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Representations of Higher Adelic Groups and

Arithmetic ∗

A. N. Parshin†

What do we mean by local ? To get an answer to this question let us start from the
following two problems.

First problem is from number theory. When does the diophantine equation

f(x, y, z) = x2 − ay2 − bz2 = 0, a, b, ∈ Q∗

have a non-trivial solution in rational numbers ? In order to solve the problem, let us
consider the quadratic norm residue symbol (−,−)p where p runs through all primes p
and also ∞. This symbol is a bi-multiplicative map (−,−)p : Q

∗ ×Q∗ → {±1} and it is
easily computed in terms of the Legendre symbol. Then, a non-trivial solution exists if
and only if, for any p, (a, b)p = 1. However, these conditions are not independent:

∏

p

(a, b)p = 1. (1)

This is essentially the Gauss reciprocity law in the Hilbert form.
The “points” p correspond to all possible completions of the field Q of rational num-

bers, namely to the p-adic fields Qp and the field R of real numbers. One can show that
the equation f = 0 has a non-trivial solution in Qp if and only if (a, b)p = 1.

The second problem comes from complex analysis. Let X be a compact Riemann
surface (= complete smooth algebraic curve defined over C). For a point P ∈ X , denote
by KP = C((tP )) the field of Laurent formal power series in a local coordinate tP at the

point P . The field KP contains the ring ÔP = C[[tP ]] of Taylor formal power series.
These have an invariant meaning and are called the local field and the local ring at P
respectively. Let us now fix finitely many points P1, . . . , Pn ∈ X and assign to every P
in X some elements fP such that fP1 ∈ KP1, . . . , fPn

∈ KPn
and fP = 0 for all other

points.
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When does there exist a meromorphic (=rational) function f on X such that

fP − f ∈ ÔP for every P ∈ X? (2)

The classical answer to this Cousin problem is the following: there exists such an f
whenever for any regular differential form ω on X

∑

P

resP (fPω) = 0. (3)

The space of regular differential forms has dimension g (= genus of X) and in this way
one gets finitely many conditions on the data (fP ). The residue is an additive map
resP : Ω1(KP ) → C and is easily computed in terms of the local decomposition of the
differential form ω ∈ Ω1(KP ). Note that “locally”, problem (2) can be solved for any
point P . Behind our global conditions (3), we have the following residue relation:

∑

P

resP (η) = 0 (4)

for any meromorphic differential form η on X .
We see some similarity between these two problems, which belong to very different

parts of our science. The explanation lies in the existence of a very deep analogy between
numbers and functions, between number fields and fields of algebraic functions. This
analogy goes back to the nineteenth century, possibly to Kronecker. The leading role in
the subsequent development belongs to Hilbert. The analogy was one of his beloved ideas,
and thanks to Hilbert it became one of the central ideas in the development of number
theory during the twentieth century. Following this analogy, we can compare algebraic
curves over C (= compact Riemann surfaces) and number fields (= finite extensions of
Q). In particular, this includes a comparison of local fields such as that between the
fields C((t)) and Qp. Their similarity was already pointed out by Newton1.

In modern terms, we have two kinds of geometric objects. First, a complete algebraic
curveX , containing an affine curve U = Spec(R)2, where R is the ring of regular functions
on U :

(geometric picture) X ⊃ U and finitely many points P ∈ X.

Next, if we turn to arithmetic, we have a finite extension K ⊃ Q and the ring R ⊂ K of
integers. We write

(arithmetic picture) X ⊃ U = Spec(R) and finitely many infinite places P ∈ X.

The places (“points”) correspond to the embeddings of K into the fields R or C. Here,
X stands for the as yet not clearly defined complete “arithmetical” curve, an analogue
of the curve X in the geometric situation. The analogy between both U ’s is very clear

1He compared the power series and the expansions of rational numbers in powers of p (for p = 10).
2Here, Spec(R) is the set of prime ideals in the ring R together with the additional structure of a

scheme.

2



and transparent. The rings R are the Dedekind rings of the Krull dimension3 1. The
nature of the additional points (outside U) are more complicated. In the geometric case,
they also correspond to the non-archimedean valuations on the curve X , whereas in the
arithmetical case these infinite places are a substitute for the archimedean valuations of
the field K.

In algebraic geometry, we also have the theory of algebraic curves defined over a finite
field Fq and this theory, being arithmetic in its nature, is much closer to the theory of
number fields than the theory of algebraic curves over C. The main construction on
both sides of the analogy is the notion of a local field. These local fields appear into the
following table:

dimension geometric case arithmetic case
> 2 ... ...
2 ? R((t)), C((t))
1 Fq((t)) Qp, R, C

0 Fq F1

Here F1 is the so-called “field” with one element, which is quite popular nowadays. We
will see soon why the fields R((t)) and C((t)) belong to the higher level of the table than
the fields Qp or R. More on the analogy between geometry and arithmetic can be found
in [61].

1 n-dimensional Local Fields and Adelic Groups

Let us consider algebraic varieties X (or Grothendieck schemes) of dimension greater
than one. It appears that we have a well established notion of something local attached
to a point P ∈ X . One can take a neighborhood of P , e.g. affine, complex-analytic if X
is defined over C, formal and so on. In this talk we will advocate the viewpoint that the
genuine local objects on the varieties are not the points with some neighborhoods but
the maximal ordered sequences (or flags) of subvarieties, ordered by inclusion.

If X is a variety (or a scheme) of dimension n and

X0 ⊂ X1 ⊂ . . .Xn−1 ⊂ Xn = X

is a flag of irreducible subvarieties (dim(Xi) = i) then one can define a certain ring

KX0,...,Xn−1

associated to the flag. In the case where all the subvarieties are regularly embedded, this
ring is an n-dimensional local field.

Definition 1. Let K and k be fields. We say that K has a structure of an n-
dimensional local field with the last residue field k if either n = 0 and K = k or n ≥ 1

3That is, the length of a maximal chain of prime ideals. The ring R itself is not a prime ideal.
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and K is the fraction field of a complete discrete valuation ring OK whose residue field
K̄ is a local field of dimension n− 1 with the last residue field k.

Thus, an n-dimensional local field has the following inductive structure:

K =: K(0) ⊃ OK → K̄ =: K(1) ⊃ OK̄ → K̄(1) =: K(2) ⊃ OK(2) → . . . → K̄(n) = k

where OF denotes the valuation ring of the valuation on F and F̄ denotes the residue
field.

The simplest example of an n-dimensional local field is the field

K = k((t1))((t2)) . . . ((tn))

of iterated Laurent formal power series. In dimension one, there are examples from the
table. However, fields such as R or C are not covered by this definition. Concerning
classification of the local fields see [17].

One can then form the adelic group (actually, the ring)

AX =
∏′

KX0,...,Xn−1

where the product is taken over all the flags with respect to certain restrictions on
components of adeles. For schemes over a finite field Fq, this is the ultimate definition of
the adelic space attached to X . In general, one must extend it by adding archimedean
components, such as the fields R or C in dimension one.

In dimension one, the local fields and adelic groups are well-known tools of arithmetic.
They were introduced by C. Chevalley in the 1930s and were used to formulate and solve
many problems in number theory and algebraic geometry (see, for example, [1, 74]).
These constructions are associated with fields of algebraic numbers and fields of algebraic
functions in one variable over a finite field, that is with schemes of dimension 1. A need
for such constructions in higher dimensions was realized by the author in the 1970s. They
were developed in the local case for any dimension and in the global case for dimension
two [53, 54, 17, 58]. This approach was extended by A. A. Beilinson to the schemes of
an arbitrary dimension [3, 25]. In this talk, we restrict ourselves to the case of dimension
two.

Let X be a smooth irreducible surface over a field k (or an arithmetic surface), let
P be a closed point of X and let C ⊂ X be an irreducible curve such that P ∈ C. We
denote by OX,P the local ring at the point P , that is the ring of rational functions which
are regular at P . We denote also by OC the ring of rational functions on X which have
no pole along the C.

If X and C are smooth at P , then we pick a local equation t ∈ OX,P of C at P and
choose u ∈ OX,P such that u|C ∈ OC,P is a local parameter at P . Denote by ℘ the ideal
in OX,P defining the curve C near P . We can introduce a two-dimensional local field
KP,C attached to the pair P,C by the following procedure which includes completions
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and localizations:

OX,P

|
ÔX,P = k(P )[[u, t]] ⊃ ℘ = (t)
|

(ÔX,P )℘ = discrete valuation ring with residue field k(P )((u))
|

ÔP,C :=
̂
(ÔX,P )℘ = k(P )((u))[[t]]

|
KP,C := Frac (ÔP,C) = k(P )((u))((t))

Note that the left-hand construction is meaningful even without smoothness of the curve
C (it is sufficient to assume that C has only one formal branch near P ). In the general
case, the ring KP,C is a finite direct sum of 2-dimensional local fields. If P is smooth
then the field KP,C has the following informal interpretation. Take a function f on X .
We can, first, develop f as a formal power series in the variable t along the curve C and
then every coefficient of the series restricted to C can be further developed as a formal
power series in the variable u. The local field KP,C is a kind of completion of the field of
rational functions K = k(X) on X . It carries a discrete valuation νC : K∗P,C → Z defined
by the powers of the ideal ℘.

Let KP be the minimal subring of KP,C which contains both k(X) and ÔX,P . In
general, the ring KP is not a field. Then K ⊂ KP ⊂ KP,C and there is another interme-

diate subring KC = Frac (ÔC) ⊂ KP,C. We can compare the structure of the local adelic
components in dimensions one and two:

KP KP,C

��� ??
?

KP
??

?
KC

��
�

K K

The global adelic group is a certain subgroup of the ordinary product of all two-
dimensional local fields. Namely, a collection (fP,C) where fP,C ∈ KP,C belongs to AX if
the following two conditions are satisfied:

•
{fP,C} ∈ AC((tC))

for a fixed irreducible curve C ⊂ X and a local equation tC = 0 of the curve C on
some open affine subset U ⊂ X and

• we have νC(fP,C) ≥ 0, or equivalently

{fP,C} ∈ AC [[tC ]],

for all but finitely many irreducible curves C ⊂ X .
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Here we reduced the definition of the adelic group to the classical case of algebraic curves
C. Recall that a collection (fP , P ∈ C) belongs to the adelic (or restricted) product AC

of the local fields KP if and only if for almost all points P we have fP ∈ ÔP .

What can one do with this notion of the local field and why is it really local ? To get
some understanding of this, we would like to develop the above examples (of residues and
symbols) in dimension two. For any flag P ∈ C on a surface X and a rational differential
form ω of degree 2 we can define the residue

resP,C(ω) = Trk(P )/k(a−1,−1)

where ω =
∑

i,j ai,ju
itjdu ∧ dt in the field KP,C

∼= k(P )((u))((t)). Then, instead of the
simple relation (4) on an algebraic curve, we get two types of relations on the projective
surface X [54] ∑

P∈C

resP,C(ω) = 0, for any fixed curve C, (5)

∑

C∋P

resP,C(ω) = 0, for any fixed point P. (6)

At the same time, we can define certain symbols (bi-multiplicative and three-
multiplicative) [53]

(−,−)P,C : K∗P,C ×K∗P,C → Z and (−,−,−)P,C : K∗P,C ×K∗P,C ×K∗P,C → k∗

which are respectively generalizations of the valuation νP : K∗P → Z and the norm
residue symbol (−,−)P : K∗P ×K∗P (actually, the tame symbol) on an algebraic curve C.
The reciprocity laws have the same structure as the residue relations. In particular, if
f, g, h ∈ K∗ then ∏

P∈C

(f, g, h)P,C = 1, for any fixed curve C,

∏

C∋P

(f, g, h)P,C = 1, for any fixed point P.

This shows that in dimension two there is a symmetry between points P and curves C
(which looks like the classical duality between points and lines in projective geometry).

If C is a curve then the space AC contains the important subspaces A0 = K = k(C)
of principal adeles (rational functions diagonally embedded into the adelic group) and

A1 =
∏

P∈C ÔP of integral adeles. These give rise to the adelic complex

A0 ⊕ A1 → AC . (7)

This complex computes the cohomology of the structure sheaf OC . If D is a divisor on
C then the cohomology of the sheaf OC(D) can be computed using the adelic complex
(7) where the subgroup A1 is replaced by the subgroup A1(D) = {(fP ) ∈ AC : νP (fP ) +
νP (D) > 0 for any P ∈ C}.

In dimension two, there is a much more complicated structure of subspaces in AX (see

[58]). Among the others, it includes three subspaces A12 =
∏′

P∈CÔP,C, A01 =
∏′

C⊂XKC
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and A02 =
∏′

P∈XKP . We set A0 = A01 ∩ A02,A1 = A01 ∩ A12 and A2 = A02 ∩ A12, and
arrive at an adelic complex

A0 ⊕ A1 ⊕ A2 → A01 ⊕ A02 ⊕ A12 → AX .

Once again, the complex computes the cohomology of the sheaf OX . One can extend
these complexes to the case of arbitrary schemes X and any coherent sheaf on X (see
[3, 25, 17]).

The last issue which we will discuss in this section is the relation between the residues
and Serre duality for coherent sheaves. We will only consider the construction of the
fundamental class for the sheaf of differential forms. For curves C, we have an iso-
morphism H1(C,Ω1

C)
∼= Ω1(AC)/Ω

1(A0)⊕ Ω1(A1). The fundamental class isomorphism
H1(C,Ω1

C)
∼= k can be defined as the sum of residues on Ω1(AC). The residues relation

(3) shows that this sum vanishes on the subspace Ω1(A0) (and it vanishes on the other
subspace Ω1(A1) for trivial reasons). The same reasoning works in the case of surfaces.
We have an isomorphism

H2(C,Ω2
X)

∼= Ω2(AX)/Ω
2(A01)⊕ Ω2(A02)⊕ Ω2(A12) → k,

where the last arrow is again the sum of residues over all flags P ∈ C ⊂ X . The
correctness of this definition follows from the residues relations (5) and (6). We refer to
[54, 3, 17] for the full description of the duality.

2 Harmonic Analysis on Two-dimensional Schemes

In the 1-dimensional case, local fields and adelic groups both carry a natural topology
for which they are locally compact groups and classical harmonic analysis on locally
compact groups can therefore be applied to this situation. The study of representations
of algebraic groups over local fields and adelic groups is a broad subfield of representation
theory, algebraic geometry and number theory. Even for abelian groups, this line of
thought has very nontrivial applications in number theory, particularly to the study of
L-functions of one-dimensional schemes (see below). The first preliminary step is the
existence of a Haar measure on locally compact groups. The analysis starts with a
definition of certain function spaces.

We have two sorts of locally compact groups. The groups of the first type are totally
disconnected such as the fields Qp or Fq((t)). These groups are related with varieties
defined over a finite field. The groups of the second type are connected Lie groups such
as the fields R or C.

If V is a locally compact abelian group of the first type let us consider the following
spaces of functions (or distributions) on V :

D(V ) = {locally constant functions with compact support}
Ẽ(V ) = {uniformly locally constant functions}
E(V ) = {all locally constant functions}
D′(V ) = {the dual to D(V ), i.e. all distributions}
Ẽ ′(V ) = {the “continuous” dual to Ẽ(V )}
E ′(V ) = {the “continuous” dual to E(V ), i.e. distributions with compact support}.
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These are the classical spaces introduced by F. Bruhat [10] and the more powerful way to
develop the harmonic analysis is the categorical point of view. First, we need definitions
of direct and inverse images with respect to the continuous homomorphisms.

Let f : V → W be a strict homomorphism4 of locally compact groups V and W .
Then the inverse image f ∗ : D(W ) → D(V ) is defined if and only if the kernel of f
is compact. The direct image f∗ : D(V ) ⊗ µ(V ) → D(W ) is defined if and only if the
cokernel of f is discrete. Here, µ(V ) is a (1-dimensional) space of Haar measures on
V . For the spaces like E , Ẽ the inverse image is defined for any f , but the direct image
is defined if and only if the kernel is compact and the cokernel is discrete. For the
distribution spaces the corresponding conditions are the dual ones. Therefore, we see
that these maps do not exist for arbitrary homomorphisms in our category and there are
some “selection rules”.

The Fourier transform F is defined as a map from D(V ) ⊗ µ(V ) to D(V̌ ) as well as
for the other types of spaces. Here, V̌ is the dual group. The main result is the following
Poisson formula

F(δW,µ0 ⊗ µ) = δW⊥,µ−1/µ−1
0

for any closed subgroup i : W → V . Here µ0 ∈ µ(W ) ⊂ D′(W ), µ ∈ µ(V ) ⊂
D′(V ), δW,µ0 = i∗(1W ⊗ µ0) and W⊥ is the annihilator of W in V̌ .

This general formula is very efficient when applied to the self-dual (!) group AC .
The standard subgroups in AC have their characteristic functions δA1(D) ∈ D(AC) and
δK ∈ D′(AC) . We have

F(δA1(D)) = vol(A1(D))δA1((ω)−D), (8)

F(δK) = vol(AC/K)−1δK , (9)

where K = Fq(C) and (ω) is the divisor of a nonzero rational differential form ω ∈ Ω1
K on

C. There is the Plancherel formula 〈f, g〉 = 〈F(f),F(g)〉 where f ∈ D(AC), g ∈ D′(AC)
and 〈−,−〉 is the canonical pairing between dual spaces. When we apply this formula to
the characteristic functions δA1(D) and δK the result easily yields Riemann-Roch theorem
together with Serre duality for divisors on C (see for example [58]).

Trying to extend the harmonic analysis to the higher local fields and adelic groups
we meet the following obstacle. The n-dimensional local fields and consequently the
adelic groups are not locally compact topological groups for n > 1 in any reasonable
sense whereas by a theorem of Weil the existence of Haar measure (in the usual sense)
on a topological group implies its local compactness. Unfortunately, the well-known
extensions of this measure theory to the infinite-dimensional spaces or groups (such as
the Wiener measure) do not help in our circumstances. Thus, we have to develop a
measure theory and harmonic analysis on n-dimensional local fields and adelic groups ab
ovo.

The idea for dealing with this problem came to me in the 1990s. In dimension
one, local fields and adelic groups are equipped with a natural filtration provided by
fractional ideals ℘n, n ∈ Z, which correspond to the standard valuations. For example,

4This means that f is a composition of an open epimorphism and a closed monomorphism.
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this filtration on the field Fq((t)) is given by the powers of t. If P ⊃ Q are two elements
of such a filtration on a group V , then the Bruhat space D(V ) is canonically isomorphic
to the double inductive limit of the (finite-dimensional) spaces F(P/Q) of all functions
on the finite groups P/Q. The other function spaces listed above can be represented in
the same way if we use all possible combinations of projective or inductive limits.

In dimension two, local fields K such as KP,C again have a filtration by fractional
ideals, which are powers of ℘. But now, the quotient P/Q = ℘m/℘n, n > m will be
isomorphic to a direct sum of finitely many copies of the residue field K̄ = Fq((u)).
Thus this group is locally compact and the functional space D(P/Q) is well defined. To
define the function spaces on K one can try to repeat the procedure which we know
for the 1-dimensional fields. To do that, we need to define the maps (direct or inverse
images) between the spaces D(P/Q),D(P/R),D(Q/R) for P ⊃ Q ⊃ R. The selection
rules mentioned above restrict the opportunities for this construction. This enables us
to introduce the following six types of spaces of functions (or distributions) on V :

DP0(V ) = lim lim D(P/Q)⊗ µ(P0/Q),
←−

j∗
←−

i∗
D′P0(V ) = lim lim D′(P/Q)⊗ µ(P0/Q)−1,

−→

j∗
−→

i∗

E(V ) = lim lim E(P/Q),
←−

j∗
−→

i∗

E ′(V ) = lim lim E ′(P/Q),
−→

j∗
←−

i∗
Ẽ(V ) = lim lim Ẽ(P/Q),

−→

i∗
←−

j∗

Ẽ ′(V ) = lim lim Ẽ ′(P/Q),
←−

i∗
−→

j∗

where P ⊃ Q ⊃ R are some elements of the filtration in V (with locally compact
quotients), P0 is a fixed subgroup from the filtration and j : Q/R → P/R, i : P/R →
P/Q are the canonical maps.

This definition works for a general class of groups V including the adelic groups such
as AX , which has a filtration by the subspaces A12(D) where D runs through the Cartier
divisors on X .

Thus, developing of harmonic analysis may start with the case of dimension zero
(finite-dimensional vector spaces over a finite field representing a scheme of dimension
zero, such as Spec(Fq), or finite abelian groups) and then be extended by induction to
the higher dimensions.

An important contribution was made in 2001 by Michael Kapranov [33] who sug-
gested using a trick from the construction of the Sato Grassmanian in the theory of
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integrable systems (known as a construction of semi-infinite monomials)5. The idea con-
sists of using the spaces µ(P0/Q) of measures instead of µ(P/Q) in the above definition
of the spaces DP0(V ) and D′P0(V ): without it one cannot define the functional spaces
for all adelic groups in the two-dimensional case and, in particular, for the whole adelic
space AX .

In 2005 Denis Osipov has introduced the notion of a Cn structure in the category of
filtered vector spaces [49]. With this notion at hand, harmonic analysis can be developed
in a very general setting, for all objects of the category C2. The crucial point is that
the Cn-structure exists for the adelic spaces of any n-dimensional noetherian scheme.
The principal advantage of this approach is that one can perform all the constructions
simultaneously in the local and global cases. The category C1 contains (as a full subcat-
egory) the category of linearly locally compact vector spaces (introduced and thoroughly
studied by S. Lefschetz [42]) and there one can use the classical harmonic analysis.

When we go to general arithmetic schemes over Spec(Z), fields like C((t1)) . . . ((tn))
appear and we need to extend the basic category Cn. In dimension one, this means
that connected Lie groups must also be considered. It is possible to define categories of
filtered abelian groups Car

n , (n = 0, 1, 2), which contain all types of groups which arise
from arbitrary schemes of dimension 0, 1 and 2 (in particular from algebraic surfaces over
Fq and arithmetic surfaces). Harmonic analysis can be developed for these categories if
we introduce function spaces which are close to that of classical functional analysis, such
as Schwartz space S(R) of smooth functions on R, which are rapidly decreasing together
with all their derivatives. Recall that in the case of dimension one we had to consider, in
addition to the genuine local fields such as Qp, the fields R and C. In the next dimension,
we have to add to the two-dimensional local fields such as Fq((u))((t)) or Qp((t)) the
fields R((t)) and C((t)). They will occupy the entire row in the table above. This theory
has been developed in papers [50, 51].

Just as in the case of dimension one, we define direct and inverse images in the
categories of groups, which take into account all the components of the adelic complex,
the Fourier transform F which preserves the spaces D and D′ but interchanges the spaces
E and E ′. We also introduce the characteristic functions δW of subgroups W and then
prove a generalization of the Poisson formula. It is important that for a certain class of
groups V (but not for AX itself) there exists a nonzero invariant measure, defined up
to multiplication by a constant, which is an element of D′(V ). Another important tool
of the theory are the base change theorems for the inverse and direct images. They are
function-theoretic counterparts of the classical base change theorems in the categories of
coherent sheaves.

The applications of the theory includes an analytic expression for the intersection
number of two divisors based on an adelic approach to the intersection theory [55] and
an analytic proof of the (easy part of) Riemann-Roch theorem for divisors on X .

This theory is the harmonic analysis on the additive groups of the local fields and
adelic rings (including their archimedean cousins). In the classical case of dimension
one, the analysis can be developed on arbitrary varieties (defined either over K, or over

5A construction of this kind for the local fields is also contained in [35].
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A). This has already been done by Bruhat in the local case [10]. For arbitrary varieties
defined over a two-dimensional local field K, this kind of analysis was carried out by
D. Gaitsgory and D. A. Kazhdan in [18] for the purposes of representation theory of
reductive groups over the field K. This was preceded by a construction [34] of harmonic
analysis on homogenous spaces such as G(K)/G(O′K) (introduced in [56]). We note that
the construction of harmonic analysis (over K and A) is a nontrivial problem even in
the case G = Gm. This will be the topic of our discussion in the following sections.

3 Discrete Adelic Groups on Two-dimensional

Schemes

The harmonic analysis discussed above can be viewed as a representation theory of the
simplest algebraic group over local or adelic rings, namely, of the additive group. In gen-
eral, 1-dimensional local fields and adelic rings lead to a vastly developed representation
theory of reductive groups over these fields and rings. The simplest case of this theory is
still the case of an abelian group, namely GL(1). Let K be a local field of dimension 1.
Then GL(1, K) = K∗, the multiplicative group of K, and the irreducible representations
are the abelian characters, i.e. continuous homomorphisms χ : K∗ → C∗. For arithmetic
applications one requires the morphisms to C∗, not to the unitary group U(1) ⊂ C∗.

The 1-dimensional local field K contains a discrete valuation subring O with a max-
imal ideal ℘. Then the local group K∗ has the following structure

K∗ = {tn, n ∈ Z} × O∗ = {tn, n ∈ Z} × K̄∗ × {1 + ℘},

where t is a generator of the ideal ℘, K̄ = Fq and the group {1 + ℘} is the projective
limit of its finite quotients {1 + ℘}/{1 + ℘n}. Thus, our group K∗ is a product of the
maximal compact subgroup O∗ and a discrete group ∼= Z. When K is the local field KP

attached to a point P of an algebraic curve C defined over a finite field Fq, let us set
ΓP := K∗P/O∗P . In the adelic case, we set

ΓC := A∗C/
∏

P

O∗P =
⊕

P

K∗P/O∗P =
⊕

P

Z.

This group is the group of divisors on C.
We now introduce the groups dual to these discrete groups viewing them as algebraic

groups defined over C:

TP = Hom(ΓP ,C
∗), TS =

∏
P∈S TP , TC = lim TS ,

←−

S

where S runs through all finite subsets in C. Let us consider the divisor DS with
normal crossings on TS that consists of the points in the product TS for which at least
one component is the identity point in some TP . Let C+[TS] be the space of rational
functions on TS that are regular outside DS and may have poles of first order on DS. The
space C+[TC ] can be defined as an inductive limit with respect to the obvious inclusions.
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We would like to show that harmonic analysis on the adelic space AC can be reformu-
lated in terms of complex analysis on the dual groups. We need one more torus T0

∼= C∗,
which corresponds by the duality to the image of the degree map

deg : ΓC → Z with deg(D) =
∑

P

nP deg(P ) for a divisor D =
∑

P

nPP.

Denote by j : T0 → TC the natural embedding. Then the following diagram

D(AC)
O∗

=: D+(ΓC)
L−−−→ C+[TC ]

j∗−−−→ F+[T0]

F
y y i∗

y

D(AC)
O∗

=: D+(ΓC)
L−−−→ C+[TC ]

j∗−−−→ F+[T0]

(10)

commutes. Here, the map F is induced by the Fourier transform on the adelic group
AC , the map i : T0 → T0 sends z ∈ T0 to q−1z−1 and the space F+[T0] consists of the
functions that are regular outside the points z = 1 and z = q−1 and may have poles of
the first order at these points. We denoted here by L a duality map, a version of the
Fourier transform in this situation (completely different however from the Fourier map
F). If g ∈ G and z ∈ TG = Hom(G,C∗) for some group G then (Lf)(z) =

∑
g f(g)z(g).

The next important fact is a reformulation of the Poisson formula on the group AC
6.

It can be shown that for any function f ∈ D(AC)
O∗

∑

γ∈K

f(γ) = res(0)(ω) + res(1)(ω),

∑

γ∈K

(Ff)(γ) = −res(q−1)(ω)− res(∞)(ω),

where ω = j∗Lfdz/z is the differential form on the compactification of the torus T0 and
the points we have chosen for the residues are z = 0, z = q−1, z = 1 and z = ∞. Since
the poles of the form ω are contained in this set, we deduce that the Poisson formula
on the curve C (with an appropriate choice of Haar measure on AC) is equivalent to the
residue formula (4) for the form ω on the compactification of the torus T0 (the general
case see in [62]).

Our main goal now is to understand what correspond to these constructions in the
case of dimension two7. Let us first consider the local situation, that is we fix a flag
P ∈ C on X and assume, for the sake of simplicity, that P is a smooth point on C.
The local field KP,C has the discrete valuation subring ÔP,C. It is mapped onto the local

field k(C)P on C. This local field contains his own discrete valuation subring ÔP and

we denote its preimage in ÔP,C by Ô′P,C We set

ΓP,C := K∗P,C/Ô′ ∗P,C
6For the sake of simplicity, we assume that Pic0(C)(Fq) = (0), that is Ker(deg) = Divl(C).
7We consider here the case of an algebraic surface. The main definitions remain valid for the scheme

part of an arithmetic surface.
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where ΓP,C is a certain abelian group, which is (non-canonically) isomorphic to Z ⊕ Z.
However, there is a canonical exact sequence of abelian groups

0 → Z → ΓP,C → Z → 0. (11)

The map to Z in the sequence corresponds to the discrete valuation νC with respect to
C and the subgroup Z corresponds to the discrete valuation νP on C at P . A choice of
local coordinates u, t in a neighborhood of P such that locally C = {t = 0} provides a
splitting of this exact sequence. The group ΓP,C will then be isomorphic to the subgroup
{tnum, n,m ∈ Z} in K∗P,C.

The group of coordinate transformations u 7→ u, t 7→ ukt, k ∈ Z preserves extension
(11). Therefore, this determines an embedding

Z → Aut(ΓP,C). (12)

which in fact is canonical.

We are now going to produce a global analogue of the local construction given above.
For that purpose, consider the subgroup Ô′ ∗ of A∗X , defined as the adelic product of the

local groups Ô′ ∗P,C for all flags on an algebraic surface X . Let us consider the quotient

ΓX := A∗X/Ô′ ∗ =:
∏

(P,C)

′ΓP,C .

We have a natural surjective homomorphism A∗X → ΓX and all subgroups in A∗X such as
A∗01,A

∗
12, . . . ,A

∗
0 have their images Γ01,Γ12, . . . ,Γ0 in ΓX .

Then the structure of ΓX can be described by an exact sequence

0 →
∏

C

Div(C) −→ ΓX
π−→

⊕

C

∏

P∈C

′Z → 0 , (13)

where, as above, Div(C) denotes the group of divisors on a curve C ⊂ X and the
restricted product

∏
′Z denotes the set of collections of integers with components whose

absolute values are bounded. More precisely,

(1) The subgroups
∏

C Div(C) and Γ12 in ΓX coincide.

(2) The restriction of the homomorphism π to the subgroup Γ02 ⊂ ΓX is an isomor-
phism:

π|Γ02 : Γ02
∼−→

⊕

C

∏

P∈C

′Z.

In other words, we see that there is a canonical splitting ΓX = Γ12 ⊕ Γ02 of exact
sequence (13) which is independent of any possible choice of the coordinates. The groups
which we have constructed are abelian. In our two-dimensional case, the crucial point is
that they are provided with certain canonical central extensions.
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Let us start once more with the local situation, that is we fix a flag P ∈ C on X .
Following [2](see also [30]) we have a canonical central extension of groups

1 → k(C)∗P → K̃∗P,C → K∗P,C → 1 . (14)

such that the corresponding commutator map in the central extension is a skew form
〈·, ·〉 : K∗P,C ×K∗P,C → k(C)∗P given by the tame symbol (without sign), that is by

〈f, g〉 = f νC(g)g−νC(f) (mod℘) ∈ k(C)∗P , (15)

where ℘ is the ideal which defines the curve C.
There exists a canonical section of extension (14) over the subgroup Ô′∗P,C ⊂ K∗P,C.

Denote by Õ′∗P,C the image of Ô′∗P,C in K̃∗P,C with respect to this section. If we take the

quotient of the extension (14) by the subgroup Ô∗P of the center k(C)∗P and then by the
subgroup Õ′∗P,C we obtain a new central extension

0 → Z → Γ̃P,C → ΓP,C → 0. (16)

It is well known that H2(Z⊕ Z,Z) = Z and the extension (16) is a generator of this
group. The commutator in this central extension defines a non-degenerate symplectic
form 〈−,−〉 on ΓP,C with values in Z. Let us fix local parameters u, t at P . Then ΓP,C

is isomorphic to the group of matrices




1 n c
0 1 p
0 0 1


 (17)

with integer entries and 〈n, p〉 = np. We denote this group by Heis(3,Z). Hence, we
arrive at the following class of discrete nilpotent groups.

Definition 2. Let H , H ′, and C be abelian groups and let 〈−,−〉 : H ×H ′ → C be
a biadditive pairing. The set H × H ′ × C with the composition law (n, p, c)(m, q, a) =
(n+m, p+q, c+a+ 〈n, q〉), where n,m ∈ H, p, q ∈ H ′ and c, a ∈ C, is called the discrete
Heisenberg group G.

One then constructs the Heisenberg group G as a group of upper triangular unipotent
matrices with H and H ′ on the second diagonal and C in the right top corner. There is
the obvious natural central extension

0 → C → G → H ⊕H ′ → 0.

In the global case, we have the Heisenberg group Γ̃X with

H = Γ12 =
∏

C

Div(C) =
∏

C

⊕

P∈C

Z, H ′ = Γ02
∼=

⊕

C

∏

P∈C

′Z,

C = IX :=
⊕

C

⊕

P∈C

Z
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and the pairing H ×H ′ → C is given by a component-wise multiplication. We thus get
a central extension

0 → IX → Γ̃X → ΓX → 0 (18)

and for each flag P ∈ C the restriction of extension (18) to ΓP,C coincides with exten-
sion (16). So, we obtain in this way a global analogue of the local construction, since
we could describe Γ̃X as an “adelic” product of the local groups Γ̃P,C in an appropriate
sense.

There is a natural surjective homomorphism ϕ : IX → Z2(X), (nP,C) 7→∑
P (

∑
C∋P

nP,C)[P ], where Z2(X) denotes the group of zero-cycles on X . We set

I02 := Ker(ϕ), I01 :=
⊕

C

Divl(C) ⊂
⊕

C

Div(C) = IX .

The Heisenberg group Γ̃X is closely related to the main arithmetic groups attached to
the surface X . The quotient IX/(I01 + I02) is the second Chow group CH2(X) of X .
Also, there are isomorphisms

Γ01/(Γ0 + Γ1) ∼= (Γ12 ∩ (Γ01 + Γ02))/Γ1
∼=

∼= (Γ02 ∩ (Γ01 + Γ12))/Γ0
∼= Pic(X).

Moreover, the pairing Γ12 × Γ02 → IX corresponds to the intersection pairing Pic(X)×
Pic(X) → CH2(X).

It is remarkable that the groups K∗P,C (and the global adelic groups), which are very
far from being locally compact, nevertheless have a non-trivial discrete quotient.

4 Representations of Discrete Heisenberg Groups

We have seen that in the case of dimension two the first non-trivial nilpotent groups
have occured. To define their duals one needs to develop an appropriate representation
theory for this class of groups.

For the discrete groups the classical theory of unitary representations on a Hilbert
space is not so well developed since these groups are mostly not of type I. By Thoma’s
theorem, a discrete group is of type I if and only if it has an abelian subgroup of finite
index.

This implies a violation of the main principles of representation theory on Hilbert
spaces: non-uniqueness of the decomposition into irreducible components; too bad topol-
ogy of the unitary dual space; non-existence of characters... . V. S. Varadarajan wrote in
1989: “A systematic developement of von Neumann’s ideas led eventually (in the 1950s)
to a deep understanding of the decomposition of unitary representations and to results
which implied more or less that a reasonable generalization of classical Fourier analysis
and representation theory could be expected only for the so-called type I groups; i.e.
groups all of whose factor representations are of type I ”[70].
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We can also say that the class of unitary representations is too restrictive for the
arithmetic purposes.

On the other hand, there exists a theory of smooth representations for p-adic algebraic
groups. This theory is also valid for a more general class of totally disconnected locally
compact groups. Discrete groups are a simple particular case of this class of groups and
the general theory delivers a reasonable class of representations, namely representations
on a vector space without any topology. The new viewpoint consists in a systematic
consideration of purely algebraic representations in place of unitary representations on
Hilbert spaces.

Following [63], we consider now this representation theory for the discrete Heisenberg
groupsG = (H,H ′,C, 〈−,−〉) where all three groups are finitely generated. We introduce
the complex tori TH = Hom(H,C∗),TH′ = Hom(H ′,C∗) and TC = Hom(C,C∗), and set
TG = TH × TH′ × TC. The group H is homomorphically mapped to TH′ according to
the rule:

h ∈ H 7→ {h′ 7→ χC(〈h, h′〉)}. (19)

Denote the kernel of this map by Hχ. If χ ∈ TH′ then let h(χ) be the translate of
the character χ by the image of h in TH′ . We have h(χH′)(p) = χH′(p)χC(〈h, p〉) for any
p ∈ H ′. For any χ ∈ TG, χ = χH ⊗χH′ ⊗χC , let Gχ = HχH

′C be the subset in G. Then
Gχ is a normal subgroup in G, which depends only on χC and χ|Gχ is a character of the
group Gχ [65].

Definition 3. Let Vχ be the space of all complex-valued functions f on G which
satisfy the following conditions:

1. f(hg) = χ(h)f(g) for all h ∈ Gχ.

2. The support Supp(f) is contained in the union of a finite number of cosets of Gχ.

Right translations define a representation πχ of the group G on the space Vχ. One
can prove that these representations πχ are irreducible in both possible senses: there
are no nontrivial invariant subspaces, and the Schur lemma holds. Furthermore, these
representations can be completely classified. Namely, the representations Vχ and Vχ′ are
equivalent if and only if three following conditions are satisfied:

1. χC = χ′C.

2. There exists h ∈ H such that χ′H′ = h(χH′).

3. χ′H(h) = χH(h) for all h ∈ Hχ or equivalently there exists t ∈ TH/Hχ
=

Hom(H/Hχ,C
∗) ⊂ TH such that χ′H = t(χH).

Here the torus TH/Hχ
acts on the ambient torus TH by translations. The equivalence

classes of representations Vχ therefore correspond to orbits of the groups TH/Hχ
×H/Hχ

in subsets TH × TH′ × {χC} of the torus TG .
The group G is a semidirect product of the groups H and H ′C and the main tool

for obtaining the results stated above is the Mackey formalism [43] which describes the
category of induced representations for semi-direct products of abelian locally compact
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groups. In the classical theory, this is well-known for unitary representations on Hilbert
spaces. In our case, we can use the version of this formalism developed in the theory of
representation of p-adic reductive groups [4, 15, 71].

The restriction of functions from the group G to the subgroup H defines a bijection
of Vχ with a certain space of functions on H . This space has an explicit basis and
we can now define the character of the representation πχ as the matrix trace of the
representation operators πχ(g) with respect to this basis. It is easy to see that in many
cases the corresponding infinite sum of diagonal elements will diverge. The simplest
example is the group Heis(3,Z), see (17).

It is nevertheless possible to define the character if we apply a well-known construction
from the theory of loop groups [64][ch. 14.1]. Namely, we have to add some ”loop
rotations ” to the group G . In our context, this means that the group G has to be
extended to a semi-direct product Ĝ = G ⋊ A, where A ⊂ Hom(H,H ′) is a non-trivial
subgroup.

To construct the group Ĝ = G ⋊ A, one needs to extend the automorphisms of the
abelian groups H ⊕H ′ to the automorphisms of the entire Heisenberg group. Note that
the group A acts on H ⊕H ′ by unipotent transformations. When we fix an r ∈ H and
choose k ∈ A, the expression

k(m, p, c) = (m, p+ k(m), c+ 1/2〈m− r, k(m)〉) m ∈ H, p ∈ H ′, c ∈ C

defines an automorphism of the group G if the following conditions hold:

1. 〈m, k(m′)〉 = 〈m′, k(m)〉 for all m,m′ ∈ H

2. 〈m− r, k(m)〉 ∈ 2C for all m ∈ H.

In the case of the group ΓP,C
∼= Heis(3,Z), (see (17)), we have A = Z, r = 1 and k ∈ A

acts as k(n, p, c) = (n, p+kn, c+ 1
2
kn(n−1)), n, p, c ∈ Z. Then the extension is suggested

by the existence of the group of coordinate transformations on the surface X (see (12))
at the point P :

t 7→ ukt, u 7→ u, k ∈ Z.

According to the analogy between algebraic and arithmetic surfaces we discussed above,
these coordinate transformations in the two-dimensional local field KP,C = Fq((u))((t))
indeed correspond to the loop rotations

t 7→ αt, α 7→ α, α ∈ C

in the field C((t) on an arithmetic surface.

When k(Hχ) ⊂ Ker(χH′) the representation of G on Vχ can be extended to a repre-

sentation π̂χ of the extended group Ĝ on the same space. Let

(TC × A)+ := {χ ∈ TC, k ∈ A :| χC(〈n, k(n)〉) |< 1 for all n ∈ H/Hχ, n 6= 0}

be a relation in TC ×A, let A(χ) be the projection of the set (TC ×A)+ ∩ ({χ} ×A) to
A and let Ĝ(χ) = G×A(χ) ⊂ Ĝ.
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We can now solve the existence problem for the characters. The trace Tr π̂χ(g) exists

for all g ∈ Ĝ(χ) and we have

Tr π̂χ(g) = χH(m)χH′(p)χC(c) ·
∑

n∈H/Hχ

χH′(k(n))χC(〈n, p〉+ 1/2〈n− r, k(n)〉).

for g = (m, p, c, k), k ∈ A(χ), m ∈ Hχ. The trace is zero if m does not belong to Hχ.
The trace is well-defined, but does not determine a function on the set of equivalence

classes of representations. To overcome this difficulty, we have to consider representations
of the extended group Ĝ.

Let TA = Hom(A,C∗) and TĜ = TG × TA. If χ̂ = (χ, χA) ∈ TĜ, then we set

π̂χ̂ = π̂χ ⊗ χA.

We therefore have Tr π̂χ̂ = Tr π̂χ · χA. For a given g ∈ Ĝ(χ), the trace Tr π̂χ̂(g) can be
considered as a function on the domain T ′ = TH × TH′ × TC(k) × TA in the torus TĜ,
where TC(k) is the projection of the set (TC ×A)+ ∩ (TC × {k}) to the torus TC.

Let us define an action of the group TH/Hχ
×H on the set TH×TH′ ×{χC}×TA ⊂ T ′

by the formula
(t, h)(χH , χH′, χC, χA) = (t(χH), h(χH′), χC, χ

′

A), (20)

where
χ

′

A(k) = χA(k)χH′(k(h))χC(1/2〈h− r, k(h)〉), k ∈ A.

We define the space MG(k), k ∈ A as the quotient of the domain T ′ by this action.
The quotient-space is a complex-analytic manifold, in fact a fibration over a domain
in TC. For a given g = (m, p, c, k) ∈ Ĝ(χ) the trace Tr π̂χ̂(g) is invariant, under a
simple additional condition, under the action (20) and defines a holomorphic function
Fg = Fg(χ̂) on MG(k). We now obtain the main property that the characters must
enjoy:

Let χ̂, χ̂
′ ∈ TĜ. The representations π̂χ̂ and π̂χ̂′ are equivalent if and only if Ĝ(χ) =

Ĝ(χ′) and Fg(χ̂) = Fg(χ̂
′) for all g ∈ Ĝ(χ).

Thus we see that the space MG(k) is actually a moduli space for a certain class of
representations of Ĝ.

Let us consider the simplest example, that of the group Heis(3,Z). Let A = Z =
Hom(H,H ′), r = 1, Ĝ = G ⋊ Z and χC(c) = λc, χC ∈ TC(k > 0) where TC(k > 0) =
{0 < |λ| < 1}. Then TH′/ImH =: Eλ is an elliptic curve, where z ∈ TH′ = C∗, ImH =
{λZ}. We have a degree map

Pic(Eλ) = H1(Eλ,O∗) = H1(H,O∗(TH′)) → Hom(H,H ′) = A,

and
Pic(Eλ) = {ϕ(n, z) = a−nz−knλ−1/2kn(n−1) : a ∈ C∗, k ∈ A = Z}.

Let L be the line bundle which corresponds to a 1-cocycle ϕ. Then

H0(Eλ, L) = {f(z), z ∈ TH′ : f(λnz) = ϕ(n, z)f(z)}.
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The theta-series
ϑp,k,a(z, λ) := zp

∑

n∈Z

anzknλnp+1/2kn(n−1)

(which are the Poincaré series with respect to ϕ) converge for all z ∈ C∗, 0 < |λ| <
1, k > 0, and form a basis of the space H0(Eλ, L) for 0 ≤ p < k. Finally,

Tr π̂χ̂(0, p, c, k) = λctkϑp,k,1(z, λ), (z, λ) ∈ AG(k), t ∈ TA. (21)

In this case, the theta-series lifted to AG(k) = C×{upper halfplane} are Jacobi modular
forms (up to some powers of λ and z) with respect to the standard action of a finite index
subgroup of the group (Z ⊕ Z) ⋊ SL(2,Z)). This last statement is completely parallel
to a well-known property of characters for representations of affine Kac-Moody algebras
[31, 64].

In the more general situation in which H and H ′ are torsion-free groups and C = Z,
|χC(c)| 6= 1 for c 6= 0, the map k : H → H ′ is a monomorphism with finite cokernel,
A = Zk and the form 〈−, k(−)〉 is positive-definite, we have two dual abelian varieties
E = TH′/ImH and E ′ = TH/ImH ′ with the Poincaré bundle P over E × E ′. The
morphism k defines an isogeny ϕk : E → E ′ and the sheaf L is defined as (Id × ϕk)

∗P.

By Mumford’s theory [44], there exists a finite Heisenberg group K̃er(ϕk), which is a
central extension of the group Ker(ϕk). Then for all g = (m, p, c, k) ∈ Ĝ(χ) the values
of the characters Tr π̂χ̂(g)χ

−1
C (c)χ−1A (k) are theta-functions for the bundle L.

If χ̂ = 1⊗χH′ ⊗χC⊗1, then the functions Tr π̂χ̂(0, p, 0, k) for p ∈ H ′mod k(H) form
a basis of the space H0(E,L). This basis is a standard Mumford basis for the action of

the Heisenberg group K̃er(ϕk) = (H ′/H,TH′/H ,C
∗) on the space H0(E,L).

In addition, certain orthogonality relations are satisfied by the characters [63].
The boundary of the domain TC(k) can contain those characters χ0 ∈ TC for which

Hχ0 has a finite index in H . These characters correspond to the roots of unity in C∗,
so that the representations πχ0 are finite-dimensional. Let V = H ⊗ R and Q be the
extension of the pairing 〈n, k(n)〉, n ∈ H to the space V . Also, let χC(c) = λc and let us
choose a boundary point χ0. The classical limit formulas for theta-functions imply the
following behavior of the trace near the χ0 (we assume that χH = 1 and χ′H = 1):

Tr π̂χ̂(g) ∼ Tr π̂χ̂0(g) · [H : Hχ0]
−1(DetVQ)−1(

√
π

2
)rkH log |λ|−

1
2
rkH when χC → χ0.

(22)
The trace of the representation π̂χ̂0 can be computed in terms of a Gauss sum.

Thus, we see that, in our situation, the change in the class of representations will
cause the moduli spaces of induced representations to be complex-analytic manifolds.
Characters do exist and are the modular forms. It seems that this more general holo-
morphic dual space is more adequate for this class of groups than the standard unitary
dual which goes back to the Pontrjagin duality for abelian groups.

5 Problems and Perspectives

We collect here several problems related to the issues we have discussed in the talk.
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1. Harmonic analysis for local fields and adelic groups of arbitrary dimen-
sion n.

The basic category for this study has to be the category Cn [49] and its version that
includes fields of the archimedean type [51]. When one tries to extend the measure
theory and harmonic analysis to n-dimensional local fields and adelic groups for n > 2
the following problem arises. The selection rules become too severe to go further in a
straightforward way. This obstacle appears already for n-dimensional local fields with
n = 3. We can define the spaces analogous to D(V ) or D′(V ) only under some strong
restrictions on the groups V (= objects in Cn). Note that spaces such as E(V ) can be
easily defined for any n and arbitrary group V .

2. The Tate-Iwasawa method for two-dimensional schemes.

J. Tate [68] and independently K. Iwasawa [29] reformulated the classical problem of
analytic continuation for zeta- and L- functions for the fields of algebraic numbers and
the fields of algebraic functions in one variable over a finite field. They introduced a new
type of L-functions:

L(s, χ, f) =

∫

A∗

f(g)χ(g)|g|sd∗g

where d∗g is a Haar measure on A∗, the function f belongs to the Bruhat-Schwartz
space of functions on AX and χ is an abelian character of the group A∗ associated to a
character

χ : Gal(Kab/K) → C∗

of the Galois group by the reciprocity map A∗ → Gal(Kab/K) . They also proved the
analytic continuation of L(s, χ, f) to the entire s-plane and the functional equation

L(s, χ, f) = L(1− s, χ−1,F(f))

by means of the Fourier transform F and the Poisson formula for functions on AX (8),
(9).

For a special choice of f and χ = 1 we obtain the zeta-function

ζX(s) =
∏

x∈X

(1− (#k(x))−s)−1,

of any scheme X of dimension one (to which we have to add, if necessary, the archimedean
factors). Here x runs through the closed points of X . The product converges for Re(s) >
dimX .

There exists a general Hasse-Weil conjecture [23, 73] which asserts that these zeta-
(and more general L-) functions can be meromorphically extended to the entire s-plane
and satisfy the functional equation (for regular proper schemes X of dimension n) of the
type ζX(n− s) = {elementary factors} ζX(s).

This conjecture has been completely proved for algebraic varieties defined over a
finite field Fq. For this goal the powerful machinery of the étale cohomology has been
developed by A. Grothendieck. For schemes over Spec(Z), the general results are known
only in dimension one, thanks to the Hecke’s theorem. Later this was included into
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the Tate-Iwasawa approach. At the same time, this approach works for algebraic curves
defined over Fq. For the higher dimensions over Spec(Z), there are only scattered results;
however these include the proof of the Hasse-Weil conjecture for elliptic curves over Q

[75, 8].
For a long time the author has advocated the following
Problem. Extend Tate–Iwasawa’s analytic method to higher dimensions (see in

particular [58]).
The higher adeles were introduced precisely for this purpose. We hope that harmonic

analysis and representation theory of adelic groups on two-dimensional schemes may help
to solve this problem.

3. Behavior of zeta- and L-functions in the critical strip.

The critical strip for the ordinary Riemann’s zeta-function is 0 ≤ ℜ(s) ≤ 1 and this
zeta-function (with an archimedean factor) has there exactly two poles, both of first
order. For the two-dimensional case, the critical strip is wider, namely 0 ≤ ℜ(s) ≤ 2.
Take as X a model over Spec(Z) of an elliptic curve E defined over Q. The Birch and
Swinnerton-Dyer conjecture [5, 69] states that

ζX(s) ∼
s→1

#E(Q)2tor
c Ω DetE(Q)〈−,−〉 #X

(s− 1)−r−2, (23)

where E(Q) is the finitely generated Mordell-Weil group of rational points on E, r is its
rank, 〈−,−〉 is the height pairing, Ω is the real period of the curve, X is the Shafarevich-
Tate group and c is a product of certain local invariants.

Many years ago several people, including the author, have independently observed
that this limit behavior is very similar to the limit behavior of a theta-function attached
to a lattice. Namely, let V/R be a finite dimensional euclidean vector space of dimension
n. Denote by 〈−,−〉 the scalar product on V . Let Γ be a finitely generated abelian
group such that Γ ⊗ R = V and let Γ′ = Γ/Γtor be the corresponding lattice (= a
discrete co-compact subgroup) in V . Then the theta-function θΓ(t) is defined as

θΓ(t) :=
∑

γ∈Γ

e−πt〈γ,γ〉 = #Γtor · θΓ′(t)

and satisfies the functional equation

θΓ′(t) = t−
n
2 Vol(Γ′)−1θΓ′⊥(t−1) ,

where Γ′⊥ ⊂ V is the dual lattice and the volume of the fundamental domain for Γ′ is
Vol(Γ′) = det(〈ei, ej〉) with {ei} a basis of the free Z-module Γ′.

In particular, we get
θΓ(t) ∼

t→0
#ΓtorVol(Γ)

− 1
2 t−

n
2 .

If we apply this asymptotic formula to the group Γ⊕ Γ then we get

θΓ⊕Γ(t) ∼
t→0

#Γ2
tor

DetΓ〈−,−〉t
−r−2, (24)
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which looks rather similar to the conjecture (23) if we take as Γ the group E(Q)⊕Z⊕Z.
D. Zagier has devoted to this relation a note [77] with many interesting remarks and
observations. In particular, he discussed the question of interpreting such factors as Ω
and #X which are not visible in the theta-formula (24).

In order to clarify the situation, let us look at the corresponding behavior of the
zeta-function of an algebraic surface X defined over Fq. The analogy between geometric
surfaces over Fq and arithmetic surfaces such as this model X of E suggests that this
may be a useful move.

The value of the zeta function at s = 1 is given by the conjecture of Artin and
Tate [69, 45]. We assume that X is a smooth proper irreducible surface. Denote by
ρ = rk NS(X) the rank of the Neron-Severi-group of X and let {Di} with Di ∈ NS(X)
i = 1, . . . , ρ be a basis of ∈ NS(X)⊗Q. Denote by Di ·Dj their intersection index. Let
Br(X) = H2(Xet,OX) be the Brauer group of X . Then the group Br(X) is conjectured
to be finite and the following relation holds:

ζX(s) ∼
s→1

(−1)ρ−1 qχ(OX) #Pic(X)2tor
#H0(X,O∗X)2#Br(X) det((Di ·Dj))

(
1 − q1−s

)−ρ
.

Within the framework of the analogy between geometry and arithmetic [61], the group
NS(X) corresponds to the group E(Q) ⊕ Z ⊕ Z, the intersection index corresponds to
the height pairing, the period Ω corresponds to qχ(OX) and the Brauer group to the
Shafarevich-Tate group X.

Since (1 − q1−s)
−ρ ∼

s→1
(s−1)−ρ(log q)−ρ, we again guess that certain theta-functions

related to the lattice NS(X) may have this kind of the limit behavior. An immediate
objection to this suggestion is that the intersection pairing is not positive-definite. This
can be resolved if we consider the Siegel theta-functions attached to indefinite quadratic
forms.

The case of surfaces makes it clear that this question is highly non-trivial. Zeta-
functions of algebraic varieties over Fq are very simple analytic functions. Indeed, ac-
cording to Grothendieck’s theory, they are equal to F (q−s) where F (t) is a rational
function of a variable t. The theta-functions involved are certainly transcendental func-
tions, which cannot be simplified in this way by substitution. Thus the problem we
arrive at is to understand how theta-functions can appear in this setting in a natural
way, and how to relate them to zeta-functions. We conjecture that the theta-functions
which occur into the traces of representations of the adelic groups constructed above
could be such theta-functions. Their behavior in the limit (22) has the structure we have
just described.

It is worth mention another problem, the so called S-duality conjecture, which is
quite close to what have been discussed here. The problem came from the quantum
field theory [72] but has purely algebraic formulation for an algebraic surface X over
a finite field Fq (see a discussion in [32]). Let Mr,n be a moduli space of semi-stable
vector bundles E on X with given rank r, trivial determinant and the second Chern
class c2(E) = n. Then the formal series

∑

n

#Mr,n(Fq)q
−ns
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is expected to have under mild conditions on X a modular behavior with respect to a
congruence subgroup of the group SL(2,Z). It is remarkable that the transcendental
functions appear once more in relation to a surface defined over a finite field.

4. Representations of discrete nilpotent groups.

i) The representations πχ and π̂χ̂ of the discrete Heisenberg groups are particular
examples of the irreducible representations of these groups. Thus, the problem of classi-
fication of all irreducible representations arises. Of course, one needs to impose certain
conditions in order to get a reasonable answer. In the theory of unitary representations
for discrete nilpotent finitely generated groups G on a Hilbert space such a condition
was found in [9]. One says that a representation π of G on a space V has the finite
multiplicity property if there exists a subgroup H ⊂ G which preserves a line l in V and
such that the character of H defined by the action of H on l occurs in π|H as a discrete
direct summand with finite multiplicity. Then the class of irreducible representations
with this property coincides with the class of irreducible monomial (= induced by an
one-dimensional character) representations of G.

It is highly desirable to define in our algebraic situation a class of “basic” induced
representations which will play the role that the Verma modules or representations with
highest weight do for the representations of reductive Lie groups (or algebraic groups).
This is closely related to a problem of classification of (say, left) maximal ideals in the
group ring of G.

ii) The moduli spaces MG(k) defined above are orbit spaces for group actions. This
construction looks very similar to the Kirillov’s orbit method for connected real (or
complex) nilpotent Lie groups G (or nilpotent algebraic groups over Qp) [39] where the
unitary dual is the space g

∗/G of co-adjoint orbits in the dual g∗ of the Lie algebra g

of G. Attempts to extend Kirillov’s method to finitely generated nilpotent groups were
made in [24, 36] (see also [6]). It seems that there is a general functorial definition
of spaces such as MG(k) for arbitrary nilpotent discrete groups which will replace the
spaces g∗/G in this situation, just as the torus TĜ may be an analogue of the space g

∗.
The Kirillov’s character formula may also exist in this situation.

iii) When one tries to apply the representation theory developed in section 5 to the
nilpotent groups which arise from the algebraic surfaces X (section 4), one immediately
observes that:

1) the groups like Γ̃X are not finitely generated;
2) the groups like (Pic(X), Pic(X), CH (X)) are equipped with the indefinite form

〈−,−〉.
Certainly, the representation theory cannot be automatically extended to the case

of infinitely generated groups. In our case, the “big” group Γ̃X is the adelic product of
simplest Heisenberg groups Γ̃P,C and consequently is an inductive limit of finite products
of these local groups. We can easily extend all the representation-theoretic constructions
to the case of Γ̃X if we apply the technique from the theory of adelic products of reductive
algebraic groups over 1-dimensional local fields. The role of the compact subgroups is
now played by co-finite products of the local Heisenberg groups.

The problem 2) can also be solved. A solution is based on using the Siegel theta-
functions for indefinite quadratic forms that are well suited for this situation.
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iv) An important problem is to develop an analysis on discrete Heisenberg groups G,
in particular, to define appropriate function spaces on G , the analogue of the map L
(see (8) in section 3) and to obtain a Plancherel-type theorem which relates the function
spaces on G and spaces of holomorphic (or meromorphic) functions on MG(k).

v) There exists a general question of the decomposition into the irreducible com-
ponents of representations of discrete nilpotent groups. It is known that the regular
representation (on the L2-space on G) of a discrete group G may have very different
decompositions into irreducible components (see a first example of this kind in [43]).
On the other hand, in our situation there is a rather concrete problem: how does one
decompose the natural fundamental representation of the group Γ̃X (and locally of the
groups Γ̃P,C) on the spaces DA12(AX)

O′∗

or D′A12
(AX)

O′∗

(respectively in DOP,C
(KP,C)

O′∗

P,C

or D′OP,C
(KP,C)

O′∗

P,C) on a surface X ?

vi) Our theory deals with the discrete “part” of the adelic group A∗X = GL(1,AX).
D. Gaitsgory and D. Kazhdan have extended the traditional theory of representations for
reductive p-adic groups (parabolic induction, Jacquet functor, cuspidal representations)
to the case of groups GL(n,K) where K is a two-dimensional local field (and of more
general reductive groups)[18, 19, 20]. An important and certainly very hard problem is
to merge these two theories, at least for the group GL(2,AX).

vii) For the schemes of dimension two, we constructed discrete Heisenberg groups,
which are nilpotent groups of class 2. It is possible to associate certain discrete adelic
groups to schemes of arbitrary dimension n and that are the nilpotent groups of class n.

In this text, we mainly gave a review of certain recent advances in the higher adelic
theory. During the last thirty years, this theory was developed in many different direc-
tions. We finish with a short list of these developements8:

• residues and symbols [53, 54, 17, 76, 11, 12, 13, 37, 38, 47, 67, 52]

• class field theory for higher dimensions: the author, K. Kato and his school, S. V.
Vostokov and his school, see surveys [17, 16, 28, 66]

• adelic resolutions for sheaves, intersection theory, Chern classes, Lefschetz formula
for coherent sheaves [55, 76, 26, 27, 21, 22]

• algebraic groups over local fields, buildings, Hecke algebras [56, 60, 34, 18, 19,
20, 7]

• restricted adelic complexes and the Krichever correspondence [59, 46, 48, 40, 41]

• relations with non-commutative algebra [57, 78].
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Representations of Higher Adelic Groups and

Arithmetic ∗

A. N. Parshin†

What do we mean by local ? To get an answer to this question let us start from the
following two problems.

First problem is from number theory. When does the diophantine equation

f(x, y, z) = x2 − ay2 − bz2 = 0, a, b, ∈ Q∗

have a non-trivial solution in rational numbers ? In order to solve the problem, let us
consider the quadratic norm residue symbol (−,−)p where p runs through all primes p
and also ∞. This symbol is a bi-multiplicative map (−,−)p : Q

∗ ×Q∗ → {±1} and it is
easily computed in terms of the Legendre symbol. Then, a non-trivial solution exists if
and only if, for any p, (a, b)p = 1. However, these conditions are not independent:

∏

p

(a, b)p = 1. (1)

This is essentially the Gauss reciprocity law in the Hilbert form.
The “points” p correspond to all possible completions of the field Q of rational num-

bers, namely to the p-adic fields Qp and the field R of real numbers. One can show that
the equation f = 0 has a non-trivial solution in Qp if and only if (a, b)p = 1.

The second problem comes from complex analysis. Let X be a compact Riemann
surface (= complete smooth algebraic curve defined over C). For a point P ∈ X , denote
by KP = C((tP )) the field of Laurent formal power series in a local coordinate tP at the

point P . The field KP contains the ring ÔP = C[[tP ]] of Taylor formal power series.
These have an invariant meaning and are called the local field and the local ring at P
respectively. Let us now fix finitely many points P1, . . . , Pn ∈ X and assign to every P
in X some elements fP such that fP1 ∈ KP1, . . . , fPn

∈ KPn
and fP = 0 for all other

points.

∗To appear in Proceedings of the International Congress of Mathematicians, Hyderabad, India, 2010,
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When does there exist a meromorphic (=rational) function f on X such that

fP − f ∈ ÔP for every P ∈ X? (2)

The classical answer to this Cousin problem is the following: there exists such an f
whenever for any regular differential form ω on X

∑

P

resP (fPω) = 0. (3)

The space of regular differential forms has dimension g (= genus of X) and in this way
one gets finitely many conditions on the data (fP ). The residue is an additive map
resP : Ω1(KP ) → C and is easily computed in terms of the local decomposition of the
differential form ω ∈ Ω1(KP ). Note that “locally”, problem (2) can be solved for any
point P . Behind our global conditions (3), we have the following residue relation:

∑

P

resP (η) = 0 (4)

for any meromorphic differential form η on X .
We see some similarity between these two problems, which belong to very different

parts of our science. The explanation lies in the existence of a very deep analogy between
numbers and functions, between number fields and fields of algebraic functions. This
analogy goes back to the nineteenth century, possibly to Kronecker. The leading role in
the subsequent development belongs to Hilbert. The analogy was one of his beloved ideas,
and thanks to Hilbert it became one of the central ideas in the development of number
theory during the twentieth century. Following this analogy, we can compare algebraic
curves over C (= compact Riemann surfaces) and number fields (= finite extensions of
Q). In particular, this includes a comparison of local fields such as that between the
fields C((t)) and Qp. Their similarity was already pointed out by Newton1.

In modern terms, we have two kinds of geometric objects. First, a complete algebraic
curveX , containing an affine curve U = Spec(R)2, where R is the ring of regular functions
on U :

(geometric picture) X ⊃ U and finitely many points P ∈ X.

Next, if we turn to arithmetic, we have a finite extension K ⊃ Q and the ring R ⊂ K of
integers. We write

(arithmetic picture) X ⊃ U = Spec(R) and finitely many infinite places P ∈ X.

The places (“points”) correspond to the embeddings of K into the fields R or C. Here,
X stands for the as yet not clearly defined complete “arithmetical” curve, an analogue
of the curve X in the geometric situation. The analogy between both U ’s is very clear

1He compared the power series and the expansions of rational numbers in powers of p (for p = 10).
2Here, Spec(R) is the set of prime ideals in the ring R together with the additional structure of a

scheme.
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and transparent. The rings R are the Dedekind rings of the Krull dimension3 1. The
nature of the additional points (outside U) are more complicated. In the geometric case,
they also correspond to the non-archimedean valuations on the curve X , whereas in the
arithmetical case these infinite places are a substitute for the archimedean valuations of
the field K.

In algebraic geometry, we also have the theory of algebraic curves defined over a finite
field Fq and this theory, being arithmetic in its nature, is much closer to the theory of
number fields than the theory of algebraic curves over C. The main construction on
both sides of the analogy is the notion of a local field. These local fields appear into the
following table:

dimension geometric case arithmetic case
> 2 ... ...
2 ? R((t)), C((t))
1 Fq((t)) Qp, R, C

0 Fq F1

Here F1 is the so-called “field” with one element, which is quite popular nowadays. We
will see soon why the fields R((t)) and C((t)) belong to the higher level of the table than
the fields Qp or R. More on the analogy between geometry and arithmetic can be found
in [61].

1 n-dimensional Local Fields and Adelic Groups

Let us consider algebraic varieties X (or Grothendieck schemes) of dimension greater
than one. It appears that we have a well established notion of something local attached
to a point P ∈ X . One can take a neighborhood of P , e.g. affine, complex-analytic if X
is defined over C, formal and so on. In this talk we will advocate the viewpoint that the
genuine local objects on the varieties are not the points with some neighborhoods but
the maximal ordered sequences (or flags) of subvarieties, ordered by inclusion.

If X is a variety (or a scheme) of dimension n and

X0 ⊂ X1 ⊂ . . .Xn−1 ⊂ Xn = X

is a flag of irreducible subvarieties (dim(Xi) = i) then one can define a certain ring

KX0,...,Xn−1

associated to the flag. In the case where all the subvarieties are regularly embedded, this
ring is an n-dimensional local field.

Definition 1. Let K and k be fields. We say that K has a structure of an n-
dimensional local field with the last residue field k if either n = 0 and K = k or n ≥ 1

3That is, the length of a maximal chain of prime ideals. The ring R itself is not a prime ideal.

3



and K is the fraction field of a complete discrete valuation ring OK whose residue field
K̄ is a local field of dimension n− 1 with the last residue field k.

Thus, an n-dimensional local field has the following inductive structure:

K =: K(0) ⊃ OK → K̄ =: K(1) ⊃ OK̄ → K̄(1) =: K(2) ⊃ OK(2) → . . . → K̄(n) = k

where OF denotes the valuation ring of the valuation on F and F̄ denotes the residue
field.

The simplest example of an n-dimensional local field is the field

K = k((t1))((t2)) . . . ((tn))

of iterated Laurent formal power series. In dimension one, there are examples from the
table. However, fields such as R or C are not covered by this definition. Concerning
classification of the local fields see [17].

One can then form the adelic group (actually, the ring)

AX =
∏′

KX0,...,Xn−1

where the product is taken over all the flags with respect to certain restrictions on
components of adeles. For schemes over a finite field Fq, this is the ultimate definition of
the adelic space attached to X . In general, one must extend it by adding archimedean
components, such as the fields R or C in dimension one.

In dimension one, the local fields and adelic groups are well-known tools of arithmetic.
They were introduced by C. Chevalley in the 1930s and were used to formulate and solve
many problems in number theory and algebraic geometry (see, for example, [1, 74]).
These constructions are associated with fields of algebraic numbers and fields of algebraic
functions in one variable over a finite field, that is with schemes of dimension 1. A need
for such constructions in higher dimensions was realized by the author in the 1970s. They
were developed in the local case for any dimension and in the global case for dimension
two [53, 54, 17, 58]. This approach was extended by A. A. Beilinson to the schemes of
an arbitrary dimension [3, 25]. In this talk, we restrict ourselves to the case of dimension
two.

Let X be a smooth irreducible surface over a field k (or an arithmetic surface), let
P be a closed point of X and let C ⊂ X be an irreducible curve such that P ∈ C. We
denote by OX,P the local ring at the point P , that is the ring of rational functions which
are regular at P . We denote also by OC the ring of rational functions on X which have
no pole along the C.

If X and C are smooth at P , then we pick a local equation t ∈ OX,P of C at P and
choose u ∈ OX,P such that u|C ∈ OC,P is a local parameter at P . Denote by ℘ the ideal
in OX,P defining the curve C near P . We can introduce a two-dimensional local field
KP,C attached to the pair P,C by the following procedure which includes completions
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and localizations:

OX,P

|
ÔX,P = k(P )[[u, t]] ⊃ ℘ = (t)
|

(ÔX,P )℘ = discrete valuation ring with residue field k(P )((u))
|

ÔP,C :=
̂
(ÔX,P )℘ = k(P )((u))[[t]]

|
KP,C := Frac (ÔP,C) = k(P )((u))((t))

Note that the left-hand construction is meaningful even without smoothness of the curve
C (it is sufficient to assume that C has only one formal branch near P ). In the general
case, the ring KP,C is a finite direct sum of 2-dimensional local fields. If P is smooth
then the field KP,C has the following informal interpretation. Take a function f on X .
We can, first, develop f as a formal power series in the variable t along the curve C and
then every coefficient of the series restricted to C can be further developed as a formal
power series in the variable u. The local field KP,C is a kind of completion of the field of
rational functions K = k(X) on X . It carries a discrete valuation νC : K∗P,C → Z defined
by the powers of the ideal ℘.

Let KP be the minimal subring of KP,C which contains both k(X) and ÔX,P . In
general, the ring KP is not a field. Then K ⊂ KP ⊂ KP,C and there is another interme-

diate subring KC = Frac (ÔC) ⊂ KP,C. We can compare the structure of the local adelic
components in dimensions one and two:

KP KP,C

��� ??
?

KP
??

?
KC

��
�

K K

The global adelic group is a certain subgroup of the ordinary product of all two-
dimensional local fields. Namely, a collection (fP,C) where fP,C ∈ KP,C belongs to AX if
the following two conditions are satisfied:

•
{fP,C} ∈ AC((tC))

for a fixed irreducible curve C ⊂ X and a local equation tC = 0 of the curve C on
some open affine subset U ⊂ X and

• we have νC(fP,C) ≥ 0, or equivalently

{fP,C} ∈ AC [[tC ]],

for all but finitely many irreducible curves C ⊂ X .
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Here we reduced the definition of the adelic group to the classical case of algebraic curves
C. Recall that a collection (fP , P ∈ C) belongs to the adelic (or restricted) product AC

of the local fields KP if and only if for almost all points P we have fP ∈ ÔP .

What can one do with this notion of the local field and why is it really local ? To get
some understanding of this, we would like to develop the above examples (of residues and
symbols) in dimension two. For any flag P ∈ C on a surface X and a rational differential
form ω of degree 2 we can define the residue

resP,C(ω) = Trk(P )/k(a−1,−1)

where ω =
∑

i,j ai,ju
itjdu ∧ dt in the field KP,C

∼= k(P )((u))((t)). Then, instead of the
simple relation (4) on an algebraic curve, we get two types of relations on the projective
surface X [54] ∑

P∈C

resP,C(ω) = 0, for any fixed curve C, (5)

∑

C∋P

resP,C(ω) = 0, for any fixed point P. (6)

At the same time, we can define certain symbols (bi-multiplicative and three-
multiplicative) [53]

(−,−)P,C : K∗P,C ×K∗P,C → Z and (−,−,−)P,C : K∗P,C ×K∗P,C ×K∗P,C → k∗

which are respectively generalizations of the valuation νP : K∗P → Z and the norm
residue symbol (−,−)P : K∗P ×K∗P (actually, the tame symbol) on an algebraic curve C.
The reciprocity laws have the same structure as the residue relations. In particular, if
f, g, h ∈ K∗ then ∏

P∈C

(f, g, h)P,C = 1, for any fixed curve C,

∏

C∋P

(f, g, h)P,C = 1, for any fixed point P.

This shows that in dimension two there is a symmetry between points P and curves C
(which looks like the classical duality between points and lines in projective geometry).

If C is a curve then the space AC contains the important subspaces A0 = K = k(C)
of principal adeles (rational functions diagonally embedded into the adelic group) and

A1 =
∏

P∈C ÔP of integral adeles. These give rise to the adelic complex

A0 ⊕ A1 → AC . (7)

This complex computes the cohomology of the structure sheaf OC . If D is a divisor on
C then the cohomology of the sheaf OC(D) can be computed using the adelic complex
(7) where the subgroup A1 is replaced by the subgroup A1(D) = {(fP ) ∈ AC : νP (fP ) +
νP (D) > 0 for any P ∈ C}.

In dimension two, there is a much more complicated structure of subspaces in AX (see

[58]). Among the others, it includes three subspaces A12 =
∏′

P∈CÔP,C, A01 =
∏′

C⊂XKC
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and A02 =
∏′

P∈XKP . We set A0 = A01 ∩ A02,A1 = A01 ∩ A12 and A2 = A02 ∩ A12, and
arrive at an adelic complex

A0 ⊕ A1 ⊕ A2 → A01 ⊕ A02 ⊕ A12 → AX .

Once again, the complex computes the cohomology of the sheaf OX . One can extend
these complexes to the case of arbitrary schemes X and any coherent sheaf on X (see
[3, 25, 17]).

The last issue which we will discuss in this section is the relation between the residues
and Serre duality for coherent sheaves. We will only consider the construction of the
fundamental class for the sheaf of differential forms. For curves C, we have an iso-
morphism H1(C,Ω1

C)
∼= Ω1(AC)/Ω

1(A0)⊕ Ω1(A1). The fundamental class isomorphism
H1(C,Ω1

C)
∼= k can be defined as the sum of residues on Ω1(AC). The residues relation

(3) shows that this sum vanishes on the subspace Ω1(A0) (and it vanishes on the other
subspace Ω1(A1) for trivial reasons). The same reasoning works in the case of surfaces.
We have an isomorphism

H2(C,Ω2
X)

∼= Ω2(AX)/Ω
2(A01)⊕ Ω2(A02)⊕ Ω2(A12) → k,

where the last arrow is again the sum of residues over all flags P ∈ C ⊂ X . The
correctness of this definition follows from the residues relations (5) and (6). We refer to
[54, 3, 17] for the full description of the duality.

2 Harmonic Analysis on Two-dimensional Schemes

In the 1-dimensional case, local fields and adelic groups both carry a natural topology
for which they are locally compact groups and classical harmonic analysis on locally
compact groups can therefore be applied to this situation. The study of representations
of algebraic groups over local fields and adelic groups is a broad subfield of representation
theory, algebraic geometry and number theory. Even for abelian groups, this line of
thought has very nontrivial applications in number theory, particularly to the study of
L-functions of one-dimensional schemes (see below). The first preliminary step is the
existence of a Haar measure on locally compact groups. The analysis starts with a
definition of certain function spaces.

We have two sorts of locally compact groups. The groups of the first type are totally
disconnected such as the fields Qp or Fq((t)). These groups are related with varieties
defined over a finite field. The groups of the second type are connected Lie groups such
as the fields R or C.

If V is a locally compact abelian group of the first type let us consider the following
spaces of functions (or distributions) on V :

D(V ) = {locally constant functions with compact support}
Ẽ(V ) = {uniformly locally constant functions}
E(V ) = {all locally constant functions}
D′(V ) = {the dual to D(V ), i.e. all distributions}
Ẽ ′(V ) = {the “continuous” dual to Ẽ(V )}
E ′(V ) = {the “continuous” dual to E(V ), i.e. distributions with compact support}.
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These are the classical spaces introduced by F. Bruhat [10] and the more powerful way to
develop the harmonic analysis is the categorical point of view. First, we need definitions
of direct and inverse images with respect to the continuous homomorphisms.

Let f : V → W be a strict homomorphism4 of locally compact groups V and W .
Then the inverse image f ∗ : D(W ) → D(V ) is defined if and only if the kernel of f
is compact. The direct image f∗ : D(V ) ⊗ µ(V ) → D(W ) is defined if and only if the
cokernel of f is discrete. Here, µ(V ) is a (1-dimensional) space of Haar measures on
V . For the spaces like E , Ẽ the inverse image is defined for any f , but the direct image
is defined if and only if the kernel is compact and the cokernel is discrete. For the
distribution spaces the corresponding conditions are the dual ones. Therefore, we see
that these maps do not exist for arbitrary homomorphisms in our category and there are
some “selection rules”.

The Fourier transform F is defined as a map from D(V ) ⊗ µ(V ) to D(V̌ ) as well as
for the other types of spaces. Here, V̌ is the dual group. The main result is the following
Poisson formula

F(δW,µ0 ⊗ µ) = δW⊥,µ−1/µ−1
0

for any closed subgroup i : W → V . Here µ0 ∈ µ(W ) ⊂ D′(W ), µ ∈ µ(V ) ⊂
D′(V ), δW,µ0 = i∗(1W ⊗ µ0) and W⊥ is the annihilator of W in V̌ .

This general formula is very efficient when applied to the self-dual (!) group AC .
The standard subgroups in AC have their characteristic functions δA1(D) ∈ D(AC) and
δK ∈ D′(AC) . We have

F(δA1(D)) = vol(A1(D))δA1((ω)−D), (8)

F(δK) = vol(AC/K)−1δK , (9)

where K = Fq(C) and (ω) is the divisor of a nonzero rational differential form ω ∈ Ω1
K on

C. There is the Plancherel formula 〈f, g〉 = 〈F(f),F(g)〉 where f ∈ D(AC), g ∈ D′(AC)
and 〈−,−〉 is the canonical pairing between dual spaces. When we apply this formula to
the characteristic functions δA1(D) and δK the result easily yields Riemann-Roch theorem
together with Serre duality for divisors on C (see for example [58]).

Trying to extend the harmonic analysis to the higher local fields and adelic groups
we meet the following obstacle. The n-dimensional local fields and consequently the
adelic groups are not locally compact topological groups for n > 1 in any reasonable
sense whereas by a theorem of Weil the existence of Haar measure (in the usual sense)
on a topological group implies its local compactness. Unfortunately, the well-known
extensions of this measure theory to the infinite-dimensional spaces or groups (such as
the Wiener measure) do not help in our circumstances. Thus, we have to develop a
measure theory and harmonic analysis on n-dimensional local fields and adelic groups ab
ovo.

The idea for dealing with this problem came to me in the 1990s. In dimension
one, local fields and adelic groups are equipped with a natural filtration provided by
fractional ideals ℘n, n ∈ Z, which correspond to the standard valuations. For example,

4This means that f is a composition of an open epimorphism and a closed monomorphism.
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this filtration on the field Fq((t)) is given by the powers of t. If P ⊃ Q are two elements
of such a filtration on a group V , then the Bruhat space D(V ) is canonically isomorphic
to the double inductive limit of the (finite-dimensional) spaces F(P/Q) of all functions
on the finite groups P/Q. The other function spaces listed above can be represented in
the same way if we use all possible combinations of projective or inductive limits.

In dimension two, local fields K such as KP,C again have a filtration by fractional
ideals, which are powers of ℘. But now, the quotient P/Q = ℘m/℘n, n > m will be
isomorphic to a direct sum of finitely many copies of the residue field K̄ = Fq((u)).
Thus this group is locally compact and the functional space D(P/Q) is well defined. To
define the function spaces on K one can try to repeat the procedure which we know
for the 1-dimensional fields. To do that, we need to define the maps (direct or inverse
images) between the spaces D(P/Q),D(P/R),D(Q/R) for P ⊃ Q ⊃ R. The selection
rules mentioned above restrict the opportunities for this construction. This enables us
to introduce the following six types of spaces of functions (or distributions) on V :

DP0(V ) = lim lim D(P/Q)⊗ µ(P0/Q),
←−

j∗
←−

i∗
D′P0(V ) = lim lim D′(P/Q)⊗ µ(P0/Q)−1,

−→

j∗
−→

i∗

E(V ) = lim lim E(P/Q),
←−

j∗
−→

i∗

E ′(V ) = lim lim E ′(P/Q),
−→

j∗
←−

i∗
Ẽ(V ) = lim lim Ẽ(P/Q),

−→

i∗
←−

j∗

Ẽ ′(V ) = lim lim Ẽ ′(P/Q),
←−

i∗
−→

j∗

where P ⊃ Q ⊃ R are some elements of the filtration in V (with locally compact
quotients), P0 is a fixed subgroup from the filtration and j : Q/R → P/R, i : P/R →
P/Q are the canonical maps.

This definition works for a general class of groups V including the adelic groups such
as AX , which has a filtration by the subspaces A12(D) where D runs through the Cartier
divisors on X .

Thus, developing of harmonic analysis may start with the case of dimension zero
(finite-dimensional vector spaces over a finite field representing a scheme of dimension
zero, such as Spec(Fq), or finite abelian groups) and then be extended by induction to
the higher dimensions.

An important contribution was made in 2001 by Michael Kapranov [33] who sug-
gested using a trick from the construction of the Sato Grassmanian in the theory of
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integrable systems (known as a construction of semi-infinite monomials)5. The idea con-
sists of using the spaces µ(P0/Q) of measures instead of µ(P/Q) in the above definition
of the spaces DP0(V ) and D′P0(V ): without it one cannot define the functional spaces
for all adelic groups in the two-dimensional case and, in particular, for the whole adelic
space AX .

In 2005 Denis Osipov has introduced the notion of a Cn structure in the category of
filtered vector spaces [49]. With this notion at hand, harmonic analysis can be developed
in a very general setting, for all objects of the category C2. The crucial point is that
the Cn-structure exists for the adelic spaces of any n-dimensional noetherian scheme.
The principal advantage of this approach is that one can perform all the constructions
simultaneously in the local and global cases. The category C1 contains (as a full subcat-
egory) the category of linearly locally compact vector spaces (introduced and thoroughly
studied by S. Lefschetz [42]) and there one can use the classical harmonic analysis.

When we go to general arithmetic schemes over Spec(Z), fields like C((t1)) . . . ((tn))
appear and we need to extend the basic category Cn. In dimension one, this means
that connected Lie groups must also be considered. It is possible to define categories of
filtered abelian groups Car

n , (n = 0, 1, 2), which contain all types of groups which arise
from arbitrary schemes of dimension 0, 1 and 2 (in particular from algebraic surfaces over
Fq and arithmetic surfaces). Harmonic analysis can be developed for these categories if
we introduce function spaces which are close to that of classical functional analysis, such
as Schwartz space S(R) of smooth functions on R, which are rapidly decreasing together
with all their derivatives. Recall that in the case of dimension one we had to consider, in
addition to the genuine local fields such as Qp, the fields R and C. In the next dimension,
we have to add to the two-dimensional local fields such as Fq((u))((t)) or Qp((t)) the
fields R((t)) and C((t)). They will occupy the entire row in the table above. This theory
has been developed in papers [50, 51].

Just as in the case of dimension one, we define direct and inverse images in the
categories of groups, which take into account all the components of the adelic complex,
the Fourier transform F which preserves the spaces D and D′ but interchanges the spaces
E and E ′. We also introduce the characteristic functions δW of subgroups W and then
prove a generalization of the Poisson formula. It is important that for a certain class of
groups V (but not for AX itself) there exists a nonzero invariant measure, defined up
to multiplication by a constant, which is an element of D′(V ). Another important tool
of the theory are the base change theorems for the inverse and direct images. They are
function-theoretic counterparts of the classical base change theorems in the categories of
coherent sheaves.

The applications of the theory includes an analytic expression for the intersection
number of two divisors based on an adelic approach to the intersection theory [55] and
an analytic proof of the (easy part of) Riemann-Roch theorem for divisors on X .

This theory is the harmonic analysis on the additive groups of the local fields and
adelic rings (including their archimedean cousins). In the classical case of dimension
one, the analysis can be developed on arbitrary varieties (defined either over K, or over

5A construction of this kind for the local fields is also contained in [35].
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A). This has already been done by Bruhat in the local case [10]. For arbitrary varieties
defined over a two-dimensional local field K, this kind of analysis was carried out by
D. Gaitsgory and D. A. Kazhdan in [18] for the purposes of representation theory of
reductive groups over the field K. This was preceded by a construction [34] of harmonic
analysis on homogenous spaces such as G(K)/G(O′K) (introduced in [56]). We note that
the construction of harmonic analysis (over K and A) is a nontrivial problem even in
the case G = Gm. This will be the topic of our discussion in the following sections.

3 Discrete Adelic Groups on Two-dimensional

Schemes

The harmonic analysis discussed above can be viewed as a representation theory of the
simplest algebraic group over local or adelic rings, namely, of the additive group. In gen-
eral, 1-dimensional local fields and adelic rings lead to a vastly developed representation
theory of reductive groups over these fields and rings. The simplest case of this theory is
still the case of an abelian group, namely GL(1). Let K be a local field of dimension 1.
Then GL(1, K) = K∗, the multiplicative group of K, and the irreducible representations
are the abelian characters, i.e. continuous homomorphisms χ : K∗ → C∗. For arithmetic
applications one requires the morphisms to C∗, not to the unitary group U(1) ⊂ C∗.

The 1-dimensional local field K contains a discrete valuation subring O with a max-
imal ideal ℘. Then the local group K∗ has the following structure

K∗ = {tn, n ∈ Z} × O∗ = {tn, n ∈ Z} × K̄∗ × {1 + ℘},

where t is a generator of the ideal ℘, K̄ = Fq and the group {1 + ℘} is the projective
limit of its finite quotients {1 + ℘}/{1 + ℘n}. Thus, our group K∗ is a product of the
maximal compact subgroup O∗ and a discrete group ∼= Z. When K is the local field KP

attached to a point P of an algebraic curve C defined over a finite field Fq, let us set
ΓP := K∗P/O∗P . In the adelic case, we set

ΓC := A∗C/
∏

P

O∗P =
⊕

P

K∗P/O∗P =
⊕

P

Z.

This group is the group of divisors on C.
We now introduce the groups dual to these discrete groups viewing them as algebraic

groups defined over C:

TP = Hom(ΓP ,C
∗), TS =

∏
P∈S TP , TC = lim TS ,

←−

S

where S runs through all finite subsets in C. Let us consider the divisor DS with
normal crossings on TS that consists of the points in the product TS for which at least
one component is the identity point in some TP . Let C+[TS] be the space of rational
functions on TS that are regular outside DS and may have poles of first order on DS. The
space C+[TC ] can be defined as an inductive limit with respect to the obvious inclusions.
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We would like to show that harmonic analysis on the adelic space AC can be reformu-
lated in terms of complex analysis on the dual groups. We need one more torus T0

∼= C∗,
which corresponds by the duality to the image of the degree map

deg : ΓC → Z with deg(D) =
∑

P

nP deg(P ) for a divisor D =
∑

P

nPP.

Denote by j : T0 → TC the natural embedding. Then the following diagram

D(AC)
O∗

=: D+(ΓC)
L−−−→ C+[TC ]

j∗−−−→ F+[T0]

F
y y i∗

y

D(AC)
O∗

=: D+(ΓC)
L−−−→ C+[TC ]

j∗−−−→ F+[T0]

(10)

commutes. Here, the map F is induced by the Fourier transform on the adelic group
AC , the map i : T0 → T0 sends z ∈ T0 to q−1z−1 and the space F+[T0] consists of the
functions that are regular outside the points z = 1 and z = q−1 and may have poles of
the first order at these points. We denoted here by L a duality map, a version of the
Fourier transform in this situation (completely different however from the Fourier map
F). If g ∈ G and z ∈ TG = Hom(G,C∗) for some group G then (Lf)(z) =

∑
g f(g)z(g).

The next important fact is a reformulation of the Poisson formula on the group AC
6.

It can be shown that for any function f ∈ D(AC)
O∗

∑

γ∈K

f(γ) = res(0)(ω) + res(1)(ω),

∑

γ∈K

(Ff)(γ) = −res(q−1)(ω)− res(∞)(ω),

where ω = j∗Lfdz/z is the differential form on the compactification of the torus T0 and
the points we have chosen for the residues are z = 0, z = q−1, z = 1 and z = ∞. Since
the poles of the form ω are contained in this set, we deduce that the Poisson formula
on the curve C (with an appropriate choice of Haar measure on AC) is equivalent to the
residue formula (4) for the form ω on the compactification of the torus T0 (the general
case see in [62]).

Our main goal now is to understand what correspond to these constructions in the
case of dimension two7. Let us first consider the local situation, that is we fix a flag
P ∈ C on X and assume, for the sake of simplicity, that P is a smooth point on C.
The local field KP,C has the discrete valuation subring ÔP,C. It is mapped onto the local

field k(C)P on C. This local field contains his own discrete valuation subring ÔP and

we denote its preimage in ÔP,C by Ô′P,C We set

ΓP,C := K∗P,C/Ô′ ∗P,C
6For the sake of simplicity, we assume that Pic0(C)(Fq) = (0), that is Ker(deg) = Divl(C).
7We consider here the case of an algebraic surface. The main definitions remain valid for the scheme

part of an arithmetic surface.
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where ΓP,C is a certain abelian group, which is (non-canonically) isomorphic to Z ⊕ Z.
However, there is a canonical exact sequence of abelian groups

0 → Z → ΓP,C → Z → 0. (11)

The map to Z in the sequence corresponds to the discrete valuation νC with respect to
C and the subgroup Z corresponds to the discrete valuation νP on C at P . A choice of
local coordinates u, t in a neighborhood of P such that locally C = {t = 0} provides a
splitting of this exact sequence. The group ΓP,C will then be isomorphic to the subgroup
{tnum, n,m ∈ Z} in K∗P,C.

The group of coordinate transformations u 7→ u, t 7→ ukt, k ∈ Z preserves extension
(11). Therefore, this determines an embedding

Z → Aut(ΓP,C). (12)

which in fact is canonical.

We are now going to produce a global analogue of the local construction given above.
For that purpose, consider the subgroup Ô′ ∗ of A∗X , defined as the adelic product of the

local groups Ô′ ∗P,C for all flags on an algebraic surface X . Let us consider the quotient

ΓX := A∗X/Ô′ ∗ =:
∏

(P,C)

′ΓP,C .

We have a natural surjective homomorphism A∗X → ΓX and all subgroups in A∗X such as
A∗01,A

∗
12, . . . ,A

∗
0 have their images Γ01,Γ12, . . . ,Γ0 in ΓX .

Then the structure of ΓX can be described by an exact sequence

0 →
∏

C

Div(C) −→ ΓX
π−→

⊕

C

∏

P∈C

′Z → 0 , (13)

where, as above, Div(C) denotes the group of divisors on a curve C ⊂ X and the
restricted product

∏
′Z denotes the set of collections of integers with components whose

absolute values are bounded. More precisely,

(1) The subgroups
∏

C Div(C) and Γ12 in ΓX coincide.

(2) The restriction of the homomorphism π to the subgroup Γ02 ⊂ ΓX is an isomor-
phism:

π|Γ02 : Γ02
∼−→

⊕

C

∏

P∈C

′Z.

In other words, we see that there is a canonical splitting ΓX = Γ12 ⊕ Γ02 of exact
sequence (13) which is independent of any possible choice of the coordinates. The groups
which we have constructed are abelian. In our two-dimensional case, the crucial point is
that they are provided with certain canonical central extensions.
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Let us start once more with the local situation, that is we fix a flag P ∈ C on X .
Following [2](see also [30]) we have a canonical central extension of groups

1 → k(C)∗P → K̃∗P,C → K∗P,C → 1 . (14)

such that the corresponding commutator map in the central extension is a skew form
〈·, ·〉 : K∗P,C ×K∗P,C → k(C)∗P given by the tame symbol (without sign), that is by

〈f, g〉 = f νC(g)g−νC(f) (mod℘) ∈ k(C)∗P , (15)

where ℘ is the ideal which defines the curve C.
There exists a canonical section of extension (14) over the subgroup Ô′∗P,C ⊂ K∗P,C.

Denote by Õ′∗P,C the image of Ô′∗P,C in K̃∗P,C with respect to this section. If we take the

quotient of the extension (14) by the subgroup Ô∗P of the center k(C)∗P and then by the
subgroup Õ′∗P,C we obtain a new central extension

0 → Z → Γ̃P,C → ΓP,C → 0. (16)

It is well known that H2(Z⊕ Z,Z) = Z and the extension (16) is a generator of this
group. The commutator in this central extension defines a non-degenerate symplectic
form 〈−,−〉 on ΓP,C with values in Z. Let us fix local parameters u, t at P . Then ΓP,C

is isomorphic to the group of matrices




1 n c
0 1 p
0 0 1


 (17)

with integer entries and 〈n, p〉 = np. We denote this group by Heis(3,Z). Hence, we
arrive at the following class of discrete nilpotent groups.

Definition 2. Let H , H ′, and C be abelian groups and let 〈−,−〉 : H ×H ′ → C be
a biadditive pairing. The set H × H ′ × C with the composition law (n, p, c)(m, q, a) =
(n+m, p+q, c+a+ 〈n, q〉), where n,m ∈ H, p, q ∈ H ′ and c, a ∈ C, is called the discrete
Heisenberg group G.

One then constructs the Heisenberg group G as a group of upper triangular unipotent
matrices with H and H ′ on the second diagonal and C in the right top corner. There is
the obvious natural central extension

0 → C → G → H ⊕H ′ → 0.

In the global case, we have the Heisenberg group Γ̃X with

H = Γ12 =
∏

C

Div(C) =
∏

C

⊕

P∈C

Z, H ′ = Γ02
∼=

⊕

C

∏

P∈C

′Z,

C = IX :=
⊕

C

⊕

P∈C

Z
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and the pairing H ×H ′ → C is given by a component-wise multiplication. We thus get
a central extension

0 → IX → Γ̃X → ΓX → 0 (18)

and for each flag P ∈ C the restriction of extension (18) to ΓP,C coincides with exten-
sion (16). So, we obtain in this way a global analogue of the local construction, since
we could describe Γ̃X as an “adelic” product of the local groups Γ̃P,C in an appropriate
sense.

There is a natural surjective homomorphism ϕ : IX → Z2(X), (nP,C) 7→∑
P (

∑
C∋P

nP,C)[P ], where Z2(X) denotes the group of zero-cycles on X . We set

I02 := Ker(ϕ), I01 :=
⊕

C

Divl(C) ⊂
⊕

C

Div(C) = IX .

The Heisenberg group Γ̃X is closely related to the main arithmetic groups attached to
the surface X . The quotient IX/(I01 + I02) is the second Chow group CH2(X) of X .
Also, there are isomorphisms

Γ01/(Γ0 + Γ1) ∼= (Γ12 ∩ (Γ01 + Γ02))/Γ1
∼=

∼= (Γ02 ∩ (Γ01 + Γ12))/Γ0
∼= Pic(X).

Moreover, the pairing Γ12 × Γ02 → IX corresponds to the intersection pairing Pic(X)×
Pic(X) → CH2(X).

It is remarkable that the groups K∗P,C (and the global adelic groups), which are very
far from being locally compact, nevertheless have a non-trivial discrete quotient.

4 Representations of Discrete Heisenberg Groups

We have seen that in the case of dimension two the first non-trivial nilpotent groups
have occured. To define their duals one needs to develop an appropriate representation
theory for this class of groups.

For the discrete groups the classical theory of unitary representations on a Hilbert
space is not so well developed since these groups are mostly not of type I. By Thoma’s
theorem, a discrete group is of type I if and only if it has an abelian subgroup of finite
index.

This implies a violation of the main principles of representation theory on Hilbert
spaces: non-uniqueness of the decomposition into irreducible components; too bad topol-
ogy of the unitary dual space; non-existence of characters... . V. S. Varadarajan wrote in
1989: “A systematic developement of von Neumann’s ideas led eventually (in the 1950s)
to a deep understanding of the decomposition of unitary representations and to results
which implied more or less that a reasonable generalization of classical Fourier analysis
and representation theory could be expected only for the so-called type I groups; i.e.
groups all of whose factor representations are of type I ”[70].
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We can also say that the class of unitary representations is too restrictive for the
arithmetic purposes.

On the other hand, there exists a theory of smooth representations for p-adic algebraic
groups. This theory is also valid for a more general class of totally disconnected locally
compact groups. Discrete groups are a simple particular case of this class of groups and
the general theory delivers a reasonable class of representations, namely representations
on a vector space without any topology. The new viewpoint consists in a systematic
consideration of purely algebraic representations in place of unitary representations on
Hilbert spaces.

Following [63], we consider now this representation theory for the discrete Heisenberg
groupsG = (H,H ′,C, 〈−,−〉) where all three groups are finitely generated. We introduce
the complex tori TH = Hom(H,C∗),TH′ = Hom(H ′,C∗) and TC = Hom(C,C∗), and set
TG = TH × TH′ × TC. The group H is homomorphically mapped to TH′ according to
the rule:

h ∈ H 7→ {h′ 7→ χC(〈h, h′〉)}. (19)

Denote the kernel of this map by Hχ. If χ ∈ TH′ then let h(χ) be the translate of
the character χ by the image of h in TH′ . We have h(χH′)(p) = χH′(p)χC(〈h, p〉) for any
p ∈ H ′. For any χ ∈ TG, χ = χH ⊗χH′ ⊗χC , let Gχ = HχH

′C be the subset in G. Then
Gχ is a normal subgroup in G, which depends only on χC and χ|Gχ is a character of the
group Gχ [65].

Definition 3. Let Vχ be the space of all complex-valued functions f on G which
satisfy the following conditions:

1. f(hg) = χ(h)f(g) for all h ∈ Gχ.

2. The support Supp(f) is contained in the union of a finite number of cosets of Gχ.

Right translations define a representation πχ of the group G on the space Vχ. One
can prove that these representations πχ are irreducible in both possible senses: there
are no nontrivial invariant subspaces, and the Schur lemma holds. Furthermore, these
representations can be completely classified. Namely, the representations Vχ and Vχ′ are
equivalent if and only if three following conditions are satisfied:

1. χC = χ′C.

2. There exists h ∈ H such that χ′H′ = h(χH′).

3. χ′H(h) = χH(h) for all h ∈ Hχ or equivalently there exists t ∈ TH/Hχ
=

Hom(H/Hχ,C
∗) ⊂ TH such that χ′H = t(χH).

Here the torus TH/Hχ
acts on the ambient torus TH by translations. The equivalence

classes of representations Vχ therefore correspond to orbits of the groups TH/Hχ
×H/Hχ

in subsets TH × TH′ × {χC} of the torus TG .
The group G is a semidirect product of the groups H and H ′C and the main tool

for obtaining the results stated above is the Mackey formalism [43] which describes the
category of induced representations for semi-direct products of abelian locally compact
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groups. In the classical theory, this is well-known for unitary representations on Hilbert
spaces. In our case, we can use the version of this formalism developed in the theory of
representation of p-adic reductive groups [4, 15, 71].

The restriction of functions from the group G to the subgroup H defines a bijection
of Vχ with a certain space of functions on H . This space has an explicit basis and
we can now define the character of the representation πχ as the matrix trace of the
representation operators πχ(g) with respect to this basis. It is easy to see that in many
cases the corresponding infinite sum of diagonal elements will diverge. The simplest
example is the group Heis(3,Z), see (17).

It is nevertheless possible to define the character if we apply a well-known construction
from the theory of loop groups [64][ch. 14.1]. Namely, we have to add some ”loop
rotations ” to the group G . In our context, this means that the group G has to be
extended to a semi-direct product Ĝ = G ⋊ A, where A ⊂ Hom(H,H ′) is a non-trivial
subgroup.

To construct the group Ĝ = G ⋊ A, one needs to extend the automorphisms of the
abelian groups H ⊕H ′ to the automorphisms of the entire Heisenberg group. Note that
the group A acts on H ⊕H ′ by unipotent transformations. When we fix an r ∈ H and
choose k ∈ A, the expression

k(m, p, c) = (m, p+ k(m), c+ 1/2〈m− r, k(m)〉) m ∈ H, p ∈ H ′, c ∈ C

defines an automorphism of the group G if the following conditions hold:

1. 〈m, k(m′)〉 = 〈m′, k(m)〉 for all m,m′ ∈ H

2. 〈m− r, k(m)〉 ∈ 2C for all m ∈ H.

In the case of the group ΓP,C
∼= Heis(3,Z), (see (17)), we have A = Z, r = 1 and k ∈ A

acts as k(n, p, c) = (n, p+kn, c+ 1
2
kn(n−1)), n, p, c ∈ Z. Then the extension is suggested

by the existence of the group of coordinate transformations on the surface X (see (12))
at the point P :

t 7→ ukt, u 7→ u, k ∈ Z.

According to the analogy between algebraic and arithmetic surfaces we discussed above,
these coordinate transformations in the two-dimensional local field KP,C = Fq((u))((t))
indeed correspond to the loop rotations

t 7→ αt, α 7→ α, α ∈ C

in the field C((t) on an arithmetic surface.

When k(Hχ) ⊂ Ker(χH′) the representation of G on Vχ can be extended to a repre-

sentation π̂χ of the extended group Ĝ on the same space. Let

(TC × A)+ := {χ ∈ TC, k ∈ A :| χC(〈n, k(n)〉) |< 1 for all n ∈ H/Hχ, n 6= 0}

be a relation in TC ×A, let A(χ) be the projection of the set (TC ×A)+ ∩ ({χ} ×A) to
A and let Ĝ(χ) = G×A(χ) ⊂ Ĝ.
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We can now solve the existence problem for the characters. The trace Tr π̂χ(g) exists

for all g ∈ Ĝ(χ) and we have

Tr π̂χ(g) = χH(m)χH′(p)χC(c) ·
∑

n∈H/Hχ

χH′(k(n))χC(〈n, p〉+ 1/2〈n− r, k(n)〉).

for g = (m, p, c, k), k ∈ A(χ), m ∈ Hχ. The trace is zero if m does not belong to Hχ.
The trace is well-defined, but does not determine a function on the set of equivalence

classes of representations. To overcome this difficulty, we have to consider representations
of the extended group Ĝ.

Let TA = Hom(A,C∗) and TĜ = TG × TA. If χ̂ = (χ, χA) ∈ TĜ, then we set

π̂χ̂ = π̂χ ⊗ χA.

We therefore have Tr π̂χ̂ = Tr π̂χ · χA. For a given g ∈ Ĝ(χ), the trace Tr π̂χ̂(g) can be
considered as a function on the domain T ′ = TH × TH′ × TC(k) × TA in the torus TĜ,
where TC(k) is the projection of the set (TC ×A)+ ∩ (TC × {k}) to the torus TC.

Let us define an action of the group TH/Hχ
×H on the set TH×TH′ ×{χC}×TA ⊂ T ′

by the formula
(t, h)(χH , χH′, χC, χA) = (t(χH), h(χH′), χC, χ

′

A), (20)

where
χ

′

A(k) = χA(k)χH′(k(h))χC(1/2〈h− r, k(h)〉), k ∈ A.

We define the space MG(k), k ∈ A as the quotient of the domain T ′ by this action.
The quotient-space is a complex-analytic manifold, in fact a fibration over a domain
in TC. For a given g = (m, p, c, k) ∈ Ĝ(χ) the trace Tr π̂χ̂(g) is invariant, under a
simple additional condition, under the action (20) and defines a holomorphic function
Fg = Fg(χ̂) on MG(k). We now obtain the main property that the characters must
enjoy:

Let χ̂, χ̂
′ ∈ TĜ. The representations π̂χ̂ and π̂χ̂′ are equivalent if and only if Ĝ(χ) =

Ĝ(χ′) and Fg(χ̂) = Fg(χ̂
′) for all g ∈ Ĝ(χ).

Thus we see that the space MG(k) is actually a moduli space for a certain class of
representations of Ĝ.

Let us consider the simplest example, that of the group Heis(3,Z). Let A = Z =
Hom(H,H ′), r = 1, Ĝ = G ⋊ Z and χC(c) = λc, χC ∈ TC(k > 0) where TC(k > 0) =
{0 < |λ| < 1}. Then TH′/ImH =: Eλ is an elliptic curve, where z ∈ TH′ = C∗, ImH =
{λZ}. We have a degree map

Pic(Eλ) = H1(Eλ,O∗) = H1(H,O∗(TH′)) → Hom(H,H ′) = A,

and
Pic(Eλ) = {ϕ(n, z) = a−nz−knλ−1/2kn(n−1) : a ∈ C∗, k ∈ A = Z}.

Let L be the line bundle which corresponds to a 1-cocycle ϕ. Then

H0(Eλ, L) = {f(z), z ∈ TH′ : f(λnz) = ϕ(n, z)f(z)}.
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The theta-series
ϑp,k,a(z, λ) := zp

∑

n∈Z

anzknλnp+1/2kn(n−1)

(which are the Poincaré series with respect to ϕ) converge for all z ∈ C∗, 0 < |λ| <
1, k > 0, and form a basis of the space H0(Eλ, L) for 0 ≤ p < k. Finally,

Tr π̂χ̂(0, p, c, k) = λctkϑp,k,1(z, λ), (z, λ) ∈ AG(k), t ∈ TA. (21)

In this case, the theta-series lifted to AG(k) = C×{upper halfplane} are Jacobi modular
forms (up to some powers of λ and z) with respect to the standard action of a finite index
subgroup of the group (Z ⊕ Z) ⋊ SL(2,Z)). This last statement is completely parallel
to a well-known property of characters for representations of affine Kac-Moody algebras
[31, 64].

In the more general situation in which H and H ′ are torsion-free groups and C = Z,
|χC(c)| 6= 1 for c 6= 0, the map k : H → H ′ is a monomorphism with finite cokernel,
A = Zk and the form 〈−, k(−)〉 is positive-definite, we have two dual abelian varieties
E = TH′/ImH and E ′ = TH/ImH ′ with the Poincaré bundle P over E × E ′. The
morphism k defines an isogeny ϕk : E → E ′ and the sheaf L is defined as (Id × ϕk)

∗P.

By Mumford’s theory [44], there exists a finite Heisenberg group K̃er(ϕk), which is a
central extension of the group Ker(ϕk). Then for all g = (m, p, c, k) ∈ Ĝ(χ) the values
of the characters Tr π̂χ̂(g)χ

−1
C (c)χ−1A (k) are theta-functions for the bundle L.

If χ̂ = 1⊗χH′ ⊗χC⊗1, then the functions Tr π̂χ̂(0, p, 0, k) for p ∈ H ′mod k(H) form
a basis of the space H0(E,L). This basis is a standard Mumford basis for the action of

the Heisenberg group K̃er(ϕk) = (H ′/H,TH′/H ,C
∗) on the space H0(E,L).

In addition, certain orthogonality relations are satisfied by the characters [63].
The boundary of the domain TC(k) can contain those characters χ0 ∈ TC for which

Hχ0 has a finite index in H . These characters correspond to the roots of unity in C∗,
so that the representations πχ0 are finite-dimensional. Let V = H ⊗ R and Q be the
extension of the pairing 〈n, k(n)〉, n ∈ H to the space V . Also, let χC(c) = λc and let us
choose a boundary point χ0. The classical limit formulas for theta-functions imply the
following behavior of the trace near the χ0 (we assume that χH = 1 and χ′H = 1):

Tr π̂χ̂(g) ∼ Tr π̂χ̂0(g) · [H : Hχ0]
−1(DetVQ)−1/2(

√
π

2
)rkH log |λ|−

1
2
rkH when χC → χ0.

(22)
The trace of the representation π̂χ̂0 can be computed in terms of a Gauss sum.

Thus, we see that, in our situation, the change in the class of representations will
cause the moduli spaces of induced representations to be complex-analytic manifolds.
Characters do exist and are the modular forms. It seems that this more general holo-
morphic dual space is more adequate for this class of groups than the standard unitary
dual which goes back to the Pontrjagin duality for abelian groups.

5 Problems and Perspectives

We collect here several problems related to the issues we have discussed in the talk.
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1. Harmonic analysis for local fields and adelic groups of arbitrary dimen-
sion n.

The basic category for this study has to be the category Cn [49] and its version that
includes fields of the archimedean type [51]. When one tries to extend the measure
theory and harmonic analysis to n-dimensional local fields and adelic groups for n > 2
the following problem arises. The selection rules become too severe to go further in a
straightforward way. This obstacle appears already for n-dimensional local fields with
n = 3. We can define the spaces analogous to D(V ) or D′(V ) only under some strong
restrictions on the groups V (= objects in Cn). Note that spaces such as E(V ) can be
easily defined for any n and arbitrary group V .

2. The Tate-Iwasawa method for two-dimensional schemes.

J. Tate [68] and independently K. Iwasawa [29] reformulated the classical problem of
analytic continuation for zeta- and L- functions for the fields of algebraic numbers and
the fields of algebraic functions in one variable over a finite field. They introduced a new
type of L-functions:

L(s, χ, f) =

∫

A∗

f(g)χ(g)|g|sd∗g

where d∗g is a Haar measure on A∗, the function f belongs to the Bruhat-Schwartz
space of functions on AX and χ is an abelian character of the group A∗ associated to a
character

χ : Gal(Kab/K) → C∗

of the Galois group by the reciprocity map A∗ → Gal(Kab/K) . They also proved the
analytic continuation of L(s, χ, f) to the entire s-plane and the functional equation

L(s, χ, f) = L(1− s, χ−1,F(f))

by means of the Fourier transform F and the Poisson formula for functions on AX (8),
(9).

For a special choice of f and χ = 1 we obtain the zeta-function

ζX(s) =
∏

x∈X

(1− (#k(x))−s)−1,

of any scheme X of dimension one (to which we have to add, if necessary, the archimedean
factors). Here x runs through the closed points of X . The product converges for Re(s) >
dimX .

There exists a general Hasse-Weil conjecture [23, 73] which asserts that these zeta-
(and more general L-) functions can be meromorphically extended to the entire s-plane
and satisfy the functional equation (for regular proper schemes X of dimension n) of the
type ζX(n− s) = {elementary factors} ζX(s).

This conjecture has been completely proved for algebraic varieties defined over a
finite field Fq. For this goal the powerful machinery of the étale cohomology has been
developed by A. Grothendieck. For schemes over Spec(Z), the general results are known
only in dimension one, thanks to the Hecke’s theorem. Later this was included into
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the Tate-Iwasawa approach. At the same time, this approach works for algebraic curves
defined over Fq. For the higher dimensions over Spec(Z), there are only scattered results;
however these include the proof of the Hasse-Weil conjecture for elliptic curves over Q

[75, 8].
For a long time the author has advocated the following
Problem. Extend Tate–Iwasawa’s analytic method to higher dimensions (see in

particular [58]).
The higher adeles were introduced precisely for this purpose. We hope that harmonic

analysis and representation theory of adelic groups on two-dimensional schemes may help
to solve this problem.

3. Behavior of zeta- and L-functions in the critical strip.

The critical strip for the ordinary Riemann’s zeta-function is 0 ≤ ℜ(s) ≤ 1 and this
zeta-function (with an archimedean factor) has there exactly two poles, both of first
order. For the two-dimensional case, the critical strip is wider, namely 0 ≤ ℜ(s) ≤ 2.
Take as X a model over Spec(Z) of an elliptic curve E defined over Q. The Birch and
Swinnerton-Dyer conjecture [5, 69] states that

ζX(s) ∼
s→1

#E(Q)2tor
c Ω DetE(Q)〈−,−〉 #X

(s− 1)−r−2, (23)

where E(Q) is the finitely generated Mordell-Weil group of rational points on E, r is its
rank, 〈−,−〉 is the height pairing, Ω is the real period of the curve, X is the Shafarevich-
Tate group and c is a product of certain local invariants.

Many years ago several people, including the author, have independently observed
that this limit behavior is very similar to the limit behavior of a theta-function attached
to a lattice. Namely, let V/R be a finite dimensional euclidean vector space of dimension
n. Denote by 〈−,−〉 the scalar product on V . Let Γ be a finitely generated abelian
group such that Γ ⊗ R = V and let Γ′ = Γ/Γtor be the corresponding lattice (= a
discrete co-compact subgroup) in V . Then the theta-function θΓ(t) is defined as

θΓ(t) :=
∑

γ∈Γ

e−πt〈γ,γ〉 = #Γtor · θΓ′(t)

and satisfies the functional equation

θΓ′(t) = t−
n
2 Vol(Γ′)−1θΓ′⊥(t−1) ,

where Γ′⊥ ⊂ V is the dual lattice and the volume of the fundamental domain for Γ′ is
Vol(Γ′) = det(〈ei, ej〉)1/2 with {ei} a basis of the free Z-module Γ′.

In particular, we get
θΓ(t) ∼

t→0
#ΓtorVol(Γ)

−1t−
n
2 .

If we apply this asymptotic formula to the group Γ⊕ Γ then we get

θΓ⊕Γ(t) ∼
t→0

#Γ2
tor

DetΓ〈−,−〉t
−n, (24)
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which looks rather similar to the conjecture (23) if we take as Γ the group E(Q)⊕Z⊕Z.
D. Zagier has devoted to this relation a note [77] with many interesting remarks and
observations. In particular, he discussed the question of interpreting such factors as Ω
and #X which are not visible in the theta-formula (24).

In order to clarify the situation, let us look at the corresponding behavior of the
zeta-function of an algebraic surface X defined over Fq. The analogy between geometric
surfaces over Fq and arithmetic surfaces such as this model X of E suggests that this
may be a useful move.

The value of the zeta function at s = 1 is given by the conjecture of Artin and
Tate [69, 45]. We assume that X is a smooth proper irreducible surface. Denote by
ρ = rk NS(X) the rank of the Neron-Severi-group of X and let {Di} with Di ∈ NS(X)
i = 1, . . . , ρ be a basis of ∈ NS(X)⊗Q. Denote by Di ·Dj their intersection index. Let
Br(X) = H2(Xet,OX) be the Brauer group of X . Then the group Br(X) is conjectured
to be finite and the following relation holds:

ζX(s) ∼
s→1

(−1)ρ−1 qχ(OX) #Pic(X)2tor
#H0(X,O∗X)2#Br(X) det((Di ·Dj))

(
1 − q1−s

)−ρ
.

Within the framework of the analogy between geometry and arithmetic [61], the group
NS(X) corresponds to the group E(Q) ⊕ Z ⊕ Z, the intersection index corresponds to
the height pairing, the period Ω corresponds to qχ(OX) and the Brauer group to the
Shafarevich-Tate group X.

Since (1 − q1−s)
−ρ ∼

s→1
(s−1)−ρ(log q)−ρ, we again guess that certain theta-functions

related to the lattice NS(X) may have this kind of the limit behavior. An immediate
objection to this suggestion is that the intersection pairing is not positive-definite. This
can be resolved if we consider the Siegel theta-functions attached to indefinite quadratic
forms.

The case of surfaces makes it clear that this question is highly non-trivial. Zeta-
functions of algebraic varieties over Fq are very simple analytic functions. Indeed, ac-
cording to Grothendieck’s theory, they are equal to F (q−s) where F (t) is a rational
function of a variable t. The theta-functions involved are certainly transcendental func-
tions, which cannot be simplified in this way by substitution. Thus the problem we
arrive at is to understand how theta-functions can appear in this setting in a natural
way, and how to relate them to zeta-functions. We conjecture that the theta-functions
which occur into the traces of representations of the adelic groups constructed above
could be such theta-functions. Their behavior in the limit (22) has the structure we have
just described.

It is worth mention another problem, the so called S-duality conjecture, which is
quite close to what have been discussed here. The problem came from the quantum
field theory [72] but has purely algebraic formulation for an algebraic surface X over
a finite field Fq (see a discussion in [32]). Let Mr,n be a moduli space of semi-stable
vector bundles E on X with given rank r, trivial determinant and the second Chern
class c2(E) = n. Then the formal series

∑

n

#Mr,n(Fq)q
−ns
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is expected to have under mild conditions on X a modular behavior with respect to a
congruence subgroup of the group SL(2,Z). It is remarkable that the transcendental
functions appear once more in relation to a surface defined over a finite field.

4. Representations of discrete nilpotent groups.

i) The representations πχ and π̂χ̂ of the discrete Heisenberg groups are particular
examples of the irreducible representations of these groups. Thus, the problem of classi-
fication of all irreducible representations arises. Of course, one needs to impose certain
conditions in order to get a reasonable answer. In the theory of unitary representations
for discrete nilpotent finitely generated groups G on a Hilbert space such a condition
was found in [9]. One says that a representation π of G on a space V has the finite
multiplicity property if there exists a subgroup H ⊂ G which preserves a line l in V and
such that the character of H defined by the action of H on l occurs in π|H as a discrete
direct summand with finite multiplicity. Then the class of irreducible representations
with this property coincides with the class of irreducible monomial (= induced by an
one-dimensional character) representations of G.

It is highly desirable to define in our algebraic situation a class of “basic” induced
representations which will play the role that the Verma modules or representations with
highest weight do for the representations of reductive Lie groups (or algebraic groups).
This is closely related to a problem of classification of (say, left) maximal ideals in the
group ring of G.

ii) The moduli spaces MG(k) defined above are orbit spaces for group actions. This
construction looks very similar to the Kirillov’s orbit method for connected real (or
complex) nilpotent Lie groups G (or nilpotent algebraic groups over Qp) [39] where the
unitary dual is the space g

∗/G of co-adjoint orbits in the dual g∗ of the Lie algebra g

of G. Attempts to extend Kirillov’s method to finitely generated nilpotent groups were
made in [24, 36] (see also [6]). It seems that there is a general functorial definition
of spaces such as MG(k) for arbitrary nilpotent discrete groups which will replace the
spaces g∗/G in this situation, just as the torus TĜ may be an analogue of the space g

∗.
The Kirillov’s character formula may also exist in this situation.

iii) When one tries to apply the representation theory developed in section 5 to the
nilpotent groups which arise from the algebraic surfaces X (section 4), one immediately
observes that:

1) the groups like Γ̃X are not finitely generated;
2) the groups like (Pic(X), Pic(X), CH (X)) are equipped with the indefinite form

〈−,−〉.
Certainly, the representation theory cannot be automatically extended to the case

of infinitely generated groups. In our case, the “big” group Γ̃X is the adelic product of
simplest Heisenberg groups Γ̃P,C and consequently is an inductive limit of finite products
of these local groups. We can easily extend all the representation-theoretic constructions
to the case of Γ̃X if we apply the technique from the theory of adelic products of reductive
algebraic groups over 1-dimensional local fields. The role of the compact subgroups is
now played by co-finite products of the local Heisenberg groups.

The problem 2) can also be solved. A solution is based on using the Siegel theta-
functions for indefinite quadratic forms that are well suited for this situation.
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iv) An important problem is to develop an analysis on discrete Heisenberg groups G,
in particular, to define appropriate function spaces on G , the analogue of the map L
(see (8) in section 3) and to obtain a Plancherel-type theorem which relates the function
spaces on G and spaces of holomorphic (or meromorphic) functions on MG(k).

v) There exists a general question of the decomposition into the irreducible com-
ponents of representations of discrete nilpotent groups. It is known that the regular
representation (on the L2-space on G) of a discrete group G may have very different
decompositions into irreducible components (see a first example of this kind in [43]).
On the other hand, in our situation there is a rather concrete problem: how does one
decompose the natural fundamental representation of the group Γ̃X (and locally of the
groups Γ̃P,C) on the spaces DA12(AX)

O′∗

or D′A12
(AX)

O′∗

(respectively in DOP,C
(KP,C)

O′∗

P,C

or D′OP,C
(KP,C)

O′∗

P,C) on a surface X ?

vi) Our theory deals with the discrete “part” of the adelic group A∗X = GL(1,AX).
D. Gaitsgory and D. Kazhdan have extended the traditional theory of representations for
reductive p-adic groups (parabolic induction, Jacquet functor, cuspidal representations)
to the case of groups GL(n,K) where K is a two-dimensional local field (and of more
general reductive groups)[18, 19, 20]. An important and certainly very hard problem is
to merge these two theories, at least for the group GL(2,AX).

vii) For the schemes of dimension two, we constructed discrete Heisenberg groups,
which are nilpotent groups of class 2. It is possible to associate certain discrete adelic
groups to schemes of arbitrary dimension n and that are the nilpotent groups of class n.

In this text, we mainly gave a review of certain recent advances in the higher adelic
theory. During the last thirty years, this theory was developed in many different direc-
tions. We finish with a short list of these developements8:

• residues and symbols [53, 54, 17, 76, 11, 12, 13, 37, 38, 47, 67, 52]

• class field theory for higher dimensions: the author, K. Kato and his school, S. V.
Vostokov and his school, see surveys [17, 16, 28, 66]

• adelic resolutions for sheaves, intersection theory, Chern classes, Lefschetz formula
for coherent sheaves [55, 76, 26, 27, 21, 22]

• algebraic groups over local fields, buildings, Hecke algebras [56, 60, 34, 18, 19,
20, 7]

• restricted adelic complexes and the Krichever correspondence [59, 46, 48, 40, 41]

• relations with non-commutative algebra [57, 78].
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