+∞), then we have

s ≤
(−1)m+n∆ψ(m−1)(x; c)∆ψ(n−1)(x; c)

(−1)p+q∆ψ(p−1)(x; c)∆ψ(q−1)(x; c)
.

It then follows easily from the mean value theorem and (2.4) that we have

lim
x→+∞

(−1)m+n∆ψ(m−1)(x; c)∆ψ(n−1)(x; c)

(−1)p+q∆ψ(p−1)(x; c)∆ψ(q−1)(x; c)
= αp,m,n,q.

Thus, s ≤ αp,m,n,q. Similarly, one shows that if −Fp,m,n,q(x; s; c) is completely monotonic on
(0,+∞), then s ≥ αp,m,n,q and this proves the “only if” part of the assertions (1) (a) and (2) (a)
of the theorem.

To prove the “if” part of the assertions (1) (a) and (2) (a) of the theorem, it’s easy to see that
it suffices to show that Fp,m,n,q(x;αp,m,n,q; c) is completely monotonic on (0,+∞) when 0 < c ≤ 1
and that −Fp,m,n,q(x;αp,m,n,q; c) is completely monotonic on (0,+∞) when c ≥ 1.

We first consider the function Fp,m,n,q(x;αp,m,n,q; c) with q ≥ 1 following the approach in [2].
Using the integral representations (2.1) and (2.2) for the polygamma functions and using ∗ for the
Laplace convolution, we get

Fp,m,n,q(x;αp,m,n,q; c) =

∫

∞

0

e−xt

c2
gp,m,n,q(t;αp,m,n,q)dt,

where

gp,m,n,q(t;αp,m,n,q) =
tm−1(e−ct − 1)

1− e−t
∗
tn−1(e−ct − 1)

1− e−t
− αp,m,n,q

tp−1(e−ct − 1)

1− e−t
∗
tq−1(e−ct − 1)

1− e−t

=

∫ t

0

(

(t− s)m−1sn−1 − αp,m,n,q(t− s)p−1sq−1
)

hc(t− s)hc(s)ds,
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with

(3.1) hc(s) =
1− e−cs

1− e−s
.

By a change of variable s→ ts we can recast g(t) as

gp,m,n,q(t;αp,m,n,q) = tm+n−1

∫ 1

0

(

(1− s)m−1sn−1 − αp,m,n,q(1− s)p−1sq−1
)

hc(t(1− s))hc(ts)ds.

We now break the above integral into two integrals, one from 0 to 1/2 and the other from 1/2 to
1. We make a further change of variable s → (1− s)/2 for the first one and s → (1 + s)/2 for the
second one. We now combine them to get

gp,m,n,q(t;αp,m,n,q)(3.2)

=
( t

2

)m+n−1
∫ 1

0
a(

1 + s

1− s
; p− q, n− q, αp,m,n,q)(1− s2)q−1(1− s)p−qu(s; t/2, c)ds,

where the function a(t;m,n, c) is defined as in Lemma 2.2 and the function u(s; a, c) is defined as
in Lemma 2.3. Note that (1+ s)/(1− s) ≥ 1 for 0 ≤ s < 1 and p− q > n− q ≥ 1, hence by Lemma
2.2, there is a unique number 0 < s0 < 1 such that

a
(1 + s0
1− s0

; p− q, n− q, αp,m,n,q

)

= 0.

It follows from a(1; p − q, n − q, αp,m,n,q) > 0 and limt→+∞ a(t; p − q, n − q, αp,m,n,q) < 0 that for
0 < s ≤ s0,

a
(1 + s

1− s
; p− q, n− q, αp,m,n,q

)

≥ 0,

with the above inequality being reversed when s0 ≤ s < 1.
We further note by Lemma 2.3, the function u(s; t/2, c) is decreasing on s ∈ (0, 1) when 0 < c ≤ 1

and increasing when c ≥ 1. Thus we conclude that when 0 < c ≤ 1,

a(
1 + s

1− s
; p − q, n− q, αp,m,n,q)(1− s2)q−1(1− s)p−qu(s; t/2, c)

≥ a(
1 + s

1− s
; p − q, n− q, αp,m,n,q)(1− s2)q−1(1− s)p−qu(s0; t/2, c),

with the above inequality being reversed when c ≥ 1.
Hence when 0 < c ≤ 1,

gp,m,n,q(t;αp,m,n,q)

≥
( t

2

)m+n+1
u(s0; t/2, c)

∫ 1

0
a(

1 + s

1− s
; p− q, n− q, αp,m,n,q)(1− s2)q−1(1− s)p−qds,

with the above inequality being reversed when c ≥ 1.
Note that the integral above is (by reversing the process above on changing variables)

2m+n−1

∫ 1

0

(

(1− s)m−1sn−1 − αp,m,n,q(1− s)p−1sq−1
)

ds = 0,

where the last step follows from the well-known beta function identity

B(x, y) =

∫ 1

0
tx−1(1− t)y−1dt =

Γ(x)Γ(y)

Γ(x+ y)
, x, y > 0,

and the well-known fact Γ(n) = (n − 1)! for n ≥ 1. It follows that g(t) ≥ 0 when 0 < c ≤ 1 and
g(t) ≤ 0 when c ≥ 1 and this completes the proof for the “if” part of the assertions (1) (a) and (2)
(a) of Theorem 1.2 for Fp,m,n,q(x;αp,m,n,q; c) with q ≥ 1.
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Now we consider the function Fp,m,n,q(x;αp,m,n,q; c) with q = 0. In this case p = m + n and we
note that

αm+n,m,n,0 = B(m,n) =

∫ 1

0
sm−1(1− s)n−1ds,

and we use this to write

αm+n,m,n,0
tm+n−1(e−ct − 1)

1− e−t
=

∫ t

0

sm−1(t− s)n−1(e−ct − 1)

1− e−t
ds.

It follows that

Fm+n,m,n,0(x;αm+n,m,n,0; c)(3.3)

=

∫

∞

0

e−xt

c2

( tm−1(e−ct − 1)

1− e−t
∗
tn−1(e−ct − 1)

1− e−t
+ αm+n,m,n,0

ctm+n−1(e−ct − 1)

1− e−t

)

dt

=

∫

∞

0

e−xt

c2

(

∫ t

0
sm−1(t− s)n−1

(

1− e−cs

1− e−s
·
1− e−c(t−s)

1− e−(t−s)
−
c(1− e−ct)

1− e−t

)

ds

)

dt.

Now we note that, for hc(s) defined as in (3.1),

h′c(s)

hc(s)
= −vc(s),

where vc(x) is defined as in (2.5). It follows from the proof of Lemma 2.3 that h′c(s)/hc(s) ≤ 0
when 0 < c ≤ 1 and h′c(s)/hc(s) ≥ 0 when c ≥ 1. We then deduce that when 0 < c ≤ 1,

h′c(t− s)

hc(t− s)
−
h′c(t)

hc(t)
≥ 0,

for t ≥ s ≥ 0 with the above inequality being reversed when c ≥ 1. This implies that the function
t 7→ lnhc(t − s) − lnhc(t) is increasing (resp. decreasing) for t > s when 0 < c ≤ 1 (resp. when
c ≥ 1). Thus we obtain that when 0 < c ≤ 1,

lnhc(s) + lnhc(t− s)− lnhc(t) ≥ lim
t→s+

(lnhc(s) + lnhc(t− s)− lnhc(t)) = ln c,

with the above inequality being reversed when c ≥ 1. One checks easily that this implies that when
0 < c ≤ 1,

1− e−c(t−s)

1− e−(t−s)
≥
c(1− e−ct)

1− e−t
,

with the above inequality being reversed when c ≥ 1. This implies the “if” part of the assertions
(1) (a) and (2) (a) of the theorem for Fm+n,m,n,0(x;αm+n,m,n,0; c).

Now we prove the assertions (1) (b) and (2) (b) of the theorem. Note that if Fm+n,m,n,0(x; s; c)
is completely monotonic on (0,+∞), then we have

s ≤
(−1)m+n∆ψ(m−1)(x; c)∆ψ(n−1)(x; c)

(−1)m+n+1∆ψ(m+n−1)(x; c)
.

It then follows from (2.3) that we have

lim
x→0+

(−1)m+n∆ψ(m−1)(x; c)∆ψ(n−1)(x; c)

(−1)m+n+1∆ψ(m+n−1)(x; c)
=
αm+n,m,n,0

c
.

Thus, s ≤ αm+n,m,n,0/c. Similarly, one shows that if −Fm+n,m,n,0(x; s; c) is completely monotonic
on (0,+∞), then s ≥ αm+n,m,n,0/c and this proves the “only if” part of the assertions (1) (b) and
(2) (b) of the theorem.

To prove the “if” part of the assertions (1) (b) and (2) (b) of the theorem, it’s easy to see that
it suffices to show that −Fm+n,m,n,0(x;αm+n,m,n,0/c; c) is completely monotonic on (0,+∞) when
0 < c ≤ 1 and that Fm+n,m,n,0(x;αm+n,m,n,0/c; c) is completely monotonic on (0,+∞) when c ≥ 1.
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Similarly to (3.3), we have

Fm+n,m,n,0(x;
αm+n,m,n,0

c
; c)

=

∫

∞

0

e−xt

c2

(

∫ t

0
sm−1(t− s)n−1

(

1− e−cs

1− e−s
·
1− e−c(t−s)

1− e−(t−s)
−

(1− e−ct)

1− e−t

)

ds

)

dt.

For fixed t > s > 0, define

rs,t(c) =
(1− e−cs)(1 − e−c(t−s))

1− e−ct
.

Then we have

c
r′s,t(c)

rs,t(c)
=

cs

ecs − 1
+

c(t− s)

ec(t−s) − 1
−

ct

ect − 1
> 0,

as it’s easy to see that the function x 7→ x/(ex − 1) is decreasing for x > 0. It follows that
the function rs,t(c) is an increasing function of c so that rs,t(c) ≤ rs,t(1) when 0 < c ≤ 1 and
rs,t(c) ≥ rs,t(1) when c ≥ 1. One sees easily that the “if” part of the assertions (1) (b) and (2) (b)
of the theorem follows from this.

Lastly, we prove assertion (3) of the theorem. This is similar to our proof above of the “if” part
of the assertions (1) (a) and (2) (a) of the theorem for Fp,m,n,q(x;αp,m,n,q; c) with q ≥ 1, except
that we replace αp,m,n,q by βp,m,n,q and recast the function gp,m,n,q(t;βp,m,n,q) similar to (3.2) as

gp,m,n,q(t;βp,m,n,q)

=
( t

2

)m+n+1
∫ 1

0
a(

1 + s

1− s
; p − q, n− q, βp,m,n,q)(1− s2)q(1− s)p−q

(

t2

4
(1− s2)

)−1

u(s; t/2, c)ds.

It is then easy to show using the method in the proof of Lemma 2.3 that the function s 7→
a−2(1 − s2)−1u(s; a, c) is increasing on s ∈ (0, 1) when c > 0 and essentially repeating the rest
of the proof of the “if” part of the assertions (1) (a) and (2) (a) of the theorem allows us to
establish assertion (3) of the theorem.
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