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Examples of groups which are not weakly amenable
Narutaka OZAWA

ABSTRACT. We prove that weak amenability of a locally compact group imposes a
strong condition on its amenable closed normal subgroups. This extends non weak
amenability results of Haagerup (1988) and Ozawa—Popa (2010). A von Neumann
algebra analogue is also obtained.

1. INTRODUCTION

Let G be a group, which is always assumed to be a locally compact topological
group. The group G is said to be weakly amenable if the Fourier algebra AG of G has
an approximate identity (¢,) which is uniformly bounded as Herz—Schur multipliers.
(If one requires (p,,) to be bounded as elements in AG, it becomes one of the equivalent
definitions of amenability.) See Section 2 for the precise definition. Weak amenability
is strictly weaker than amenability and passes to closed subgroups. It is proved by De
Canniere-Haagerup, Cowling and Cowling-Haagerup ([dCH, Co, CH]) that real simple
Lie groups of real rank one are weakly amenable (see also [Oz]), and by Haagerup ([Ha])
that real simple Lie groups of real rank at least two are not weakly amenable. For the
latter fact, Haagerup proves that SL(2,R) x R? is not weakly amenable. (See also
[Do].) More recently, it is proved by Ozawa—Popa ([OP]) that the wreath product AT’
of a non-trivial group A by a non-amenable discrete group I' is not “weakly amenable
with constant 1.” In this paper, we generalize these non weak amenability results as
follows.

Theorem A. Let G be an weakly amenable group and N be an amenable closed normal
subgroup of G. Then, there is a G x N-invariant state on L>°(N), where the semidirect

product G x N acts on N by (g,a) - x = gaxg™? .

In particular, the wreath product by a non-amenable group is never weakly amenable.
The theorem also gives a new proof of Haagerup’s result that SL(2, Z) x Z? is not weakly
amenable, without appealing to the lattice embedding into SL(2,R) x R?. We note
for the sake of completeness that there is an even weaker variant of weak amenability,
called the approzimation property ([HK]), and SL(2,R) x R? has the approximation
property, while SL(n > 3,R) does not ([LdS]).
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As Theorem 3.5 in [OP], there is an analogous result for von Neumann algebras. We
refer to Section 3 in [OP] and Section 4 of this paper for the terminology used in the
following theorem.

Theorem B. Let M be a finite von Neumann algebra with the weak® completely
bounded approximation property. Then, every amenable von Neumann subalgebra P
15 weakly compact in M.

It follows that a type II; factor having the weak®™ completely bounded approximation
property and property (T) (e.g., the group von Neumann algebra of a torsion-free lattice
in Sp(1,n)) is not isomorphic to a group-measure-space von Neumann algebra.

2. PRELIMINARY ON HERZ—-SCHUR MULTIPLIERS

Let G be a group. We denote by A the left regular representation of G' on L?*(G),
by C5G the reduced group C*-algebra and by LG the group von Neumann algebra of
G. The Fourier algebra AG of G consists of all functions ¢ on G such that there are
vectors £,n € L*(G) satisfying ¢o(x) = (A(z)&,n) for every # € G. (In other words,
AG = L*(G) x L*(G).) Tt is a Banach algebra with the norm ||| = inf{||¢||||n]},
where the infimum is taken over all £, € L*(G) as above. The Fourier algebra AG is
naturally identified with the predual of LG under the duality pairing (¢, A(f)) = [, ¢f
for p € AG and \(f) € LG. If H is a closed subgroup of G, then ¢|y € AH for
every ¢ € AG. A continuous function ¢ on G is called a Herz—Schur multiplier if
there are a Hilbert space ‘H and bounded continuous functions &,7: G — H such that

o(y™ta) = (£(x),n(y)) for every z,y € G. The Herz—Schur norm of ¢ is defined by

lellen = mf{[[€][ocl[7lloc

where the infimum is taken over all £,n7 € C(G,H) as above. The Banach space of
Herz—Schur multipliers is denoted by Bs(G). Clearly, one has a contractive embedding
of AG into By(G). The Herz—Schur norm ||¢l[ep coincides with the cb-norm of the
corresponding multipliers on LG or on C}G:

@l = lIme: LG 3 A(f) = A f) € LGlen = [lmy,

56 leb-

Indeed, ||¢|len > [|mylleh is easy to see: Given a factorization p(z~1y) = (£(z),n(y))
with &, n € C(G,H), we define V;: L*(G) — L*(G,H) by (Vef)(z) = f(x){(2™1), and
likewise for V;. Then, A(pf) = V' (M(f) @ 1) Ve and [[mylla, < [[€]lol[M]loo: We will
give a proof of the converse inequality in Lemma 1, but sketch it here in the case
of amenable groups. Let N be an amenable group and ¢ € By(N). Since the unit
character 7y is continuous on CYN, the linear functional w, = 7 o m,, is bounded on
CiN and satisfies ||wy| < [[¢||ch. Let (m,#H) be the GNS representation for |w,| and
view 7 as a continuous unitary /N-representation. Then, there are vectors £, € H such
that [[£[|[|n]] = llw, |l and () = (w ()¢, n) for every z € N. (Hence, [Jwy| = [[¢lleb.)
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Definition. Let G be a group. By an approzimate identity on G, we mean a net (¢,)
in AG which converges to 1 uniformly on compacta. It is completely bounded if

1(en)llet := sup [lonlp < +o0.

A group G is said to be weakly amenable if there is a completely bounded approximate
identity on GG. The Cowling—Haagerup constant A.,(G) is defined to be

Awp(G) = inf{]|(©n)leb : (pn) a c.b.ai. on G}.
Note that the above infimum is attained. See [CH, BO] for more information.

It is easy to see that if H < G is a closed subgroup, then Ay, (H) < Agp(G). On
this occasion, we record that the same inequality holds also for a “random” or “ME”
subgroup in the sense of [Mo, Sa] (cf. [CZ]). For this, we only consider countable discrete
groups A and I'. Recall that A is an ME subgroup of I' if there is a standard measure
space 2 on which A x I" acts by measure-preserving transformations in such a way that
each of A- and I'-actions admits a fundamental domain and the measure of Qp := Q/T"
is finite. The action A ~ () gives rise to a measure-preserving action A ~ Qr and a
measurable cocycle a: A X Qr — I' such that the action A ~ Q is isomorphic (up to
null sets) to the twisted action A ~ Qr x I', given by a(t, g) = (at, a(a,t)g) for a € A,
t € OQr and g € I'. The map « satisfies the cocycle identity: a(ab,t) = a(a,bt)a(b,t)
for every a,b € A and a.e. t € Qp. For ¢ € By(I'), we denote the “induced” function
on A by ¢g:

SOa(a):/Q o(ala,t))dt.

Here, we normalized the measure so that || = 1. Since
et 0) = [ plabbat) aa )it = [ ela@vb ) (e a )
Qr‘ QF

one has ¢, € By(A) and [|¢aller < [|¢]leb- Suppose now that ¢ € AI'. Then, ¢,
is a coefficient of the unitary A-representation o on L?*(f2) induced by the measure-
preserving action A ~ €, i.e., there are £, € L*(Q) such that ¢,(a) = (o(a)é,n).
Since 2 admits a A-fundamental domain, ¢ is a multiple of the regular representation
and ¢, € AA. By inducing an approximate identity on I', one sees that if I' is weakly
amenable, then so is A and Aq,(A) < A (D).

3. PROOF OF THEOREM A

Lemma 1. Let N be an amenable closed normal subgroup of G and ¢ € Bs(G).
Then, there are a Hilbert space H, functions §,n € C(G,H) and a continuous unitary

representation w of N on H such that

1/2
o [€lloo = lInlloo = ll¢lley s

o o(y~'x) = (&(x),n(y)) for every x,y € G;
o w(a)f(z) = &(ax) and w(a)n(y) = n(ay) for every a € N and x,y € G.
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Proof. We follow Jolissaint’s simple proof ([Jo]) of the inequality ||¢|cn < ||mellcb-
Since N is amenable, the quotient map ¢: G — G/N extends to a s-homomorphism
q: C5G — C5(G/N) between the reduced group C*-algebras. Since gom,, is completely
bounded on C5G, a Stinespring type factorization theorem (Theorem B.7 in [BO])
yields a #-representation m: C5G — B(H) and operators V, W € B(L*(G/N),H) such
that |V = |[W| < ||qom¢||(1;{,2 and (g o my,)(X) = W*n(X)V for X € C5G. We
view 7 as a continuous unitary representation of G. Then, for a fixed unit vector

¢ € L*(G/N), the maps £(x) = m(z)V Agn(q(x71))¢ and n(y) = 7 (y)W Aa/n(q(y~1))¢

are continuous, [|€||oe, [|7]/cc < ||msp||(1:é2 and ¢(y~'z) = (£(z),n(y)) for every z,y € G.
Moreover, m(a)¢(x) = £(ax) for a € N, because Aq/n(a) = 1. O

We denote by ¢ the right translation of a function p by g € G, i.e., p9(x) = p(xg™).
Lemma 2. Let N be an amenable group, ¢ € Ba(N) and a € N. Then,

1 1
15 (0 + )3+ 15 (0 = %) B, < ol

Proof. There are a continuous unitary representation 7 of NV on a Hilbert space H and

vectors &,n € H such that ||€]| = |[n]| = [l¢ll/? and ¢(z) = (x(z)€,n) for every z € N.

Since (¢ & ¢*)(x) = (w(x)(§ £ w(a)€),n), one has

lo + @113 + o = ¢ll2 < 1€+ (@ DEP Nl + 1€ = w(@ eI [Inl* = 4l¢ll2.-
O
For ¢ € By(G), we define p*(z) := ¢(x~1), and say ¢ is self-adjoint if ¢* = ¢. For
any ¢ € By(G), the function (¢ + ¢*)/2 is self-adjoint and [|(¢ + ©*) /2|l < [[¢]]cb-
Thus every approximate identity can be made self-adjoint without increasing norm.
We fix a closed subgroup N of G. A completely bounded approximate identity (y,,)
on G is said to be N-optimal if all @, are self-adjoint, ||(¢,)||er = Awp(G) and

1(enln)lleb = mE{[|(¥nln)lleb 2 (¢n) @ c.b.ai. such that ||(¢n)]len = Aen(G)}-
Note that an N-optimal approximate identity exists (if G is weakly amenable).

Proposition 3. Let G be an weakly amenable group and N be an amenable closed
normal subgroup of G. Let (p,) be an N-optimal approximate identity on G. Then,
for every g€ G anda € N,

lim [|(i2 = 0 © Adg)|wller = 0 and lim [[(pn — 5)l [l = 0.

Proof. We apply Lemma 1 for each ,, and find (7, H,, &,, ) satisfying the conditions
stated there. In particular, ||€]|ec = [|7]loc < Aeb(G)Y? and o, (y~'2) = (&a(2), 70 (y))
for every z,y € G. Let g € G be given and consider 1, = (¢, + ¢9)/2. Since (1,) is
a completely bounded approximate identity, one must have liminf, ||¢,||c > Aep(G).

Meanwhile, since y,, is self-adjoint,

Un(y™2) = 3 (60) + 602 ™), 10(w)) + (1 (0) + 702 ™), 60(6))
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and hence
1 & +& nn+n 1
[l < H— 2 et L < Aa(G)
\/5( 2 2 Lo (G HEH) \/5( ) Lo (G HAH)
It follows that
lim ‘_(f +§n7 n —|-77n) :Acb(G)1/27
n V2 2 2 Lo (G HEH)

which means that there is a net z,, € GG such that

1 —1
lim Hgn(zn) +§n(zng )H _ Acb(G)1/2 and hgn Hnn(zn) +;77L(an )H _ Acb(G)1/2-

By the parallelogram identity, this implies that
1i£n 1€n(20) — fn(zng_l)H = 0 and liTan 170 (20) — ﬁn(zng_l)H = 0.

The unitary N-representation 7, = 7, o Ad,, satisfies 7/, (a)&,(x) = &u(2pa2, 1),

on(a) = <7T7/1(a)5n(zn)ann(zn>> and (¢, 0 Adg)(“) = <7T1/1(a)£n(zng_l)vnn(zng_l»

for a € N. It follows that [|(¢, — ¢n 0 Ady)|n|les — 0. That |[(¢n — ¢%)|N|les = O
follows from N-optimality of (¢,) and Lemma 2. O

Proof of Theorem A. Let (p,) be an N-optimal approximate identity on G and con-
sider linear functionals w, = 79 0 m,, on C{N, where 7 is the unit character on N
(see Section 2). Since ¢, € AG, the linear functionals w, extend to ultraweakly-
continuous linear functionals on the group von Neumann algebra £LN. Indeed, they
are nothing but ¢, |y € AN = (LN),. One has ||w,| < Aw(G), wa(len) = @n(ln)
and, by Proposition 3, ||w, —w, 0 Ad, || = 0 and [jw, — w@|| — 0 for every g € G
and @ € N. We consider ¢, := |w,|'? € L*(N) and ¢, := wy|w,|"? € L*(N) so
that w,(z) = (X(,, () for X € LN. Here the absolute value and the square root are
taken in the sense of the standard representation LN C B(L?*(N)). (In case where

o~

N is abelian, the Fourier transform L*(N) = L*(N) implements LN = L*(N) and

(LN), = L*(N), and the absolute value and square root are computed as ordinary
functions on the Pontrjagin dual N.) We note that ¢,(1) < [|Gu]2 < Aw(G). By
continuity of the absolute value (Proposition I11.4.10 in [Ta]) and the Powers—Stgrmer
inequality, one has ||¢, — Ad, (,|[2 — 0 for every g € G. Moreover, since

Co + Aa™ ) W 4 W8
IGu Gl — 2 E2 e i+

one has [|¢, —A(a™')(, |2 — 0 for every a € N. Thus, any limit point of (¢?) in L>®(N)*
is a non-zero positive G X N-invariant linear functional on L*(N). O

l2llChll2 < flwnl = |l I =0,
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4. PROOF OF THEOREM B

We first fix notations. Throughout this section, M is a finite von Neumann algebra
with a distinguished faithful normal tracial state 7, and P is an amenable von Neumann
subalgebra of M. The normalizer N'(P) of P in M is

N(P) = {u € U(M) : Ad,(P) = P},

where U(M) is the group of the unitary elements of M and Ad,(z) = uzu*. The
GNS Hilbert space with respect to the trace 7 is denoted by L?*(M) and the vector in
L?(M) associated with x € M is denoted by Z, i.e., (Z,9) = 7(y*z) for x,y € M. The
complex conjugate M = {a:a € M} of M acts on L*(M) from the right. Thus there
is a *-representation ¢ of the algebraic tensor product M ® M on L*(M) defined by

s(a®b)d = azb* for a, b,z € M. We also use the bimodule notation ab* for s(a®b)i.
Since P is amenable, the s-homomorphism ¢|;p is continuous with respect to the
minimal tensor norm.

Definition. A von Neumann algebra M is said to have the weak* completely bounded
approximation property, or W*CBAP in short, if there is a net of ultraweakly-continuous
finite-rank maps (¢,) on M such that ¢, — id,; in the point-ultraweak topology and
sup ||@nller < +oo.

Recall that a finite von Neumann algebra P is amenable (a.k.a. hyperfinite, injective,
AFD, etc.) if the trace 7 on P extends to a P-central state w on B(L?*(P)). Here, a
state w is said to be P-central if wo Ad, = w for every u € U(P), or equivalently
w(az) = w(za) for every a € P and x € B(L?*(P)).

Definition. Let P be a finite von Neumann algebra and G be a group acting on
P by trace-preserving x-automorphisms. We denote by ¢ the corresponding unitary
representation of G on L?(P). The action G ~ P is said to be weakly compact if there
is a state w on B(L?(P)) such that w|p = 7 and wo Ad,, = w for every u € o(G) UU(P).
(This forces P to be amenable.) A von Neumann subalgebra P of a finite von Neumann
algebra M is said to be weakly compact in M if the conjugate action by the normalizer
N (P) is weakly compact. See [OP] for more information.

If M admits a crossed product decomposition M = P x A and the “core” P is non-
atomic and weakly compact in M, then LA is co-amenable in M (Proposition 3.2 in
|[OP]), which implies M does not have property (T).

Lemma 4. Every P-central state w on B(L?*(P)) decomposes uniquely as a sum w =
wn + ws of P-central positive linear functionals such that wy|p is normal and ws|p is
singular. A trace-preserving action G ~ P is weakly compact if there is a positive
linear functional w on B(L?(P)) such that

e w(p) > 0 for every non-zero central projection p in P,
e woAd, =w for every u € o(G) UU(P).
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Proof. We denote by Z the center of P. Recall that every tracial state 7/ on P satisfies
7' =7'|z0Ey, where E;: P — Z is the center-valued trace. In particular, 7’ is normal
on P if and only if it is normal on Z. Let w be a P-central state and consider the
normal/singular decomposition of the state w|z (see Definition I11.2.15 in [Ta]). There
is an increasing sequence (p,,) of projections in Z such that p, 1 and (w|z)s(p,) =0
for all n (see Theorem I11.3.8 in [Ta]). We fix an ultralimit Lim on N and let w,(z) =
Limw(p,z) and ws = w — wy,. Since w is P-central, these are P-central positive linear
functionals on B(L?(P)), and w|z = wy|z + ws|z is the normal/singular decomposition
of w|z. Suppose that w = w! 4w/ is another such decomposition. Then, since ws+wy, is
singular on Z, there is an increasing sequence (g,) of projections in Z such that ¢, /1
and (ws + wl)(g,) = 0 for all n. It follows that w)(z) = limw(g,x) = wy(x) for every
x € B(L*(P)). This proves the first half of this lemma. For the second half, we first
observe that we may assume w is normal on P by uniqueness of the normal/singular
decomposition. Thus, there is h € L'(Z), such that w(z) = 7(hz) for 2 € Z. By
assumption, h has full support and is G-invariant. Thus &(z) := Limw((h +n~1)"'2)
defines a G-invariant P-central state on B(L?(P)) such that 7|, = 7|. O

Lemma 5. Let  be a completely bounded map on M. Then, there are a x-representation
of the minimal tensor product M Qi P on a Hilbert space H and operators V,W &
B(L2(M), M) such that |V = [W| < |[¢] &’ and

(Y p(a)zb”) = (p(a)2b*,§) = (7(a @ D)V, W)
for every a,x,y € M and b € P.

Proof. Since the %-representation ¢ : M@, P — B(L?(M)) is continuous, a Stinespring
type factorization theorem (Theorem B.7 in [BO]), applied to the completely bounded
map < o (¢ ® idp), yields a *-representation 7: M @y, P — B(H) and operators
V,W € B(L*(M),H) such that [|[V||||W] < ||¢lle and

p(a)ibt" =¢((p®idp)(a ®b))i = Wn(a @ b)VE
for a,z € M and b € P. O

Since W*CBAP passes to a subalgebra (which is the range of a conditional expecta-
tion), we assume from now on that P is regular in M, i.e., N'(P) generates M as a von
Neumann algebra. We say a linear map ¢ on M is P-cb if there are a x-representation
7 of M @uin P on a Hilbert space H and functions V, W € (o (N (P),H) such that

(%) (p(a)2b*,g) = (m(a @ D)V (x), W (y))
for every a € M, x,y € N(P) and b € P. The P-cb norm of ¢ is defined as
lellp = Inf{||V||oo||W ||oo & (m,H,V, W) satisfies (x)}.

It is indeed a norm and the infimum is attained (for the latter fact, use ultraproduct).
By the above lemma, ||¢|p < ||¢llen- By an approzimate identity, we mean a net (p,,)
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of ultraweakly-continuous finite-rank maps such that ¢,, — id;; in the point-ultraweak
topology and sup ||,||p < +oo. It exists if M has the W*CBAP. We define

Ap(M) = inf{sup ||n||p : (¢n) an approximate identity}.

For a map ¢ on M, we define ¢*(a) = ¢(a*)* and say ¢ is self-adjoint if p = p*. We
note that if (m, H,V, W) satisfies (%) for ¢, then (7, H, W, V) satisfies (x) for ¢*. In
particular, (¢+¢*)/2 is self-adjoint and ||(p+¢*)/2||p < ||¢||p. Thus, any approximate
identity can be made self-adjoint without increasing norm. For a P-cb map ¢, we define
a bounded linear functional p, on M ®mpin P by

pe(a®@) == T1(p(a)b") = (p(a)1b",1) = (r(a @ B)V (1), W(1)).

Note that [|p,|| < [|o]|p. If ¢ is ultraweakly-continuous and finite-rank, then p, extend
to an ultraweakly-continuous linear functional on the von Neumann algebra M ® P.

Proposition 6. Let M be a finite von Neumann algebra having the W* CBAP and (¢,,)
be a self-adjoint approximate identity such that sup,, ||¢nllp = Ap(M). Then, the net
In i= iy, | pep satisfies the following properties:

e [, are self-adjoint and ultraweakly-continuous for all n;

o sup ||ua|| < Ap(M) and p,(a ® 1) — 7(a) for every a € P;

o ||ptn — 1®%|| = 0 for every v € U(P), where ut®°(a @ b) = ju,((a @ b)(v @ v)*);

® ||tn = pin © Aduga || = 0 for every u € N(P).
Proof. The first two conditions are easy to see. Let u € N'(P) be given, and define ¢
by ¢¥(a) = ¢n(au*)u for a € M. We note that puu|pgp = pe®® if u € U(P). Thus, it
suffices to show

1i£n |14, = pgy |l = 0 and liyrln 1, = tp, © Aduga || = 0.

Take (7, Hp, Vi, W,) satisfying () and lim ||V, |/ = lim [W,|e = Ap(M)Y2 Tt
follows that

(n(a)2b", ) = (pnlau")uzd”, §) = (mua @ b)ma(u” @ 1)Vy(uz), Wa(y))
for every a € M, b € P and x,y € N(P). Hence with V¥%(z) = m,(u* ® 1)V, (uz),
the quadruplet (m,, H,, V", W,,) satisfies (x) for . Note that [|[V*||s = ||Valleo. We
define W similarly. Since ¢, is self-adjoint, (7, H,, Wa, Vi) (vesp. (7, Hp, W, V2))
satisfies (x) for ¢, (resp. o), too. Thus, for ¢, = (¢, + ¢l)/2, one has
LVt Vi Wot Wy 1
v2h o2 T2 V2
Meanwhile, since (¢,) is an approximate identity, one must have liminf ||[¢),|p >
Ap(M). Tt follows that

’|¢n’|P < (Wna Vn)

loo(N(P),HBH)

loo(N(P),HBH)

L(Vn%—Vn“ W, + W
202 2

_ AP(M) 1/2
Loo (N(P),H®H)

lim
n
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and hence there is a net (z,) in N'(P) such that
L((Vn + Vi) (z) Wa + W#)(Zn))
NG 2 ’ 2
By the parallelogram identity, this implies that

lifrln |Vi(zn) — Vi (z,)|| = 0 and liTan |Wa(zn) — Wi(zn)| = 0.

= Ap(M)YV2,
HOH

lim
n

Let m,, = m, o (idy ® Ad;-1). Since
pen(a ® b) = (pn(a)zn Ad 1 ()", 2,) = (m,(a @ D)Va(2n), Wa(20)),
pop(a®b) = (pnau )iz, Ad 1 (b)", 2) = (m,(a @ D)V, (20), Walz)),

and
(Hp, © Aduga) (@ @ b) = (pn(uau”)uz, Ad -1 (0)", uzn) = (m,(a ® )V, (z0), Wy (20)),
we conclude that /g, — pgu| — 0 and ||y, — e, © Adyga || — 0. O

Proof of Theorem B. Since M has the W*CBAP, there is a net (u,) satisfying the
conclusion of Proposition 6. We view s, as an element in L*(P ® P) (see Section 2
in [OP]) and let ¢, = |un|"? € L*(P @ P) and ¢, = pin|pn|™"? € L*(P & P) so that
pn(X) = (X, ¢) for X € P® P. By continuity of the absolute value (Proposition
[11.4.10 in [Ta]) and the Powers—Stgrmer inequality, one has ||(, — Aduga (all2 — 0 for

every u € N(P). Since

201l & Mlptn + 1l < 6o+ (v @ 0)Gall2lICH 2 < 20ICall2lIGu N2 = 2l nll,

one also has [|¢, — (v ® 0)¢,[| — 0 for every v € U(P). Now, fix an ultralimit Lim
and define w on B(L*(P)) by w(z) = Lim((z ® 1){,, (). Then w is an N/(P)-invariant
P-central positive linear functional satisfying

w(p) = Lim [py|(p ® 1) = Lim |pn(p @ 1)| = 7(p)

for every central projection p in P. By Lemma 4, we are done. 0

REFERENCES

[BO] N. Brown and N. Ozawa; C*-algebras and Finite-Dimensional Approzimations. Graduate Stud-
ies in Mathematics, 88. American Mathematical Society, Providence, RI, 2008.

[dCH] J. de Canniére and U. Haagerup; Multipliers of the Fourier algebras of some simple Lie groups
and their discrete subgroups. Amer. J. Math. 107 (1985), 455-500.

[Co] M. Cowling; Harmonic analysis on some nilpotent Lie groups (with application to the repre-
sentation theory of some semisimple Lie groups). Topics in modern harmonic analysis, Vol. 1,
IT (Turin/Milan, 1982), 81-123, Ist. Naz. Alta Mat. Francesco Severi, Rome, 1983.

[CH] M. Cowling and U. Haagerup; Completely bounded multipliers of the Fourier algebra of a
simple Lie group of real rank one. Invent. Math. 96 (1989), 507-549.

[CZ] M. Cowling and R. J. Zimmer; Actions of lattices in Sp(1,n). Ergodic Theory Dynam. Systems
9 (1989), 221-237.



10
[Do]
[Hal
[HK]
[Jo]
[LdS]

[Mo]

N. OZAWA

B. Dorofaeff; The Fourier algebra of SL(2,R) x R™, n > 2, has no multiplier bounded approx-
imate unit. Math. Ann. 297 (1993), 707-724.

U. Haagerup; Group C*-algebras without the completely bounded approximation property.
Preprint (1988).

U. Haagerup and J. Kraus; Approximation properties for group C*-algebras and group von
Neumann algebras. Trans. Amer. Math. Soc. 344 (1994), 667-699.

P. Jolissaint; A characterization of completely bounded multipliers of Fourier algebras. Collog.
Math. 63 (1992), 311-313.

V. Lafforgue and M. de la Salle; Non commutative LP spaces without the completely bounded
approximation property. Preprint. arXiv:1004.2327

N. Monod; An invitation to bounded cohomology. International Congress of Mathematicians.
Vol. 11, 1183-1211, Eur. Math. Soc., Ziirich, 2006.

N. Ozawa; Weak amenability of hyperbolic groups. Groups Geom. Dyn. 2 (2008), 271-280.
N. Ozawa and S. Popa; On a class of II; factors with at most one Cartan subalgbra. Ann. of
Math. (2) 172 (2010), 713-749.

H. Sako; The class S as an ME invariant. Int. Math. Res. Not. IMRN 2009, 2749-2759.

M. Takesaki; Theory of operator algebras. I. Encyclopaedia of Mathematical Sciences, 124.
Operator Algebras and Non-commutative Geometry, 5. Springer-Verlag, Berlin, 2002.

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF TOKYO, 153-8914
E-mail address: narutaka®ms.u-tokyo.ac.jp



	1. Introduction
	2. Preliminary on Herz–Schur multipliers
	3. Proof of Theorem ??
	4. Proof of Theorem ??
	References

