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1 The Temperley-Lieb Algebra

The Temperley-Lieb algebra is an algebra given by generators and relations
which arose in a problem in statistical mechanics considered by Temper-
ley and Lieb [8]. Since then the algebra has been used in a wide variety
of applications: the Witten-Reshetikhin-Turaev invariants of 3-manifolds,
Jones’ analysis of the index of von Neumann subfactors [5], Jones’ polyno-
mial invariant for knots, the four-colour problem (see, for example, [1]), and
Di Francesco’s work on counting meanders in relation to Hilbert’s sixteenth
problem [2, 3].

In [5] Jones calculated the irreducible representations of TLn (q) for q ≥ 2
and for the semisimple part of TLn (q) when q = 2cos

(

π
n

)

. This analysis was
then used to show that the index of a subfactor was restricted to the union
of a sequence and an interval. This soon led to the polynomial invariant for
knots found by Jones and now known as the Jones polynomial.

We shall work with a diagrammatic interpretation of the Temperley-Lieb
algebra found by Kauffman [6] involving planar (or noncrossing) diagrams.

As these algebras are fundamental to many areas of mathematics and
theoretical physics, detailed understanding of their representations is very
important. In this project we consider a space of half-diagrams and show
that a natural inner product and an action of the Temperley-Lieb algebra
may be given which for suitable values of a parameter realizes all of the
irreducible representations.

The Temperley-Lieb algebra TLn (q) or TLn, for some fixed integer n and
some complex number q, is defined as the algebra generated by 1, e1, . . . , en−1

satisfying the Jones relations: e2i = qei, eiej = ejei for |i− j| > 1, and
eiei±1ei = ei. In this paper, q will always be a positive real number. The
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Figure 1: The five noncrossing pairings on {1, . . . , 6}, shown as arch dia-
grams and as strand diagrams

Temperley-Lieb algebra can also be described by certain graphs and opera-
tions on those graphs, which we describe in this section.

A pairing of the integers {1, . . . , 2n} is a partition of these integers into
sets of two. We can interpret this as a graph on the integers {1 . . . , 2n} with
an edge connecting the two integers in the same set.

A crossing is a set of four integers i, j, k, l ∈ {1, . . . , 2n} such that i <
k < j < l, where i is paired with j and k with l. If a pairing has no crossings,
it is said to be noncrossing.

This definition of crossing can be understood if paired integers (on the
real line of the complex plane) are connected with arcs drawn in the upper
half-plane. It is also sometimes convenient to place the integers 1 through
n from top to bottom along the left side of a rectangle and integers n + 1
through 2n from bottom to top along the right, and draw curves connecting
pairs inside the rectangle. The same definition of a crossing still makes sense
in this configuration.

We will often drop the adjective “noncrossing” and refer to noncrossing
pairings simply as “pairings”. We will also refer to noncrossing pairings as
“diagrams”, or as “arch diagrams” (especially when we think of the points
arranged on the real line) or “strand diagrams” (especially when we think
of the points arranged in a rectangle). There are five noncrossing pairings
on {1, . . . , 6}, shown in Figure 1.

We can also define the Temperley-Lieb algebra TLn as the vector space
of formal linear combinations over the complex numbers of the noncrossing
pairings on the integers {1, . . . , 2n}.

We define multiplication as follows. Any two basis elements ea and eb
correspond to noncrossing strand diagrams a and b. We concatenate the
strand diagrams by identifying the (2n− i+ 1)th point of the diagram a

with the ith point of the diagram b for i with 1 ≤ i ≤ n, as in Figure 2.
In this concatenation, we get some number c of closed loops. We can also
construct a noncrossing diagram c from the concatenation by deleting all
closed loops as well as the points that were identified in the concatenation.
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× = = q

Figure 2: Multiplication, represented diagrammatically

1 e1 e2 e3 e4

Figure 3: The generators of TL5

(Whenever we speak of deleting a point, it has exactly two edges. We
identify these edges by replacing them with an edge connecting the two
points originally connected to this point.) We let the ith point of c be the
ith point of a for 1 ≤ i ≤ n and the ith point of b for n+ 1 ≤ i ≤ 2n. This
corresponds to a pairing, since each remaining point has exactly one edge
(as it had exactly one edge as a point of either a or b and was not identified
with any other point), so it is connected to exactly one other point. We then
define the product eaeb = qcec, and extend this multiplication bilinearly over
the entire vector space. We can see from the diagrams that any new diagram
produced this way is noncrossing, and the multiplication is associative.

If we let a be the diagram in which the ith point is connected to the
(2n− i+ 1)th point for all i, 1 ≤ i ≤ n, then ea, the basis element of TLn

associated with a, is a right and left identity in this algebra, as we can see
from Figure 3.

We define ei, for each i, 1 ≤ i ≤ n − 1, as the basis element of TLn

corresponding to the diagram in which the ith point is connected to the
(i+ 1)th, the (2n− i+ 1)th point is connected to the (2n − i)th, and the
jth point is connected to the (2n − j + 1)th for all j not equal to i or i+1.
We show e1, e2, e3, e4 ∈ TL5 in Figure 3.

Thus the algebra we have defined using these graphs satisfies the Jones
relations, which we can see in Figure 4. In fact, these relations are sufficient
to describe this algebra. For a proof, see, for example, [9].

For any pairing a, we define its transpose at as the pairing we get by
relabelling the ith point 2n − i + 1, for 1 ≤ i ≤ 2n. (Since i 7→ 2n − i + 1
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Figure 4: The Jones relations on diagrams

is a bijection on {1, . . . , 2n}, this at is a pairing, and since it reverses the

ordering, it does not produce any crossings.) As
(

at
)t

= a, we can define
an involution ∗ on TLn by letting e∗a = eat (where ea is the basis element
associated with diagram a) and extending conjugate linearly to the whole
space. If we renumber the points of the concatenation of diagrams a and b

in this way, we can see that this gives us the concatenation of bt and at, so
(eaeb)

∗ = e∗be
∗
a, so the involution reverses the order of multiplication.

We define the closure of a pairing a by identifying the ith point with the
(2n− i+ 1)th point. Since each point in a has one edge, and is identified
with exactly one other point, each point in the closure has two edges, and
hence this diagram consists of some number c of closed loops. We define
the trace of the associated basis element ea as tr (ea) = qc, and extend this
definition linearly to the rest of TLn.

As we now have a linear trace function, a bilinear multiplication and a
conjugate linear involution on TLn, we can define a sesquilinear function
〈e, f〉 = tr (ef∗). We show later that when the first n Chebyshev polynomi-
als of the second kind are positive at q, this function is positive and hence
an inner product, but that it does not generally satisfy the positivity re-
quirement for an inner product for other q. However, we will refer to it as
an inner product.
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Figure 5: The six noncrossing half-diagrams on four points

2 Half-Diagrams

If we consider the left half of a pairing, that is, the points {1, . . . , n} of
a pairing on 2n points, 2p of the points are paired with another point in
{1, . . . , n}, for some p. The other n−2p of the points, which were connected
to a point on the opposite side (that is, one of the points of {n+ 1, . . . , 2n}),
can now be thought of as being connected to a point at infinity, or as having
a through-string. We will also refer to a pair of points in a full diagram,
one of which is in {1, . . . , n} and one of which is in {n+ 1, . . . , 2n}, as a
through-string.

We define a half-diagram as a partition of the points {1, . . . , n} into sets
of one or two each, where the sets of two are pairings and the sets of one are
thought to have a through-string. We extend the definition of a crossing to
include sets of three integers i, j and k such that i < k < j, where i is paired
with j and k has a through-string. Again, this definition can be understood
if the paired integers are connected by arches in the upper half-plane and the
integers with through-strings are connected upward to a point at infinity.

Again, we will generally drop the adjective “noncrossing” and refer to
noncrossing half diagrams as half diagrams or half pairings. There are
six noncrossing half-diagrams on four points: one with no pairs and four
through-strings, three with one pair and two through-strings, and two with
two pairs and no through-strings, all shown in Figure 5.

We can again construct a vector space of formal linear combinations of
the noncrossing half-diagrams on n points. We denote this U (n), and we
denote the subspace generated by the diagrams with p pairs and n − 2p
through-strings by U (n; p). We will use Latin letters to denote elements of
TLn and Greek letters to denote elements of U (n).

We define the action of TLn on U (n) by defining the action of the basis
elements of TLn on the basis elements of U (n). If p is a noncrossing pairing
on 2n points and a is a noncrossing half-pairing on n points, we concatenate
their diagrams by identifying the ith point of a with the (2n− i+ 1)th point

5
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Figure 6: The action of a basis element of TLn on two elements of U (n)

of p. If there is an edge path between two through-strings of a, we define
epξa = 0. Otherwise, this produces some number c of closed loops. We
can define a new noncrossing half diagram b by deleting all closed loops
from the concatenation of p and a, as well as all of the identified points,
and letting the points {1, . . . , n} of b be points {1, . . . , n} of p. As each
of the points aside from those in {1, . . . , n} has been identified with one
other point, each of these points has two edges. So each of the points in
{1, . . . , n} is eventually connected by a sequence of edges to either another
point in {1, . . . , n} or to the point at infinity. So if we delete the identified
points, we are left with a half-diagram b which we can see is noncrossing.
We define epξa = qcξb. We show some examples in Figure 6. We can then
extend this action linearly in each of TLn and U (n). As the concatenation
process respects multiplication in TLn, this gives us a representation of TLn

on U (n).
If epξa 6= 0, then no through-string is connected to another through-

string in the concatenation of p with a. Then if a has n − 2p through-
strings, each eventually connects to one of the points in {1, . . . , n}. So b has
n − 2p through-strings as well. Thus this representation can be reduced to
representations on U (n; p).

Since the noncrossing half diagrams on 2n points with no through-strings
are the noncrossing diagrams on 2n points, we can think of U (2n;n) as TLn.

We can also think of a noncrossing diagram p on 2n points as a pair
of noncrossing half-diagrams on n points. The pairings on the points 1
through n define one half-diagram, where the points connected to points
outside of this set now have a through-string. Since the other points l are
all greater than n, there can be no k with i < k < j where k now has
a through-string, so this new diagram is noncrossing. Likewise, we can

6



〈 , 〉 = = 0

〈 , 〉 = = q

Figure 7: Two examples of inner products

construct a half-diagram from the points {n+ 1, . . . , 2n} of p by relabelling
the (2n− i+ 1)th point i, where again a point connected to a point outside
this set now has a through-string, and likewise this half-diagram will be
noncrossing.

Conversely, given two noncrossing half-diagrams a and b with the same
number n − 2p of through-strings, we can construct a unique noncross-
ing diagram p. We let the ith point of p be the ith point of a, and
the (2n − i+ 1)th point be the ith point of b. a has through-strings at
i1, . . . , i2n−p with i1 < . . . < i2n−p, and b has through-strings at j1, . . . , j2n−p

with j1 < . . . < j2n−p. If we connect it to 2n − jt + 1 for 1 ≤ t ≤ k in p,
we have a pairing on {1, . . . , 2n}. These new arches cannot cross any old
arches, since there are no paired i and j such that i < i1 < j or i < jt < j.
Furthermore, for t1 < t2, it1 < it2 < 2n − jt2 + 1 < 2n − jt1 , so the new
arches do not cross each other. Thus p is a noncrossing pairing.

Furthermore, if we pair the it and the jt according to any other per-
mutation (that is, it is paired with jσ(t) for some σ not the identity), we
must get a crossing, since there must be some t1 such that t1 < σ (t1) (since
there must be at least one t such that t 6= σ (t), and if there is one t such
that t > σ (t), then at least one of the integers less than or equal to σ (t)
must be mapped to at integer greater than σ (t)). Then there must be
a t2 such that t1 < t2 but σ (t2) < σ (t1) (since at least one of the inte-
gers greater than t1 must be mapped to an integer less than σ (t1)). Then
it1 < it2 < 2n − jσ(t1) + 1 < 2n − jσ(t2) + 1, a crossing. So the noncrossing
pairing p associated to the two half-pairings a and b is unique.

Thus, TLn
∼= (U (n, 0)⊗ (n, 0)) ⊕ . . . ⊕

(

U
(

n, ⌊n2 ⌋
))

, where ⌊n2 ⌋ is the
greatest integer less than or equal to n

2 , and ξa ⊗ ξb = ep, for a, b and p as
above. We can then abuse this notation write p = a⊗ b.
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We define a sesquilinear function on U (n). For a, b ∈ U (n), we identify
the ith point of a with the ith point of b. If we get any edge path that
connects a through-string to another through-string on the same side, we
let 〈ξa, ξb〉 = 0. Otherwise, we get some number c of closed loops, and we let
〈ξa, ξb〉 = qc. We can think of edge paths connecting through-strings on the
same edge as contributing a factor of 0, edge paths connect a through-string
on one side with a through-string on the other as contributing a factor of 1,
and closed loops as contributing a factor of q. We extend this sesquilinearly
to all of U (n). Two examples are shown in Figure 7.

This definition of inner product agrees on U (2n;n) with the previously
defined inner product on TLn. When we multiply p by qt, we identify the
(2n− i+ 1)th point of p with the ith point of qt, that is, the (2n− i+ 1)th
point of q, for 1 ≤ i ≤ n. When we take the closure of pqt, we identify the
ith point of the diagram with the (2n − i+ 1)th, that is, the ith point of p
with the (2n− i+ 1)th point of qt, that is, the ith point of q, for 1 ≤ i ≤ n.
Thus, we have identified the ith point of p with the ith point of q for all i,
1 ≤ i ≤ 2n, as we do when we take the inner product of half-diagrams. As
there are no through-strings, in both cases, the inner product is qc, where c
is the number of closed loops in the resulting diagram, or the trace of pqt.

Again, if the first n Chebyshev polynomials of the second kind are posi-
tive at q, this function is also positive, and is hence an inner product. Again,
this is not the case for general q, but we will refer to it as an inner product
nonetheless.

Furthermore, the involution ∗ on TLn, which flips a diagram left-to-right,
is an adjoint. In fact, we will show below that this is the unique sesquilinear
function with this property, up to scalar multiples.

3 Indexing the Bases

We will show that the number of noncrossing diagrams on 2n points is
cn = 1

n+1

(

2n
n

)

, the nth Catalan number. The number of noncrossing half

diagrams on n points with p pairs of points is cn,n−2p =
(

n
p

)

−
(

n
p−1

)

=
(

n−1
p

)

−
(

n−1
p−1

)

, called a generalized Catalan number by Di Franceso [2]. Quite
a few mathematical objects are counted by the Catalan numbers, and many
of these objects can be generalized to an object counted by the generalized
Catalan numbers. Several of these are useful in this paper.
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Figure 8: The equivalent half-pairing, generalized bracket diagram, and
generalized Dyck path, corresponding to generalized restricted sequence
(2, 1, 3, 4, 5, 4)

3.1 Catalan Constructions

Noncrossing arch diagrams, bracket diagrams, Dyck paths and restricted
sequences, all of which will be defined below, are all counted by the Catalan
numbers, and each has a generalization counted by the generalized Catalan
numbers. We will generally call these objects the generalized version (that
is, generalized bracket diagram, generalized Dyck path, etc.) when the dis-
tinction has to be made between the generalized object and the original,
although we will usually refer to them as bracket diagrams, Dyck paths, etc.
as well. In Figure 8 we show an example of a half-diagram along with its
equivalent bracket diagram, Dyck path and restricted sequence.

There are obvious bijections between these sets, which we will describe
below. We will generally use the same symbol to refer to the arch diagram
as well as the corresponding bracket diagram, Dyck path and restricted
sequence. While the basis element of TLn corresponding to an arch diagram
p can be thought of as being that arch diagram, we will always denote it
ep. This way a second basis, whose elements we will denote e′p, can also
be indexed by the same set. Likewise, we will use the same symbol, say, a,
to refer to a half diagram along with the corresponding generalized bracket
diagram, generalized Dyck path and generalized restricted sequence, and use
ξa to denote the corresponding basis element of U (n) and ξ′a to denote the
element of the second basis.

9



3.1.1 Bracket Diagrams

A bracket diagram is a sequence of n opening brackets and n closing brackets
such that, among the first i brackets, the number of closing brackets does not
exceed the number of closing brackets, for all i, 1 ≤ i ≤ 2n. This corresponds
to our notion of a legitimate bracket diagram. A generalized bracket diagram
is a sequence of n brackets such that, again, the number of closing brackets
among the first i brackets does not exceed the number of opening brackets,
although we do not require there to be the same number of opening brackets
as closing brackets overall. Westbury’s definition of a bracket diagram in
[9] is equivalent to our definition of a generalized bracket diagram; however,
Westbury’s diagrams have dots instead of our unpaired opening brackets.
As we will show below, which opening brackets are paired and which are
unpaired is unambiguous, so these constructions are equivalent.

We define a height function hi (a), equal to the number of opening brack-
ets minus the number of closing brackets among the first i brackets of a. This
function takes on nonnegative integers, and may only change by ±1 when i
is increased or decreased by 1.

Given a noncrossing half-diagram a, we can construct a generalized
bracket diagram. If the ith point is connected to the jth point where i < j,
or there is a through-string at the ith point, we let the ith bracket be an
opening bracket. Otherwise (that is, if the ith point is connected to the jth
point, where j < i), we let the ith bracket be a closing bracket. For any
i, among the first i points of a, each point connected to a point of smaller
index must be connected to another point among these first i points, so
among the first i brackets, the number of closing brackets will never exceed
the number of opening brackets.

Conversely, given a bracket diagram, we can construct a noncrossing
half-pairing by pairing the points according to the pairings of the bracket.
In this way, each opening bracket is either unpaired or corresponds to a point
paired with a point of greater index, and each closing bracket is paired with
a bracket of smaller index. Furthermore, we have no crossings.

More formally, we pair each j, where the jth bracket is a closing bracket,
with the largest i such that i < j and hi (a) = hj−1 (a).

We know that such an i must exist. The jth bracket is a closing bracket,
and hence j > 1 (or the number of closing brackets in the first j brack-
ets would exceed the number of opening brackets), so there is a (j − 1)th
bracket. hj−1 (a) − hi (a) = 0 for i = j − 1, although the ith bracket
might not be an opening bracket. However, if there is an i < j where
hj−1 (a) − hi (a) = 0 and the ith bracket is a closing bracket, then there

10



is one fewer closing bracket in the interval [1, i− 1] than in [1, i]. Then
hj−1 (a) − hi−1 (a) = hj−1 (a) − hi (a) − 1 = −1. hi (a) − hj−1 (a), as
a function of i, can only change by ±1 when i is decreased by 1, and
hj−1 (a) − h0 (a) = hj−1 (a) ≥ 0, so there must be an i′ with i′ < i such
that hj−1 (a)− hi′ (a) = 0. As there are only finitely many possible indices,
there must be an i with hj−1 (a)−hi (a) which does not satisfy the hypothesis
that the ith bracket is a closing bracket. Thus this process is well defined.

We can also see that hj−1 (a) − hk (a) ≥ 0 for any k, i < k < j, since
otherwise hj−1 (a)−hl (a) (as a function of l) must decrease from 0 to −1 as l
is decreased by 1. Then there must be an l > i such that hj−1 (a)−hl (a) = 0
and such that the lth bracket is an opening bracket.

If j is paired with i by this rule, and l > j where the lth bracket is a
closing bracket, and hl−1 (a) ≥ hi (a), then by an argument like that above,
hl−1 (a) − hj−1 (a) ≥ 0 so hl−1 (a) − hj (a) > 0, but hl−1 (a) − hl−1 (a) = 0.
Given a k, j < k < l such that hl−1 (a) − hk (a) = 0 and the kth bracket
is a closing bracket, hl−1 (a) − hk−1 (a) = −1, so we can find a k′ with
j < k′ < k such that hl−1 (a) − hk′ (a) = 0. Again, as there are only
finitely many possible indices, there must be a k, j < k < l, such that
hl−1 (a) = hk (a) = 0 and the kth bracket is an opening bracket. As k > i,
l is paired with a point whose index is greater than j, and hence greater
than i, under this rule. Thus each closing bracket is paired with a different
opening bracket, and hence this is legitimately a pairing.

Furthermore, if j is paired with i under this rule, and i < k < j, then
hk (a) ≥ hi (a). If there is an l with l > j such that the lth bracket is a
closing bracket and hl−1 (a) = hk (a), then as shown above, the lth point is
paired with the mth point for some m with j < m < l. So the kth point
is either unpaired or paired with a point between k and j. Thus a crossing
cannot occur.

We now show that this is the only noncrossing half-diagram which cor-
responds to the given bracket diagram. If a bracket diagram a corresponds
to a pairing, then each point j where the jth point is a closing bracket must
be paired with an i, i < j. The ith bracket must be an opening bracket,
since it is paired with a point of greater index. Since all the points in the
interval (i, j) must be paired with other points in the interval (or we have
a crossing), there must be the same number of opening brackets as closing
brackets in (i, j), so hi (a) = hj−1 (a). Finally, if there is a k, i < k < j such
that hk (a) = hj−1 (a) and the kth bracket is an opening bracket, then there
must be a largest such k. The kth point cannot have a through-string, so it
must be paired with an l, where the lth bracket is a closing bracket. Then
hl−1 (a) = hk (a) = hj−1 (a). We know that we can construct a legitimate

11



noncrossing pairing by the original rule, in which the jth point would be
connected to the kth point, and the lth point must then be connected to
the mth point for some m, k < m < l. Then the mth bracket is an opening
bracket and hm (a) = hl−1 (a) = hj−1 (a). This contradicts our assumption
that k is the largest index for with the kth bracket is an opening bracket
and hk (a) = hj−1 (a). So we cannot construct an alternate noncrossing
half-pairing corresponding to this bracket diagram.

Thus we have a bijection between half-diagrams on n points and bracket
diagrams with n brackets. In particular, if a half-diagram has p arches, then
the corresponding bracket diagram will have n − p opening brackets and p
closing brackets, and hn (a) = n− 2p.

3.1.2 Dyck paths

A Dyck path is a sequence of points in Z
2 from (0, 0) to (0, 2n) such that if the

ith point is (x, y), the (i+ 1)th point is either (x+ 1, y + 1) or (x+ 1, y − 1)
and such that each point has a nonnegative y coordinate. A generalized
Dyck path is a sequence of points in Z

2 from (0, 0) to (n, n− 2p) for some
p such that, again, if the ith point is (x, y), the (i− 1)th point is either
(x+ 1, y + 1) or (x+ 1, y − 1) and the y coordinate is never negative. We
will think of (0, 0) as the zeroeth point, so the ith point always has x coor-
dinate i.

Given a generalized bracket diagram a, we can construct a generalized
Dyck path by letting the ith point be (x+ 1, y + 1) (where the (i− 1)th
point is (x, y)) when the ith bracket is an opening bracket and (x+ 1, y − 1)
when the ith bracket is a closing bracket. We can see that hi (a) is the
y coordinate of the ith point. Then the y coordinate of a point is never
negative, so this is a generalized Dyck path.

Conversely, given a Dyck path a, we can construct a bracket diagram
by letting the ith bracket be an opening bracket when the ith point is
(x+ 1, y + 1) and a closing bracket when the ith point is (x+ 1, y − 1).
As the y coordinate of the ith point is nonnegative, there must have been at
least as many (x+ 1, y + 1) steps as (x+ 1, y − 1), and hence there are at
least as many opening brackets as closing brackets among the first i brackets.
So this is a legitimate bracket diagram.

We thus have a bijection between generalized bracket diagrams and gen-
eralized Dyck paths, and hence between half-diagrams and generalized Dyck
paths. We can think of opening brackets as upward steps and closing brack-
ets as downward steps.

We say that a has a maximum at i if the y coordinate of the ith point is
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greater than the y coordinate of both the (i− 1)th point and the (i+ 1)th
point (so the ith bracket of a is an opening bracket and the (i+ 1)th bracket
is a closing bracket). The path shown in Figure 8 has maxima at 2, 7, 10
and 13. We say that a has a minimum at i if the y coordinate of the ith
point is smaller than the y coordinate of the (i− 1)th point and the (i+ 1)th
point (so the ith bracket is a closing bracket and the (i+ 1)th bracket is an
opening bracket). The path in Figure 8 has minima at 4, 8 and 11. We
say that a has a slope at i if the y coordinate of the ith point is between
the y coordinate of the (i− 1)th point and the y coordinate of the (i+ 1)th
point (so the ith bracket and the (i+ 1)th bracket are either both opening
brackets or both closing brackets). The path in Figure 8 has slopes at 1, 3,
5, 6, 9, 12 and 14. If hi−1 (a) < hi (a) < hi+1 (a), so the ith bracket and the
(i+ 1)th bracket are opening brackets, then we say a has an increasing slope
at i, and if hi−1 (a) > hi (a) > hi+1 (a), so the ith bracket and the (i+ 1)th
bracket are both closing brackets, we say that a has a decreasing slope at
i. The slopes at 1, 5, 6, 9 and 12 are increasing and those at 3 and 14 are
decreasing.

If there are n − 2p through-strings in a half-diagram a, then there are
n − 2p more opening brackets than closing brackets in the corresponding
bracket diagram, so hn (a) = n − 2p, and hence the final point of the cor-
responding generalized Dyck path is (n, n− 2p). So the half-diagrams with
n− 2p through-strings correspond to the generalized Dyck paths from (0, 0)
to (n, n− 2p), and the full diagrams correspond to the original Dyck paths.

3.1.3 Restricted Sequences

A restricted sequence, defined by Ko and Smolinsky in [7] as a description of
a noncrossing pairing, is a sequence of n positive integers (a1, . . . , an) such
that an = 1 (if the sequence is nonempty) and, for each i with 1 ≤ i < n,
ai+1 ≥ ai − 1. We define a generalized restricted sequence as a sequence
of p positive integers (a1, . . . , ap) (where p ≤ ⌊n2 ⌋) where ai+1 ≥ ai − 1 for
all i with 1 ≤ i < p, but we relax the condition that the last integer be 1.
Usually the number of points n in the associated half-diagram will be clear
from the context.

We associate the empty sequence with the diagram on n points in which
each point has a through-string. As this is the only diagram on 0 points or
1 point, the diagrams on 0 points or 1 point are uniquely described by the
generalized restricted sequences with p integers, p ≤ n

2 = 0. Assume induc-
tively that half-diagrams on n points are described uniquely by generalized
restricted sequences with p integers, for each p ≤ n

2 . A noncrossing pairing
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a on n+ 2 points with at least one arch must have a unique leftmost inner-
most arch, that is, an arch connecting the a1th point to the (a1 + 1)th point,
where we choose a1 to be as small as possible. The first closing bracket in
the corresponding bracket diagram must belong to this arch, since the first
bracket cannot be a closing bracket, and hence the first closing bracket must
follow an opening bracket, which together form such an arch. If we remove
this arch and its points (and consider the jth point to the (j − 2)th point
of the new diagram for every j > i), we have a half-diagram b on n points,
which, according to our inductive hypothesis, corresponds to a unique re-
stricted sequence (b1, . . . , bp) for some p ≤ n−2

2 . Then we let a correspond to
the sequence (a1, b1, . . . , bp). The leftmost innermost arch of b connects the
b1th point with the (b1 + 1)th point. If a1 > b1 + 1, then the points b1 and
b1 +1 in b correspond to points b1 and b1 +1 in a, and hence a has an arch
connecting b1 and b1+1, and b1 < a1. This contradicts our assumption that
a1 was the smallest integer for which a has an arch joining the a1th point to
the (a1 + 1)th point. So b1 ≥ a1−1. As bi+1 ≥ bi−1 for all i with 1 ≤ i < p,
(a1, b1, . . . , bp) is a legitimate restricted sequence, and p+1 ≤ n+2

2 . As a1 is
unique, a corresponds to a unique generalized restricted sequence on p + 1
integers with p ≤ n+2

2 .
Conversely, given a restricted sequence (a1, . . . , ap) where p ≤ n

2 , we
can find a half-diagram on n points which corresponds to this restricted
sequence. We define li (a) after Genauer and Stoltzfus [4] as the restricted
sequence constructed from a by inserting an arch between the (i− 1)th point
and the ith point (where we consider the jth point of a to be the (j + 2)th
point of the new diagram, and the new arch connects the ith point and the
(i+ 1)th point).

If the restricted sequence is empty, then it corresponds to the diagram
on n points, each of whose points has a through-string. Inductively, assume
that any generalized restricted sequence with p integers for some p ≤ n

2 cor-
responds to a half-diagram on n points. For a generalized restricted sequence
(a1, . . . , ap+1), (a2, . . . , ap+1) is also a generalized restricted sequence, with
p integers, which hence corresponds to a half-diagram a on n points. Then
la1 (a) is a half-diagram on n+2 points. The first closing bracket of a is the
(a2 + 1)th bracket, and a2 + 1 ≥ a1, so if the jth bracket of a is a closing
bracket, it becomes the (j + 2)th bracket of la1 (a). So any closing bracket of
la1 (a), aside from the (a1 + 1)th, has index greater than or equal to a1 +2.
Thus the first closing bracket of la1 (a) is the (a1)th, so its leftmost innner-
most arch connects its a1th point to its (a1 + 1)th point, and hence the first
integer in its restricted sequence is a1. If we remove this arch, we get a,
which corresponds to the restricted sequence (a2, . . . , ap). So the diagram
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la1 (a) corresponds to the restricted sequence (a1, . . . , ap+1).
Thus, we have a bijection between half-diagrams on n points and gen-

eralized restricted sequences with p points for p ≤ n
2 . We think of a being

equal to the ordered p-tuple of integers which make up the corresponding
restricted sequence.

We can then express the diagram corresponding to restricted sequence
(a1 . . . , ap) as la1 ◦ . . . ◦ lap (ξ), where ξ is the diagram on n− p points where
each point has a through-string.

At each stage of this construction, the closing bracket of the last arch
inserted is the first closing bracket. As the order of the brackets is not
changed, the ith closing bracket belongs to the arch added by lai . As the
arch added by lai is the leftmost innermost arch of lai ◦ . . . ◦ lap (ξ), its
closing bracket, the (ai + 1)th bracket, is the first closing bracket. Then the
height after the opening bracket of this arch or before its closing bracket
is hai

(

lai ◦ . . . ◦ lap (ξ)
)

= ai. We can interpret this as the base height
inside this arch. As the insertion of a new arch, that is, an opening bracket
immediately followed by a closing bracket, cannot change the height at any
of the other points, the height just after the opening bracket of the arch
added by lai or just before its closing bracket is still ai (so the base height
inside this arch does not change). So we can also interpret the restricted
sequence (a1, . . . , ap) as the height before each closing bracket, in order, left
to right.

3.2 Orderings on the Diagrams

We define a partial order � on half-diagrams with the same number of
through-strings by letting (a1, . . . , ap) � (b1, . . . , bp) if ai ≤ bi for all i,
1 ≤ i ≤ p. We define a linear order ≤ extending this partial order by
letting (a1 . . . , ap) ≤ (b1, . . . , bn) if (a1 . . . , ap) = (b1, . . . , bp) or if there is an
i, 1 ≤ i ≤ n such that ai < bi and aj = bj for all j < i (lexicographical order
on sequences of the same length).

In the context of Dyck paths, the partial order corresponds to geometrical
inclusion; that is, a � b iff the path corresponding to a is never above the
path corresponding to b. More formally, a � b if hi (a) ≤ hi (b) for all i,
1 ≤ i ≤ n.

If there is a i such that hi (a) > hi (b), then we can pick the first such
i. Then hi−1 (a) = hi−1 (b), so the ith step of a must be an upward step,
while the ith step of b must be a downward step. Let a = (a1, . . . , ap) and
b = (b1, . . . , bp), and let this be the jth downward step of b (so there are
j−1 downward steps among the first i−1 steps of b, and hence of a as well).
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Figure 9: The bijection between sequences between (0, 0) and (n, n− 2p)
which are not legitimate and sequences between (0,−1) and (n, n− 2p+ 1)

Then bj = hi−1 (b) = hi−1 (a). aj is equal to the height of a just before its
jth closing bracket, which is its first closing bracket after the ith step. As
there may only be opening brackets between the ith step and its jth closing
bracket, its height before its jth closing bracket must be greater than or
equal to its height at i hi (a), which is greater than hi (b). So aj > bj . So if
aj ≤ bj for all j, 1 ≤ j ≤ p, then hi (a) ≤ hi (b) for all i, 1,≤ i ≤ n.

Conversely, if aj > bj for some j, we can pick the first such j. There are
j − 1 closing brackets before the jth closing bracket, so if the height right
before the jth closing bracket of a is greater than the height right before
the jth closing bracket of b, then there must be more opening brackets in a

before the jth bracket than in b. Thus the index of the jth bracket of a is
greater than the index of the jth bracket of b. If the index of the jth bracket
of b is i, then there is one more closing bracket among the first i brackets of
b than in a, so hi (a) > hi (b). So if hi (a) ≤ hi (b) for all i, 1 ≤ i ≤ n, then
aj ≤ bj for all j, 1 ≤ j ≤ p.

3.3 Enumerating Diagrams

There are
(

n
p

)

sequences of n brackets with n − p opening brackets and
p closing brackets, although these are not all legitimate bracket diagrams.
This is equivalent to relaxing the condition that the points in a Dyck path
must have nonnegative y-coordinate.

We can construct a bijection between the sequences which are not legit-
imate bracket diagrams and a similar set of sequences between (0,−1) and
(n, n− 2p + 1) which we describe below and which we illustrate in Figure 9.
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Given a sequence of points between (0, 0) and (n, n− 2p), we can add
1 to each of the y-coordinates, and get a sequence which begins at (0, 1)
and ends at (n, n− 2p+ 1). A sequence which had at least one point with
a negative y-coordinate is now a sequence with at least one point whose y-
coordinate is not positive. As the value of the y-coordinate can only change
by one, it must have at least one point whose y-coordinate is 0, and hence
a first point, say the ith, with y-coordinate 0.

We can then construct a sequence from this sequence by changing the
sign on the y-coordinate of all the points before the ith. Then the first
point is at (0,−1), since the y-coordinate of the first point is 1, and hence
it is before the first point whose y-coordinate is 0. Thus, this process
uniquely defines a sequence of points from (0,−1) to (n, n− 2p+ 1) where
(xj+1, yj+1) = (xj + 1, yj ± 1).

Conversely, given a sequence of points from (0,−1) to (n, n− 2p+ 1)
in which (xi+1, yi+1) = (xi + 1, yi ± 1), there must be a point whose y-
coordinate is 0, since there are points with negative y-coordinate and positive
y-coordinate, and the y-coordinate may only change by ±1 at each step.
So there must be a first such point. We can perform the same process,
changing the sign on the y-coordinate of each point before this one. Then
we have uniquely defined a sequence from (0, 1) to (n, n− 2p+ 1) where
(xi+1, yi+1) = (xi + 1, yi ± 1), and the first point with 0 y-coordinate is the
same point. Thus, performing the above process on this new path gives us
the original path back again.

Thus, we have a bijection between the paths from (0, 1) to (n, n− 2p+ 1)
which have a point with 0 y-coordinate and those from (0,−1) to (n, n− 2p
+1). We know that there are

(

n
p−1

)

of the latter. The former are also in
bijection with sequences of brackets which are not legitimate. Thus, there
are

(

n
p

)

−
(

n
p−1

)

=
(

n−1
p

)

−
(

n−1
p−2

)

legitimate generalized Dyck paths from (0, 0)
to (n, n− 2p).

After [2], we define cn,n−2p =
(

n
p

)

−
(

n
2p−1

)

=
(

n−1
p

)

−
(

n−1
p−2

)

, and call it a
generalized Catalan number.

4 Chebyshev Polynomials

We define the nth Chebyshev polynomial ∆n (q) as the determinant of the
n×n matrix whose diagonal entries are all q and whose subdiagonal entries
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and superdiagonal entries are all 1. So

∆n (q) =
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

The Chebyshev polynomials satisfy the recurrence relation

∆n+1 (q) = q∆n (q)−∆n−1 (q) .

If we define ∆−1 (0) and ∆0 (q) = 1, these also satisfy the recurrence relation.
The first few Chebyshev polynomials are

∆−1 (q) = 0
∆0 (q) = 1
∆1 (q) = q
∆2 (q) = q2 − 1
∆3 (q) = q3 − 2q
∆4 (q) = q4 − 3q2 + 1
∆5 (q) = q5 − 4q3 + 3q

We define µi =
∆i−1

∆i
. In this paper, we only deal with values of q for

which all relevant Chebyshev polynomials are not zero, so this quotient will
always be well defined.

5 The Orthogonal Basis

We define an orthogonal basis, following the method of box addition in [2]
and [1]. However, we do not normalize our basis, so our definition of box
addition differs from the definitions in [2] and [1] by a scalar factor. [3]
presents both the normalized and the unnormalized bases.

5.1 Box Addition

We define box addition at position i, denoted ♦i, on Dyck path a which has a
minimum at i. We let ♦i (a) be the diagram constructed from a by replacing
the downward step at i with an upward step and the upward step at i + 1
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Figure 10: Box addition at 8 performed on a Dyck path
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Figure 11: The minimal element with four pairs and three through-strings,
(1, 1, 1, 1), shown as a half-pairing, a bracket diagram and a Dyck path

with a downward step, as in Figure 10. ♦i is not defined when a does not
have a minimum at i.

a and ♦i (a) have the same sequence of opening and closing brackets up
to the ith bracket, so for j < i, hj (♦i (a)) = hj (a). As an opening bracket
has been replaced by a closing bracket and a closing bracket by an opening
bracket in the construction of ♦i (a), the number of opening brackets and
closing brackets in the first j brackets of a and ♦i (a) are equal for j > i.
So for j > i, hj (♦i (a)) = hj (a). Thus hj (♦i (a)) = hj (a) for all j 6= i. As
♦i (a) has one fewer closing bracket and one more opening bracket in its first
i brackets, hi (♦i (a)) = hi (a)+2. So hj (♦i (a)) ≥ hj (a) for all j, 1 ≤ j ≤ n.
(This also shows that box addition respects the orderings, so if a � b, then
♦i (a) � ♦i (b), if both are well-defined.)

In fact, if a = (a1, . . . , ap), then the height of a just before its jth closing
bracket is aj. If the closing bracket at i is the jth closing bracket of a, then
the closing bracket at i+ 1 in ♦i (a) is the jth closing bracket of ♦i (a). As
there are j − 1 closing brackets before each, and one more opening bracket
before the jth closing bracket of b than before the jth closing bracket of a.
Thus bj = aj + 1. As the rest of the closing brackets of the diagrams are
at the same indices, and none aside from the jth closing bracket of ♦i (a) is
preceded by the ith point, the height of the diagrams right before each other
closing bracket in each diagram is the same, and hence so are the integers
in their restricted sequences. So ♦i (a) corresponds to restricted sequence
(a1, . . . , aj−1, aj + 1, aj+1, . . . , ap).

The p-tuple of positive integers (1, . . . , 1) is a legitimate restricted se-
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quence. Each index is less than or equal to the corresponding index in
any other sequence of positive integers, so this is smaller than any other
restricted sequence in the partial order. We call this the minimal or funda-
mental element. Figure 11 shows the half-diagram, generalized Dyck path
and bracket diagram corresponding to (1, . . . , 1).

If (a1, . . . , ap) and (b1, . . . , bp) are restricted sequences with (a1, . . . , ap) ≺
(b1, . . . , bp), then there must be at least one i such that ai < bi. Let i be
the largest such index. Then we can let ci = ai + 1 ≤ bi and cj = aj ≤ bj
for all j 6= i, 1 ≤ j ≤ p. Then ci = ai + 1 ≥ ai−1 + 1 > ai−1 = ci−1 if
i− 1 is a valid index, ci+1 = ai+1 = bi+1 ≥ bi − 1 ≥ ci − 1 if i+ 1 is a valid
index, and cj+1 = aj+1 ≥ aj − 1 = cj − 1 for all j not equal to i − 1 or
i. Thus (c1, . . . , cp) is a valid restricted sequence, (b1, . . . , bp) is the result
of box addition on (c1, . . . , cp), and (a1, . . . , ap) ≺ (c1, . . . , cp) � (b1, . . . , bp).
Inductively, we can see that we can construct (b1, . . . , bp) from (a1, . . . , ap)
by repeated box additions.

In particular, all diagrams can be constructed from (1, . . . , 1) by a se-
quence of box additions. Furthermore, the number of box additions required
is always a1 + . . . + ap − p (since this quantity is zero on (1, . . . , 1), and in-
creases by one with each box addition), regardless of which box additions
we perform, and in what order, so it is an invariant of the diagram. This
allows us to perform induction on this quantity, the number of boxes of a,
or #♦ (a) (length or |a| in [2]), which we do in several of the proofs.

5.1.1 Grey Box Addition

Proposition 5.1. If a has a minimum at i, then ξ♦i(a) = eiξa.

Proof. We show this diagrammatically in Figure 12.
We know that eiξa = cξb for some diagram b and some scalar c, which

may be 0 or a power of q.
The jth point of ei, for j not equal to i or i + 1, is connected to the

(n− j + 1)th point of ei, which is identified with the jth point of ξa. If the
jth point of a was not paired with the ith point or the (i+ 1)th point, then
the jth point of b must be paired with the point that the jth point of ξa
was paired with. Thus any step of the resulting diagram is an upward or
downward step if the corresponding step in a is an upward or downward
step.

The ith point of ei is connected to its (i+ 1)th point, so the ith point of
eiξa is connected to its (i+ 1)th point. Then the ith point is connected to
a point of greater index and the (i+ 1)th point is connected to a point of
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=

Figure 12: The action of ei on ξa maps it to ξ♦i(a), the grey box addition
equivalent to the box addition shown in Figure 10

smaller index, so the ith step is an upward step and the (i+ 1) is a downward
step, as they are in ♦i (a).

The only remaining points are those that were originally paired with i
and i+1 in a, so these must be paired with each other. As the ith step of a
is decreasing, its ith point is paired with a point of smaller index, and since
the (i+ 1)th step of a is increasing, it is paired with a point of greater index.
So the original partner of i, whose index is less than i and hence less than
i+1 and hence less than the index of the partner of i+1 in a, is paired in b

with a point of greater index. So it corresponds to an increasing step, and
the point partnered with i+1 in a corresponds to a decreasing step. As the
ith point of a was joined in a to a point of smaller index (and the (i+ 1)th
point was joined to a point of greater index), its partner corresponds to
an increasing step (and the partner of the (i+ 1)th point corresponds to a
decreasing step). So these steps in b are the same as those in a.

Any sequence of edges joining the point at infinity back to itself or any
closed loop which occurs when we have identified the (n− j + 1)th point of
ei with the jth point of ξa must involve at least one arch of ei, since the arch
diagram corresponding to a contains no such structures. This arch must
connect points in {n+ 1, . . . , 2n}, since the points in {1, . . . , n} have only
one edge. There is only one such arch in ei, namely, that connecting the
(2n− i+ 1)th point to the (2n− i)th. These points are identified with the
ith and (i+ 1)th points of ξa. Since a has a minimum at i, the ith point is
connected to a point of smaller index, and the (i+ 1)th to a point of greater
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index, they are both connected to points which are not i or i+1 in a. These
are identified with points of the form 2n − j + 1, 1 ≤ j ≤ n in ei, for j not
equal to i or i + 1. These points are connected in ei to the jth point, so
these arches cannot be part of any sequence of edges connecting the point
at infinity back to itself or any closed loop. So there is no such structure. So
c cannot be equal to zero, and since there are no closed loops, c = q0 = 1.
So eiξa = ξ♦i(a).

We call this construction grey box addition, after Di Francesco ([2]). This
allows us to construct our original basis by letting TLn act on the basis
element of U (n; p) corresponding to the minimal diagram ξ(1,...,1), which
shows us that each U (n; p) is not reducible.

5.1.2 White Box Addition

We define our second basis in terms of a similar operation, which we will
call white box addition, again after Di Francesco ([2]). This basis is also
indexed by diagrams. We will denote members of the second basis with a
prime, ξ′a. We define ξ′(1,...,1) = ξ(1,...,1). If a has a minimum at i, then we

define ξ′
♦i(a)

=
(

ei − µhi(a)+1

)

ξ′a.

Proposition 5.2. ξ′a is a linear combination of ξb, where b � a.

Proof. ξ′(1,...,1) = ξ(1,...,1), so our proposition holds for the minimal element.

Assume that our proposition holds for some a; that is, ξ′a is a linear
combination of ξb for b � a. Then ξ′

♦i(a)
=

(

ei − µhi(a)+1

)

ξ′a = eiξ
′
a −

µhi(a)+1ξ
′
a.

The latter term is a linear combination of ξb where b � a. We examine
the action of ei on such a ξb.

We have seen above that if b has a minimum at i, eiξb = ξ♦i(b). If b � a,
then ♦i (b) � ♦i (a).

If b has a maximum at i, then it has an opening bracket at i and a
closing bracket at i + 1, and hence an arch connecting its ith point to its
(i+ 1)th. These points are identified with the (2n − i+ 1)th and (2n − i)th
of ei, which are themselves connected. So this forms a closed loop, and we
get a factor of q. Since the ith point of ei is connected to its (i+ 1)th point,
the ith point of the new diagram is connected to its (i+ 1)th point, as in
ξb. If j is not equal to i or i + 1, 1 ≤ j ≤ n, then the jth point of ei is
connected to its (2n− j + 1)th point, which is identified with the jth point
of ξb. This point is connected to some other point which is also not equal
to i or i + 1, since these are connected to each other. So the jth point of
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eiξb is connected to the point of the same index as the partner of the jth
point of ξb. So eiξb has all the same pairing as b, and one closed loop. As
the one loop connecting two points in {n+ 1, . . . , 2n} in ei is part of the
closed loop, there are no other closed loops or sequences of edges connecting
infinity back to itself. So eiξb = qξb, and b � a � ♦i (a).

If b has a slope at i, then it has two brackets of the same type at i and
i+ 1. eiξb = cξc where c is either 0 or a power of q, and c is a half-diagram.
If the two brackets corresponding to through-strings, then the arch from
2n − i + 1 to 2n − i in ei connects them, so c = 0. Otherwise, c has an
opening bracket at i and a closing bracket at i+ 1, where b had either two
opening brackets or two closing brackets. c must have the same number of
opening brackets and closing brackets as b, and the points which were not
either i or i+1 or partnered with one of these are paired just as they are in
b, so the type of bracket at any of these points is the same as in b. The type
of bracket at one of i and i+1 was changed, so the type of bracket at one of
their partners (which would be of opposite type) must be changed as well. If
the brackets at i and i+1 are both opening brackets, then their partners are
of greater index, and if the brackets at i and i+1 are both closing brackets,
then their partners must be of smaller index. Either way, we can construct
c from b by changing an opening bracket to a closing bracket at one index,
and a closing bracket to an opening bracket at a greater index. So the height
of c at any index must be less than or equal to the height of b at that index.
So c � b � a.

Since ξ′a is a linear combination of ξb with b � a and eiξb produces a
linear combination of ξc with c � ♦i (a), eiξ

′
a is a linear combination of ξb

with b � a, and hence so is
(

ei − µhi(a)+1

)

ξ′a.

Proposition 5.3. The coefficient of ξa in ξ′a is 1.

Proof. Clearly, the coefficient of ξ(1,...,1) in ξ′(1,...,1) = ξ(1,...,1) is 1.

Assume that the coefficient of ξa in ξ′a is also 1. By definition, ξ′
♦i(a)

=
(

ei − µhi(a)+1

)

ξ′a = eiξ
′
a − µhi(a)+1ξ

′
a. The second term is a linear combina-

tion of ξb with b � a ≺ ♦i (a), so this does not contribute to the coefficient
on ξa. The coefficient of ξa in ξ′a is 1, so the term eiξa = ξ♦i(a) appears in
eiξ

′
a.
If b ≺ a has a minimum at i, then eiξb = ξ♦i(b), and since b ≺ a,

♦i (b) ≺ ♦i (b). If b ≺ a has a maximum at i, then eiξb = qξb. If b ≺ a has
a slope at i, then eiξb = ξc, where c � b ≺ a.

In any of these cases, eiξb is a linear combination of ξc with c ≺ a, so
such terms do not contribute to the coefficient of ξa in ξ′a. So this coefficient
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is 1.

Thus the transformation ξa 7→ ξ′a is an upper triangular transformation
(with respect to the partial order, and hence also with respect to the linear
order which extends it) with 1s on the diagonal. So it is invertible, and
hence a legitimate change of basis. So the ξ′a form a basis for U (n; p).

5.1.3 Commutativity Relations

We now demonstrate that white box addition is well-defined; that is, we
get consistent definitions of ξ′a regardless of the order in which the box
addition is done. Grey box addition produces the original basis elements
corresponding to appropriate Dyck paths, so it must be well-defined. In
either case, if ♦i (♦j (a)) = ♦j (♦i (a)) for i 6= j, then a must have minima
at i and j. Both the ith and jth steps must then be downward steps and
the (i+ 1)th and (j + 1)th steps must be upward steps, so j 6= i ± 1, or
|i− j| > 1. According to the Jones relations, ei and ej commute, and hence
the factors corresponding to either type of box addition also commute. So
the box addition operations satisfy the same commutativity relations as box
additions on a Dyck path. We show more formally that our definition of the
second basis of the ξ′a is well-defined.

Proposition 5.4. If b can be derived from a by two distinct sequences of box
additions, then the expressions for ξ′b corresponding to these two sequences
are equal.

Proof. As shown above, if b can be derived from a by two distinct sequences
of box additions, then the number of box additions is the same in each
case, as shown above. Furthermore, there must be the same number of box
additions at each i, 1,≤ i ≤ n, since each box addition at i increases the
height at i by exactly two, and no box addition at any other index alters the
height at i (so there must be exactly (hi (b)− hi (a)) /2 box additions at i).
Finally, the heights at which the box additions at i occur are the same; that
is, there must be one at height hi (a), one at hi (a) + 2, etc., and they must
occur in this order. The white box addition operator corresponds to a factor
of ei − µhi(a)+1, multiplied on the left, which depends only on the index i
at which the box addition takes place and the height of the Dyck path at i
when the box addition is performed, so the same factors must appear in our
two expressions for ξ′b, although possibly in a different order.

We prove the theorem by induction on the number of box additions, and
hence the number of factors. If there is only one factor in each sequence,
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then as established above, it must be the same factor, so the expressions are
equal.

We now assume that, if there are k box additions in each of the two
sequences, and hence k factors in each expression, then the two expressions
are equal. Throughout, we consider the first factor to be the first applied
to the half-diagram, that is, the rightmost, rather than the first that would
appear in a written expression of the product. Let b be the result of k + 1
box additions on a in two possibly different ways. Let the first box addition
in the first sequence be ♦i. Then b can be expressed as k box additions on
♦i (a). ♦i corresponds to a factor of ei − µhi(a)+1. We know that this factor
occurs in the second expression, before any other factors corresponding to
any other box addition at i. a has a minimum at i, so the ith step of a is a
downward step, and its (i+ 1)th step is an upward step, and hence no box
addition can be performed at i− 1 or i+ 1. As no other box addition aside
from one at i will change the types of steps at i and i + 1, there may be
no box additions at i − 1 or i + 1 before the first box addition at i. So all
of the factors that precede ei − µhi(a)+1 are of the form ej − µh for some j
with |i− j| > 1 and some h. By the Jones relations, ei commutes with ej ,
and hence the factor corresponding to ♦i commutes with all of the factors
that precede it. Thus we can move the factor ei −µhi(a)+1 to the beginning.
The other k factors correspond to the k remaining box additions, which, as
discussed above, are the same box additions at the same heights as the k
that are applied to ♦i (a) to get b. These must be in a legitimate order to
correspond to these box additions. Those that originally occurred before
the first factor of ei − µhi(a) and which now occur after it did not occur at
i− 1, i or i+1, so the existence of a minimum at their index is not affected.
For those that originally occurred after the first factor of ei−µhi(a), exactly
the same set of box additions at the same heights have been performed, so
they are still performed legitimately. Thus the second expression for ξ′a is
equal to the expression for ξ′b corresponding to k box additions applied to
♦i (a). As these are the same k box additions as in the first sequence, both
expressions for ξ′b are expressions we would get by applying the same k box
additions to ♦i (a). By our inductive hypothesis, these two expressions for
ξ′b are equal.

Thus our definition of the second basis of the ξ′a is consistent, regardless
of the order in which the box additions are performed.
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q−6 =

Figure 13: We use ea⊗a ∈ TLn to externalize the structure of a

5.2 Uniqueness of the Inner Product

Theorem 5.5. Up to scalar multiples, the inner product we have defined
is the only inner product on U (n) such that the involution ∗ on TLn is an
adjoint.

Proof. Assume there is another sesquilinear function 〈·, ·〉′ for which the
involution ∗ is an adjoint.

For any arch connecting i and j in ξa, the diagram ea⊗aξa has an arch
connecting i and j, and for every through-string at i in ξa, there is an arch
connecting i and 2n− i in ea⊗a. As the (2n− i)th point of ea⊗a is identified
with the ith point of ξa in the diagram ea⊗aξa, the product has a through-
string wherever ξa does. Finally, for each arch of ξa connecting i and j, there
is an arch in ea⊗a connecting 2n − i and 2n − j. As the (2n− i)th point
of ea⊗a is identified with the ith point of ξa, both ends of these arches are
identified and form a closed loop. So for each of the p arches of ξa, there
is a closed loop in the diagram ea⊗aξa. So ea⊗aξa = qpξa. This method of
externalizing the structure of a is shown in Figure 13.

Thus ξa = q−pea⊗aξa. For each arch joining points i and j in ea⊗a, there
is an arch joining points 2n − i and 2n − j, so e∗a⊗a = ea⊗a, and hence
〈ξa, ξb〉′ = 〈q−pea⊗aξa, ξb〉′ = q−p〈ξa, ea⊗aξb〉′.

In the diagram 〈ξa, ξb〉, the ith point of ξb is identified with the ith point
of ξa, and in the diagram ea⊗aξa, the ith point of ξb is identified with the
(2n− i)th point of ea⊗a. For any arch connecting the ith and jth points of
ξa, there is an arch connecting the (2n− i)th and (2n − j)th points of ea⊗a.
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Thus if there is sequence of edges in the diagram 〈ξa, ξb〉 which connects
the point at infinity of ξb back to itself, then, since it may not contain any
of the through-strings of ξa, there must be a string in the diagram ea⊗aξb
connecting its point at infinity back to itself. Thus ea⊗aξb = 0, and hence
〈ξa, ξb〉 = q−p〈ξa, ea⊗aξb〉′ = 0.

Likewise, if there is a string in the diagram 〈ξa, ξb〉 connecting the point
at infinity of ξa back to itself, there must also be such a string in ea⊗aξb, so
ea⊗aξb = 0, and hence as above 〈ξa, ξb〉′ = 0.

On the other hand, if the diagram 〈ξa, ξb〉 does not have any string con-
necting either infinity back to itself, then each must have the same number
of through-strings.

Each of a and b can be expressed as a series of box additions on the min-
imal element (1, . . . , 1). As box addition at i corresponds to multiplication
by ei in the first basis, ξa = ei1 · · · eirξ(1,...,1) and ξb = ej1 · · · ejsξ(1...,1) for
some sequence of indices i1, . . . , ir and j1, . . . , js. As each of these terms is
self-adjoint, (ei1 · · · eir)∗ = eir · · · ei1 , and hence

〈ξa, ξb〉′ = 〈ei1 · · · eirξ(1,...,1), ej1 · · · ejsξ(1,...,1)〉′

= 〈ξ(1,...,1), eir · · · ei1ej1 · · · ejsξ(1,...,1)〉

As established, ξ(1,...,1) = q−pe(1,...,1)⊗(1,...,1)ξ(1,...,1) and e(1...,1)⊗(1,...,1) is
self-adjoint, so

〈ξa, ξb〉′ = q−2p〈e(1,...,1)⊗(1,...,1)ξ(1,...,1),

ejr · · · ej1ei1 · · · eise(1,...,1)⊗(1,...,1)ξ(1,...,1)〉′

= q−2p〈ξ(1,...,1),
e(1,...,1)⊗(1,...,1)ejr · · · ej1ei1 · · · eise(1,...,1)⊗(1,...,1)ξ(1,...,1)〉′

We will let e = e(1,...,1)⊗(1,...,1)ejr · · · ej1ei1 · · · eise(1,...,1)⊗(1,...,1).
Each arch in e(1,...,1)⊗(1,...,1) connecting two points in {1, . . . , n} must

also appear in the product e, and likewise any arch connecting two points
in {n+ 1, . . . , 2n} must also appear in e. As the diagram 〈ξa, ξb〉 has no
strings connecting either infinity back to itself, it is nonzero. Since 〈ξa, ξb〉 =
〈ξ(1,...,1), eξ(1,...,1)〉 as well, e 6= 0, and e and e∗ have nonzero action on ξ(1,...,1).
Thus the points of e which are identified with through-strings of (1, . . . , 1)
when this action is calculated may not be connected to points on their
own side. So e must be e(1,...,1)⊗(1,...,1) along with some closed loops. So
e = qme(1,...,1)⊗(1,...,1) for some m. Thus

〈ξa, ξb〉′ = q−2p〈ξ(1,...,1), qme(1,...,1)⊗(1,...,1)ξ(1,...,1)〉
= qm−p〈ξ(1,...,1), ξ(1,...,1)〉′
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Thus the value of the inner product on any two basis elements is fully
determined by its value on ξ(1,...,1). Extending this sesquilinearly to all of
U (n), we can see that our original inner product is unique up to scalar
multiples.

5.3 Orthogonality Theorems

We now show that the second basis, consisting of the ξ′a, is orthogonal.

Lemma 5.6. If a has a slope at i, then eiξ
′
a = 0.

Proof. We prove this by induction on the number of boxes in a.

Base Case: In our base case, a = (1, . . . , 1). A slope at position i corre-
sponds to two opening brackets or two closing brackets in positions i and
i + 1. In the first case hi+1 (a) > 1, and in the second, hi−1 (a) > 1. Since
the base height inside all of the arches of (1, . . . , 1) is 1, the point of height
greater than 1 cannot occur inside an arch. As closing brackets always cor-
respond to a point connected by an arch, the second possibility, that there
are two closing brackets at positions i and i + 1, is excluded. If there are
two opening brackets at positions i and i+1, then the one at position i+1,
which has depth greater than 1, must correspond to a through-string. As a
through-string cannot be contained within an arch, the opening bracket at
position i must also correspond to a through-string. So a slope at position i
in a = (1, . . . , 1) must correspond to through-strings at positions i and i+1.

As e1 has an arch which connects the ith and (i+ 1)th points, the two
through-strings of ξ′a = ξ(1,...,1) at positions i and i+ 1 are connected in the
diagram eiξ1,...,1. So eiξ

′
a = eiξ(1,...,1) = 0.

Inductive Step: We now assume that a has at least one box, so a = ♦j (b)
for some j and some b which has fewer boxes than a. A slope may be either
increasing or decreasing. We deal with the case where the slope at i is an
increasing slope first.

Case I: the slope is increasing: Since hi (a) = hi−1 (a) + 1, a does not
have a maximum at i − 1, and since hi+1 (a) = hi (a) + 1, it does not have
a maximum at i. So j is not i− 1 or i.

If j is also not i + 1, then the operator associated with the box addi-

tion commutes with multiplication by ei. So eiξ
′
a = ei

(

ej − µhj(a)−1

)

ξ′b =
(

ej − µhj(a)−1

)

eiξ
′
b. b has fewer boxes than a, and since the box addition

at j only affects the height at j, the height of b at i− 1, i and i+ 1 is the
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same as that of a, and hence b also has a slope at i. So, by our inductive
hypothesis, eiξ

′
b = 0. Thus eiξ

′
a = 0.

If, on the other hand, j = i + 1, then ξ′a =
(

ei+1 − µhi+1(a)−1

)

ξ′b, where
a = ♦i+1 (b).

a has an increasing slope at i, so its ith step is an upward step. As box
addition at i+ 1 only affects the (i+ 1)th and (i+ 2)th steps, the ith step
of b is also an upward step. Since b admits a box addition at i + 1, it has
a minimum at i+ 1, and hence its (i+ 1)th step is a downward step. So b

has a maximum at i. So ξ′b =
(

ei − µhi(b)−1

)

ξ for some ξ ∈ U (n; p).
We show that this is true regardless of whether the maximum at i is

the result of box addition or not. If the maximum at i in b is not the
result of a box addition, then it must be present in the minimal Dyck path
(1, . . . , 1), and hence in any path c with (1, . . . , 1) � c � b. So ξ′b is a
linear combination of ξc, each of which has a maximum at i. This maximum
consists of an upward step at i and a downward step at i + 1, that is, an
opening bracket at i and a closing bracket at i + 1. These brackets must
be paired, and hence correspond to an arch connecting the ith point to the
(i+ 1)th point. ei acts on such a ξc by multiplying it by q, so eiξ

′
b = qξ′b,

and hence (ei − µ0)
(

1
q
ξ′b

)

= ξ′b.

Thus, eiξ
′
a = ei

(

ei+1 − µhi+1(a)−1

) (

ei − µhi(b)−1

)

ξ for some ξ ∈ U (n; k).
a has an increasing slope at i, so hi+1 (a) = hi (a) + 1. As a = ♦i+1 (b),
the height at i is not altered, so hi (b) = hi (a). Expanding, we get that
(

eiei+1ei − µhi(a)−1eiei+1 − µhi(a)e
2
i + µhi(a)µhi(a)−1ei

)

ξ. By the relations
for the Temperley-Lieb algebra, eiei+1ei = ei and e2i = qei. We can rear-
range our terms to get

(

1− qµhi(a) + µhi(a)µhi(a)−1

)

eiξ−µhi(a)−1eiei+1ξ. By
the recurrence relation of the Chebyshev polynomials, ∆hi(a) − q∆hi(a)−1 +

∆hi(a)−2 = 0, so dividing through by ∆hi(a), 1−q
∆hi(a)−1

∆hi(a)
+

∆hi(a)−2

∆hi(a)−1

∆hi(a)−1

∆hi(a)
=

0, so the first term vanishes. So eiξ
′
a = −µhi(a)−1eiei+1ξ.

If the previously discussed maximum in b at i is not the result of box
addition, then it is a maxiumum in the minimal path (1, . . . , 1), correspond-
ing to a pairing of the ith and (i+ 1)th points. As all arches in (1, . . . , 1)
have depth 1, hi−1 (b) = 0, so hi (a) = 1. Thus µhi(a)−1 = ∆−1

∆0
= 0, so the

second term also vanishes.
If the maximum in b at i is the result of box addition, then ξ = ξ′c where

b = ♦i (c). Since c admits box addition at i, it must have a minimum at i,
and hence its (i+ 1)th step is an upward step. Its (i+ 2)th step will be the
same as that of b, and since b admits a box addition at i+1, this must also
be an upward step. So c has an increasing slope at i + 1. Since c has two
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fewer boxes than a, by our induction hypothesis, ei+1ξ
′
c = 0. So the second

term in our expression for eiξ
′
a also vanishes.

Case II: the slope is decreasing: Likewise, if a has a decreasing slope at i,
then it does not have a maximum at i or i+1. If it also does not have a maxi-
mum at i−1, then the last box addition must have been elsewhere, and hence
commutes with ei. So, as above, eiξ

′
a = 0. If the last box addition was at i−1,

then ξ′a =
(

ei−1 − µhi−1(a)−1

) (

ei − µhi(a)−1

)

ξ for some ξ ∈ U (n; k). Then
as before eiξ

′
a =

(

eiei−1ei − µhi(a)−1eiei−1 − µhi(a)e
2
i + µhi(a)µhi(a)−1ei

)

ξ =
(

1− qµhi(a) + µhi(a)µhi(a)−1

)

eiξ − µhi(a)−1eiei−1ξ. As above, by the recur-
rence relations of the Chebyshev polynomials, the first term vanishes. Again,
either hi (a) = 1 so µhi(a)−1 = 0, or ξ = ξ′c for some c with a slope at i − 1
so that ei−1ξ

′
c = 0, so the second term vanishes.

Any two basis elements corresponding to diagrams with different num-
bers of through-strings are orthogonal, since every edge-path beginning on
a through-string must eventually end on a through-string, and since one
diagram has more through-strings, not all of the edge-paths beginning on
one of those may end on a through-string of the other diagram. Thus the
subspaces U (n; p) are orthogonal. Since each element ξ′a is a linear com-
bination of ξb ∈ U (n; p) for some fixed p, ξ′a ∈ U (n; p). So we know that
the new basis elements corresponding to diagrams with different numbers of
through-strings are orthogonal. We now show that ξ′a and ξ′b are orthogonal
even if a and b have the same number of through-strings.

Theorem 5.7. If a 6= b, then 〈ξ′a, ξ′b〉 = 0.

Proof. We prove this by induction on the number of boxes in a.

Base Case In our base case, a = (1, . . . , 1). We prove by induction on the
number of boxes in b. Since a 6= b, we can assume that b is the result of at
least one box addition. We consider first the case where b = ♦i (c) where a

does not have a minimum at i, then the case where there is no such i and c.

Case I: there is an i such that b = ♦i (c) and a does not have a mini-
mum at i: In the first case, 〈ξ′a, ξ′b〉 = 〈ξ′a,

(

ei − µhi(b)−1

)

ξ′c〉 = 〈eiξ′a, ξ′c〉 −
µhi(b)−1〈ξ′a, ξ′b〉. As a does not have a minimum at i, it has either a slope or
a maximum. By the previous lemma, eiξ

′
a = 0. If it is a maximum, then as

established in the same lemma, eiξ
′
a = qξ′a. Either way, it is a scalar multiple

of ξ′a, so the first term, and hence the entire expression, is a scalar multiple
of 〈ξ′a, ξ′c〉.
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Since a does not have a minimum at i and hence does not admit a box
addition at i, and c, a 6= c. As c has fewer boxes than b, by our inductive
hypothesis, we have that 〈ξ′a, ξ′c〉 = 0. So the entire expression vanishes.

Case II: there is no such i: In the second case, let i be the smallest index
such that b = ♦i (c) for some c. Then the ith step of b is an upward step and
hi (b) > 1. If the (i− 1)th step were a downward step, then hi−2 (b) > 1,
so there must be a maximum at some index less than i with height greater
than 1 which must hence be the result of a box addition. Thus the (i− 2)th
step of b must also be an upward step, and hence b has a slope at i− 1.

Since a has a minimum at i, its ith step is a downward step, which
corresponds to a closing bracket, which is always part of an arch. Since
no arches in a = (1, . . . , 1) have depth greater than 1 and a through-string
cannot be contained in an arch, there can be nothing inside this arch, so its
opening bracket must be at i− 1. So a must have a maximum at i− 1. So,

as established above, ξ′a = ei−1

(

1
q
ξ′a

)

.

Thus, 〈ξ′a, ξ′b〉 = 〈1
q
ξ′a, ei−1ξ

′
b〉. As b has a slope at i − 1, ei−1ξ

′
b = 0. So

this entire quantity vanishes.

Inductive Step: In our inductive step, we can assume that a has at least
one box, so a = ♦i (c) for some i and some c with fewer boxes than a, so
our inductive hypothesis applies to c. We deal with the cases where b has a
minimum, a slope, and a maximum at i separately.

Case I: b has a minimum at i: Assume first that b has a minumum at i.
Then b admits a box addition at i, where ξ′

♦i(a)
=

(

ei − µhi(b)+1

)

ξ′b. Then

〈ξ′a, ξ′b〉 = 〈
(

ei − µhi(c)+1

)

ξ′c, ξ
′
b〉

= 〈ξ′c,
(

ei − µhi(b)+1

)

ξ′b〉 − 〈ξ′c,
(

µhi(c)+1 − µhi(b)+1

)

ξ′b〉
= 〈ξ′c, ξ′♦i(b)

〉 −
(

µhi(c)+1 − µhi(b)+1

)

〈ξ′c, ξ′b〉

As c admits box addition at i, it has a minimum at i, and since ♦i (b) is
the result of box addition at i, it has a maximum at i. So c 6= b, and hence
〈ξ′c, ξ′♦i(b)

〉 = 0, so the first term vanishes.
If c 6= b, then the second term vanishes as well. If they are equal, then

hi (c) = hi (c), so the two quotients of Chebyshev polynomials in the second
term are equal, so their difference, and hence the second term, vanish.

Case II: b has a slope at i: In the second case, b has a slope at i. Then

〈ξ′a, ξ′b〉 = 〈
(

ei − µhi(a)−1

)

ξ′c, ξ
′
b〉

= 〈ξ′c, eiξ′b〉 − µhi(a)−1〈ξ′c, ξ′b〉
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As b has as slope at i, eiξ
′
b = 0, and hence the first term vanishes. Since c

has a minimum at i and b has a slope at i, c 6= b, so the second term also
vanishes.

Case III: b has a maximum at i: In the third case, b has a maximum at
i, so it can be expressed

(

ei − µhi(b)−1

)

ξ for some ξ ∈ S (n; k). As discussed
above, this is true regardless of whether the maximum at i is the result of
box addition or not. If it is not, then ξ is a multiple of ξ′b, and if it is, then
ξ = ξ′d where b = ♦i (d). So

〈ξ′a, ξ′b〉 = 〈
(

ei − µhi(a)−1

)

ξ′c,
(

ei − µhi(b)−1

)

ξ〉
= 〈ξ′c,

(

qei − µhi(b)−1ei − µhi(a)−1ei + µhi(a)−1µhi(b)−1

)

ξ〉
=

(

q − µhi(a)−1 − µhi(b)−1

)

〈ξ′c,
(

ei − µhi(b)−1

)

ξ〉

+
(

µhi(a)−1µhi(b)−1 + qµhi(b)−1 − µhi(a)−1µhi(b)−1 − µ2
hi(b)−1

)

〈ξ′c, ξ〉
=

(

q − µhi(a)−1 − µhi(b)−1

)

〈ξ′c, ξ′b〉+
(

qµhi(b)−1 − µ2
hi(b)−1

)

〈ξ′c, ξ〉

As c has a minimum at i and b has a maximum at i, c 6= b, so the first
term vanishes. If the maximum at i in b is not the result of box addition,
then ξ is a multiple of ξ′b, so the second term also vanishes. Otherwise,
since ♦i (c) 6= ♦i (d), c 6= d, so 〈ξ′c, ξ′d〉 = 0, and hence the second term also
vanishes.

We get our first calculation of the square-norm of the second basis ele-
ments from Genauer and Stoltzfus [4] since Di Francesco [2] and Cautis and
Jackson [1] normalize their basis elements. However, we follow a method of
proof more similar to the Di Francesco and Cautis and Jackson proofs.

Theorem 5.8. If a = (a1, . . . , am) then 〈ξ′a, ξ′a〉 = 1
µa1 ···µam

.

Proof. We again prove this by induction on the number of boxes in a.

Base Case: In our base case ξ′a = ξ(1,...,1). In the diagram of the inner
product 〈ξ(1,...,1), ξ(1,...,1)〉, each of the p loops of one diagram (1, . . . , 1) is
connected at both ends to the corresponding loop of the other diagram
(1, . . . , 1), producing p closed loops and hence a factor of qp. Likewise,
each through-string of the upper ξ(1,...,1) is connected to the corresponding
through-string of the lower ξ(1,...,1), producing a factor of 1. So 〈ξ′a, ξ′a〉 =

〈ξ(1,...,1), ξ(1,...,1)〉 = qp = 1
µ1···µ1

.
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Inductive Step: For our induction step, we can assume that a = (a1, . . . , ap)
has at least one box, so a = ♦i (b) for some b = (b1, . . . , bp) with fewer boxes,
and our induction hypothesis is that, 〈ξ′b, ξ′b〉 = 1

µb1
···µbp

.

Thus,

〈ξ′a, ξ′a〉 = 〈
(

ei − µhi(a)−1

)

ξ′b,
(

ei − µhi(a)−1

)

ξ′b〉

= 〈ξ′b,
(

qei − 2µhi(a)−1ei + µ2
hi(a)−1

)

ξ′b〉
=

(

q − 2µhi(a)−1

)

〈ξ′b,
(

ei − µhi(a)−1

)

ξ′b〉

+
(

µ2
hi(a)−1 + qµhi(a)−1 − 2µ2

hi(a)−1

)

〈ξ′b, ξ′b〉
=

(

q − 2µhi(a)−1

)

〈ξ′b, ξ′a〉+ µhi(a)−1

(

q − µhi(a)−1

)

〈ξ′b, ξ′b〉

As a 6= b, the first term vanishes, by the previous theorem. By the recurrence

relation for the Chebyshev polynomials, q − µhi(a)−1 =
q∆hi(a)−1−∆hi(a)−2

∆hi(a)−1
=

∆hi(a)

∆hi(a)−1
= 1

µhi(a)
. Thus 〈ξ′a, ξ′a〉 =

µhi(a)−1

µhi(a)
〈ξ′b, ξ′b〉.

We know that if a = (a1, . . . , ap) and b = (b1, . . . , bp), then (a1, . . . , ap) =
(b1, . . . , bj−1, bj + 1, bj+1, . . . , bp), where the decreasing step at i in b is its jth
decreasing step, and the decreasing step at i+1 in a is its jth decreasing step.
So bj = hi−1 (b) and aj = hi (a). Thus 〈ξ′a, ξ′a〉 =

µbj

µaj

〈ξ′b, ξ′b〉 =
µbj

µaj

1
µb1

···µbp
=

1
µa1 ···µap

, as expected.

Corollary 5.9. If a = (a1, . . . , ap) has maxima at i1, . . . , ir and minima
at j1, . . . , js (where a is thought to have a minimum at n if its last step is
decreasing, but not to have a maximum at n if its last step is increasing),

then 〈ξ′a, ξ′a〉 =
∆hi1

(a)···∆hir
(a)

∆hj1
(a)···∆his

(a)
.

Proof. We know that 〈ξ′(1,...,1), ξ′(1,...,1)〉 = 〈ξ(1,...,1), ξ(1,...,1)〉 = qp. The height

before each downward step is 1, so each of these must be a maximum (since
otherwise the downward step must be preceded by at least one step, and if
it is preceded by a downward step, then the height before that downward
step is greater than the height before our original downward step, but we
have no such heights in our restricted sequence), and hence we have p max-
ima with height 1, contributing a factor of qp to the right-hand side of our
equation. Any minimum must have height 0, since it must follow one of
these downward steps, each contributing a factor of 1

1 = 1 to the right-hand
side of our equation. So the right-hand side of the equation is qp.
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Assume that the equation holds for a. As shown above, box addition at i,

where a has a minimum at i, contributes a factor of
µhi(a)−1

µhi(a)
=

∆hi(a)
∆hi(a)+2

∆2
hi(a)+1

.

This turns the minimum a has at i into a maximum whose height is greater
by two. According to the right-hand side of the equation, we would expect
to gain a factor of ∆hi(a)+2 for the new maximum and to lose a factor of

1
∆hi(a)

for the minimum we have lost, which accounts for the numerator of

the expression. Furthermore, changing the ith step to an upward step and
the (i+ 1)th to a downward step can either create a minimum of height
hi±1 (a) = hi (a)+ 1 or turn a maximum of that height into a slope, on each
side. Either, according to the right-hand side of the equation, should give
us a factor of 1

∆hi(a)−1
. This accounts for the denominator of the expression.

So the equation holds for ♦i (a) as well.

6 Explicit Isomorphism with a Direct Sum of Ma-

trix Algebras

We can now express the isomorphism between TLn and a direct sum of
matrix algebras exhibited in [1] in terms of the representation of TLn on
U (n) and the bases we have just constructed.

We showed above that there is an obvious mapping between TLn and
U (2n;n), the algebra over noncrossing half-diagrams on 2n points with no
through-strings. We can define a basis of e′p ∈ TLn, corresponding to the
basis of ξ′a ∈ U (2n;n) under this mapping. As the value of the inner product
is preserved under this mapping, this is an orthogonal basis of TLn. It can
be shown further, as in [1], that e′a⊗be

′
c⊗d = 0 if b 6= c. Here, we instead

prove that e′a⊗bξ
′
c = 0 when b 6= c. (Note that with our abuse of notation,

e′a⊗b will not generally be equal to ξ′a ⊗ ξ′b.)

Lemma 6.1. Let a and b be half-diagrams on n points with the same number
of through-strings (so a⊗b is defined) and let c be a half-diagram on n points
where b 6= c. Then e′a⊗bξ

′
c = 0.

Proof. This proof is very similar to the previous proofs, where we transfer
a box addition operator from one factor to the other. We begin by showing
that the action of ei ∈ TL2n, for 1,≤ i < n, on ξ ∈ U (2n;n) is equivalent to
left-multiplication of ei ∈ TLn on the e ∈ TLn equivalent to ξ, and likewise
the action of e2n−i ∈ TL2n, for 1 ≤ i < n, on ξ is equivalent to right-
multiplication of ei ∈ TLn on this e ∈ TLn. Then, since the box addition
operators consist of an ei or an ei and a scalar multiple, box additions to

34



≃

Figure 14: Left multiplication by e3 ∈ TL5 is equivalent to the action of
e3 ∈ TL10

ξ ∈ U (2n;n) not at n can be expressed in terms of left or right multiplication
on the equivalent element of TLn.

Let p be a full diagram on 2n points, or alternately, a half-diagram on 2n
points with no through strings. Then eiep = eiep · 1 and epei = 1 · epei. We
then wish to construct an element of TL2n such that the same identifications
of the same graphs occur, as shown in Figure 14.

In the first case, we construct a pairing on 4n points by renumbering
the total of 4n points in ei and 1. We let the jth point of ei be the jth
point of the new diagram for 1 ≤ j ≤ n, the (2n− j + 1)th point of ei be
the (4n− j + 1)th point of the new diagram for 1 ≤ j ≤ n, the jth point
of 1 be the (2n+ j)th point of the new diagram for 1 ≤ j ≤ n, and the
(2n− j + 1)th point of 1 be the (2n− j + 1)th point of the new diagram,
for 1 ≤ j ≤ n. Since each point is used exactly once, this is still a pairing.
We can see that the same points become points 1 through 2n of the final
diagram, and the same identifications of points are made. Thus we get
the same power of q and the same resulting diagram, but considered as an
element of U (2n;n) rather than TLn.

Furthermore, we can see that since the ith point of ei ∈ TLn is connected
to its (i+ 1)th, the ith point of the new diagram is connected to its (i+ 1)th,
and since the (2n− i+ 1)th point of ei ∈ TLn is connected to its (2n− i)th,
the (4n− i+ 1)th point of the new diagram is connected to its (4n− i)th.
If the jth point of the new diagram is not one of these points, it is connected
to the (4n− j + 1)th point. We can recognize this element as ei ∈ TL2n, so
we know that it is a legitimate noncrossing diagram.

Thus, eiep is equivalent to eiξp. We can extend this by linearity to all of
TLn and U (2n;n).

The points in {1, . . . , n} in a ⊗ b are paired as they are in a, and those
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⊗ = n

Figure 15: a, b and a ⊗ b represented as Dyck paths: a ⊗ b is a and the
reflection of b in the line y = n

≃

Figure 16: Right multiplication by e2 ∈ TL5 is equivalent to the action of
e8 ∈ TL10

that were not paired in a are now paired with points in {n+ 1, . . . , 2n}. In
either case, the ith bracket in a ⊗ b is of the same type as the ith bracket
in a for 1 ≤ i ≤ n, and hence hi (a⊗ b) = hi (a), 1 ≤ i ≤ n. We show what
this looks like when a, b and a⊗ b are represented as Dyck paths in Figure
15. So ♦i (a⊗ b) = ♦i (a) ⊗ b. Thus ξ′

♦i(a⊗b) =
(

ei − µhi(a⊗b)+1

)

ξ′a⊗b, and

hence e′
♦i(a)⊗b

=
(

ei − µhi(a)+1

)

e′a⊗b. This is the appropriate operator for
box addition on a at i.

Likewise, epei = 1 · epei. We can again construct an element of TL2n

which performs this multiplication in TL2n, shown in Figure 16. We let
the jth point of 1 be the jth point of the new diagram for 1 ≤ j ≤ n, the
(2n− j + 1)th point of 1 be the (4n− j + 1)th point of the new diagram,
the jth point of ei be the (2n+ j)th point of the new diagram, and the
(2n− j + 1)th point of ei be the (2n− j + 1)th of the new diagram for
1 ≤ j ≤ n. Again, the same identifications are made, so we get the same
power of q and the same resulting diagram.

The points i and i + 1 are paired in ei ∈ TLn, so the points 2n + i =
4n−(2n− i) and 2n+i+1 = 4n−(2n− i)+1 are paired in the new diagram,
and points 2n − i + 1 and 2n − i are paired in ei, so points 2n − i + 1 and
2n − i are paired in the new diagram. For all other j in the new diagram,
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the jth point is connected to the (4n− j + 1)th. We can again recognize
this pairing as e2n−i, a legitimate noncrossing pairing.

As above, we can extend this linearly, so e2nξ is equivalent to eei when
ξ ∈ U (2n;n) is equivalent to e ∈ TLn.

a⊗b is the full diagram whose ith point is the ith point of a for 1 ≤ i ≤ n,
and whose (2n− i+ 1)th point is the ith point of b, for 1 ≤ i ≤ n, with
the through-strings of the two diagrams connected in the unique noncross-
ing way. This reverses the order of the n points of b, so the paired points
corresponding to opening brackets now correspond to closing brackets, and
those corresponding to closing brackets now correspond got opening brack-
ets. As the through-strings of b are now connected to points in {1, . . . , n},
they correspond to closing brackets. So the (2n− i)th bracket of a⊗b is the
opposite type of bracket as the ith bracket of b. Thus if b has a maximum,
minimum or slope at i (that is, the brackets at i and i + 1 are an opening
bracket and a closing bracket, a closing bracket and an opening bracket, or
two brackets of the same type), a ⊗ b has a maximum, minimum or slope
respectively at 2n − i (since the brackets at 2n − i and 2n − i + 1 will be
an opening bracket and a closing bracket, a closing bracket and an opening
bracket, or the same type of bracket).

Since a ⊗ b corresponds to a legitimate Dyck path, whose final point
must be (2n, 0), its height at 2n− i, for 1 ≤ i ≤ n, must then be equal to the
number of downward steps in the last i steps minus the number of upward
steps in the last i steps, that is, the number by which the upward steps
exceeds the downward steps among the first i of b. So h2n−i (a⊗ b) = hi (b).
This is shown in Figure 15.

Then we have ♦2n−i (a⊗ b) = a ⊗ ♦i (b), and therefore ξ′
♦2n−i(a⊗b) =

(e2n−i− µh2n−i(a⊗b)+1

)

ξ′a⊗b is equivalent to e′
a⊗♦i(b)

= e′a⊗b

(

ei − µhi(b)+1

)

.

If b has a slope at i, then a ⊗ b has a slope at 2n − i, so e′a⊗bei =
e2n−iξ

′
a⊗b = 0, so we have a version of Lemma 5.6 which we can apply in

this situation. We can then establish the base case of our induction on the
number of boxes of c (which needs to be extended to the case where b and
c are both minimal elements, but with different numbers of through-strings,
which we do below). The case where b has at least one box but c does not
depends only on Lemma 5.6, so the rest of the base case applies here as
well. The calculations in the three cases of the inductive step are identical
as well.

Base Case: We first show that if b and c are both minimal elements in
their respective orderings, but have different numbers of through-strings,
then the statement holds. Let p1 be the number of pairs in b, and let p2 be
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the number of pairs in c. We consider the case where p1 < p2 and the case
p1 > p2 separately.

Case I: p1 < p2: c = (1, . . . , 1), so none of its p2 loops may be underneath
another loop or through-string. Thus each loop must close immediately, and
the p2 loops must precede all of the n − 2p2 through-strings. So it has a
loop from 2i − 1 to 2i for all i, 1 ≤ i ≤ p2. Thus ep2ξ

′
c = ep2ξc = qξc. So

e′a⊗bξ
′
c =

1
q
e′a⊗bep2ξ

′
c.

b = (1, . . . , 1) as well, so again, none of its arches may occur underneath
another arch or a through-string, so none of its n−2p1 through-strings must
occur before the last n−2p1 points. Thus b ends with n−2p1 upward steps,
and hence has a slope at i for all i, 2p1 + 1 ≤ i < n, and hence a⊗ b has a
slope at 2n− i for all such i.

Right multiplication of e′a⊗b by ei is equivalent to action of e2n−i on the
equivalent element of U (2n;n), ξa⊗b, and e2n−p2ξ

′
a⊗b = 0. So the entire

expression vanishes, and e′a⊗bξ
′
c = 0.

Case II: p1 > p2: e′a⊗b is a linear combination of ep with p � a ⊗ b. Thus
hn (p) ≤ hn (a⊗ b). hn (p) is the number by which the opening brackets
exceed the closing brackets in the first n brackets of p, that is, the number
of points in {1, . . . , n} which must be paired with a point in {n+ 1, . . . , 2n}.
So any p with p � a⊗ b may have at most as many through-strings as a⊗ b.

Thus, e′a⊗b is a linear combination of ep where p has n − 2p through-
strings, for p > p2. So c must have at least two more through-strings than p,
and hence when we concatenate ep with ξ′c = ξc in the usual way, there must
be at least two through-strings in c which are not connected in a sequence of
edges to a through string of p. Thus they must be connected to each other,
so epξ

′
c = 0. So e′a⊗bξ

′
p = 0.

We can also adapt our proof of the formula for 〈a, a〉 to the situation
where b = c.

Lemma 6.2. Let a and b be half-diagrams on n points with the same number
of through-strings. Then e′a⊗bξ

′
b = 〈ξ′b, ξ′b〉ξ′a.

Proof. If we can express b as a box addition, we can perform the same
calculations as in Theorem 5.8 to get the same recurrence relations. All we
need to show is that, in the base case, where b is a minimal element, e′a⊗b =
〈ξ′b, ξ′b〉ξ′a. Then we can express 〈ξ′

♦i(b)
, ξ′

♦i(b)
〉 as a scalar multiple of 〈ξ′bξ′b〉,

since all other cross-terms vanish. We can likewise express e′
a⊗♦i(b)

ξ′
♦i(b)

as

a scalar mutliple of e′a⊗bξ
′
b, since again all other cross-terms vanish.
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Base Case: Let b be a minimal element, so ξ′b = ξb. a can be expressed as a
series of box additions on b (since it has the same number of through-strings),
so e′a⊗b can be expressed as e′b⊗b left-multiplied by the factors corresponding
to these box additions.

e′b⊗b is a linear combination of ec⊗d with c⊗ d � b⊗ b. The coefficient of
eb⊗b in this is 1, as shown above. For any other c⊗ d, hi (c⊗ d) < hi (b⊗ b)
for some i. Since b is minimal, we cannot find a c ≺ b or d ≺ b, so c and d

must not have the same number of through-strings as b. Since the number
of through-strings of c and d is hn (c⊗ d), and hn (c⊗ d) ≤ hn (b⊗ b), the
c ⊗ d must have fewer through strings. Then, as shown above, ec⊗dξb = 0.
So these terms do not contribute.

We also know from above that eb⊗bξb = qpξb, where p is the number of
loops in b. So e′b⊗bξ

′
b = qpξ′b. Since e

′
a⊗bξ

′
b is e

′
b⊗bξ

′
b left-multiplied by the box

addition operators which would give us ξ′a from ξ′b, e
′
a⊗bξ

′
b = qpξ′b = 〈ξ′b, ξ′b〉ξ′a,

as desired.

If we let the ξ′a be a basis for each U (n; p), then each e′p acts nontrivially
on exactly one basis element in one of the U (n; p), which it maps to a
scalar mutliple of another basis element. So in this representation, each e′p
is a nonzero multiple of an elementary matrix. Thus we have an explicit
isomorphism with the direct sum of matrix algebras Mcn,0×cn,0 (C) ⊕ . . . ⊕
Mcn,2⌊n

2 ⌋×cn,2⌊n
2 ⌋

(C).

However, if we want this to be a ∗-homomorphism, we need to normalize
the basis elements of the U (2n;n). As 〈ξ′a, ξ′a〉 is not necessarily nonneg-
ative, we cannot actually normalize the basis. However, we can choose a

square root of this quantity and take our basis to be ξ′a√
〈ξ′a,ξ

′
a〉
, with the con-

vention that if the inner product is negative, we take the positive imaginary
squareroot.

Then e′a⊗b acts nontrivially only on normalized basis element
ξ′
b√

〈ξ′
b
,ξ′

b
〉
,

and e′a⊗b

ξ′
b√

〈ξ′
b
,ξ′

b

=
√

〈ξ′b, ξ′b〉ξ′a =
√

〈ξ′a, ξ′a〉
√

〈ξ′b, ξ′b〉
ξ′a√
〈ξ′a,ξ

′
a〉
. So it is a scalar

multiple of the elementary matrix indexed by a and b.
We now consider

(

e′a⊗b

)∗
. This is constructed by relabelling the points

in each of the component diagrams from i to 2n − i + 1. We can do this
by relabelling the points of the minimal element from i to 2n − i + 1, and
by relabelling the points in any diagram in TL2n which acts on it from i to
2n − i+ 1 for 1 ≤ i ≤ 2n and from 2n+ i to 4n− i for 1 ≤ i ≤ 2n.

No arch of the minimal element (1, . . . , 1) occurs underneath another
arch. When we relabel the points, no arch of the new diagram is underneath
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another arch, so it must also be (1, . . . , 1), so it is still the minimal element.
If the minimal element is expressed a ⊗ b, then a and b are both minimal
half-diagrams with the same number of through-strings, so a = b, and hence
a⊗ b = b⊗ a. So in this case

(

e′a⊗b

)∗
= e′b⊗a.

When we relabel the points of ei for some i, it becomes e2n−i. So if
(

e′a⊗b

)∗
= e′b⊗a, then inductively

(

e′
♦i(a⊗b)

)∗
=

((

ei − µhi(a⊗b)+1

)

e′a⊗b

)∗
=

(

e2n−i − µh2n−i(b⊗a)+1

)

e′b⊗a = e′
♦2n−i(b⊗a).

Thus, by induction,
(

e′a⊗b

)∗
= e′b⊗a. This element acts nontrivially only

on basis element ξ′a√
〈ξ′a,ξ

′
a〉
, which it maps to

√

〈ξ′a, ξ′a〉
√

〈ξ′b, ξ′b〉
ξ′
b√

〈ξ′
b
,ξ′

b
〉
. So

(

e′a⊗b

)∗
is the same scalar mutliple of the elementary matrix indexed by b

and a as e′a⊗b is of the elementary matrix indexed by a and b.
Thus, in this representation, the e′p are scalar multiples of the elementary

matrices, and this isomorphism is a ∗-homomorphism.
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