New Constructions of Complex Manifolds

Jinxing Xu
School of Mathematical Sciences, Peking University, Beijing, 100871, P.R. China
E-mail: xujx02@pku.edu.cn

Abstract

For a generic anti-canonical hypersurface in each smooth toric Fano 4 -fold with rank 2 Picard group, we prove there exist three isolated rational curves in it . Moreover, for all these 4 -folds except one, the contractions of generic anti-canonical hypersurfaces along the three rational curves can be deformed to smooth threefolds diffeomorphic to connected sums of $S^{3} \times S^{3}$. In this manner, we obtain complex structures with trivial canonical bundles on some connected sums of $S^{3} \times S^{3}$. This construction is an analogue of that in Friedman [7, Lu and Tian [12] which used only quintics in \mathbb{P}^{4}.

1 Introduction

This paper is resulted from an attempt towards the Reid's fantasy for some families of Calabi-Yau threefolds . Let's first recall some notions .

Definition 1 ([14). Let Y be a Calabi-Yau threefold and $\phi: Y \rightarrow \bar{Y}$ be a birational contraction onto a normal variety. If there exists a complex deformation (smoothing) of \bar{Y} to a Calabi-Yau threefold \tilde{Y}, then the process of going from Y to \tilde{Y} is called a geometric transition and denoted by $T(Y, \bar{Y}, \tilde{Y})$. A transition $T(Y, \bar{Y}, \tilde{Y})$ is called conifold if \bar{Y} admits only ordinary double points as singularities and the resolution morphism ϕ is a small resolution (i.e. replacing each ordinary double point by a smooth rational curve).

Note for a conifold transition $T(Y, \bar{Y}, \tilde{Y})$, the exceptional set of the morphism ϕ is several not intersecting smooth rational curves each with normal bundle $\mathcal{O}(-1) \oplus \mathcal{O}(-1)$ in Y and conversely, given some finite not intersecting smooth rational curves each with normal bundle $\mathcal{O}(-1) \oplus \mathcal{O}(-1)$ in Y, we can contract them to get \bar{Y} admitting only ordinary double points as singularities. The smoothing of \bar{Y} has been studied by several people. For example, we have the following theorem :

Theorem 1 (Y. Kawamata, G.Tian, see [15]). Let \bar{Y} be a singular threefold with l ordinary double points as the only singular points p_{1}, \ldots, p_{l}. Let Y be a small resolution of \bar{Y} by replacing p_{i} by smooth rational curves C_{i}. Assume that Y is cohomologically Kähler and has trivial canonical line bundle. Furthermore, we assume that the fundamental classes $\left[C_{i}\right]$ in $H^{2}\left(Y ; \Omega_{Y}^{2}\right)$ satisfy a relation $\Sigma_{i} \lambda_{i}\left[C_{i}\right]=0$ with each λ_{i} nonzero . Then \bar{Y} can be deformed into a smooth threefold \tilde{Y}.

A special case of the above theorem was obtained by R . Friedman in [6] .
The conifold transition process was firstly (locally)observed by H .Clemens in [3] , where he explained that locally a conifold transition is described by a suitable $S^{3} \times D_{3}$ to $S^{2} \times D_{4}$ surgery . Roughly speaking, for the conifold transition $T(Y, \bar{Y}, \tilde{Y})$ from Y to \tilde{Y}, it kills 2 -cycles in Y and increases 3 -cycles in \tilde{Y}. For a precise relation between their Betti numbers, one can consult Theorem 3.2 in [14. In Theorem 1, if the fundamental classes $\left[C_{i}\right]$ generates $H^{4}(Y ; \mathbb{C})$, then we would have $b_{2}(\tilde{Y})=0$. By results of C.T.C.Wall in [16], \tilde{Y} would be diffeomorphic to a connected sum of $S^{3} \times S^{3}$, and the number of copies is $\frac{b_{3}(\tilde{Y})}{2}+l-b_{2}(Y)$. We have the following two problems (cfr. 14):

1. Wether every projective Calabi-Yau threefold is birational to a Calabi-Yau threefold Y such that $H^{2}(Y ; \mathbb{C})$ is generated by rational curves and these curves satisfy the conditions in Theorem 1 .
2. Wether the moduli space \mathcal{N}_{r} of complex structures on the connected sum of r copies of $S^{3} \times S^{3}$ is irreducible .

If we could have positive answers to both of the above problems, then we would verify the famous :

Conjecture 1 (the Reid's fantasy, see [13]). Up to some kind of inductive limit over r, the birational classes of projective Calabi-Yau threefolds can be fitted together, by means of conifold transitions, into one irreducible family parameterized by the moduli space \mathcal{N} of complex structures over suitable connected sum of copies of $S^{3} \times S^{3}$.

In P.S.Green and T.Hübsch [8], they proved that the moduli spaces of some CalabiCYau threefolds, which are complete intersections in products of projective spaces , were connected each other by conifold transitions. As for other families of CalabiYau threefolds, for example that which are anti-canonical hypersurfaces in toric Fano 4-folds, M. Kreuzer and H. Skarke [11] proved they can be connected by geometric transitions, but the transitions they used are not conifold transitions. So a natural
question is about the Reid's fantasy for these families of Calabi-Yau threefolds. In this paper, we study the first problem above. Our main result is :

Theorem 2. For each toric smooth Fano 4-folds X with rank 2 Picard group(the only toric Fano 4-fold with rank 1 Picard group is \mathbb{P}^{4}), let Y be a generic anti-canonical hypersurface of X. Then there exist three smooth rational curves C_{i} in Y such that each one has normal bundle $\mathcal{O}(-1) \oplus \mathcal{O}(-1)$ in Y, the fundamental classes $\left[C_{i}\right]$ generate $H^{4}(Y ; \mathbb{Z}) \simeq H_{2}(Y ; \mathbb{Z})$ and they satisfy a relation $\Sigma_{i} \lambda_{i}\left[C_{i}\right]=0$ with each λ_{i} nonzero. Moreover, with the exception of the variety B_{1} in Batyrev's classification for smooth toric Fano 4-folds [1], the three curves do not intersect with each other .

Note by Lefschetz's hyperplane theorem,$H_{2}(Y ; \mathbb{Z}) \simeq H_{2}(X ; \mathbb{Z})$, so $H_{2}(Y ; \mathbb{Z})$ is a free abelian group with rank 2 . Since X is simply connected, $H^{2}(X ; \mathbb{Z})$ is also a free abelian group with rank 2 . Hence the classes $\left[C_{i}\right]$ generating $H_{2}(Y ; \mathbb{Z})$ is equivalent to generating $H_{2}(X ; \mathbb{Z})$, and this is also equivalent to the (dual) cohomology classes represented by C_{i} in $H^{2}(X ; \mathbb{Z})$ generate $H^{2}(X ; \mathbb{Z})$. Using Theorem 1 and the discussions above, we can get connected sums of $S^{3} \times S^{3}$ after contracting these rational curves and smoothing. The number of copies of $S^{3} \times S^{3}$ is summarized in the following table , in which the name of toric 4 -folds is from Batyrev [1] :

Toric Fano 4-fold	B_{2}	B_{3}	B_{4}	B_{5}	C_{1}	C_{2}	C_{3}	C_{4}
Number of copies of $S^{3} \times S^{3}$	104	92	88	88	97	88	88	85

So according to Theorem 1, we get complex structures with trivial canonical bundles on these connected sums of $S^{3} \times S^{3}$. In Lu and Tian [12], they obtained complex structures with trivial canonical bundles for the connected sum of m copies of $S^{3} \times S^{3}$ for each $m \geq 2$, using quintics in \mathbb{P}^{4}, combing a preceding result of R. Friedman [7].

The next question is about the relations of the complex structures obtained using different 4 -folds. For example, in the above table, we observe that for the varieties $B_{4}, B_{5}, C_{2}, C_{3}$, we can obtain the same topological connected sum of $S^{3} \times S^{3}$, but we don't know whether the various complex structures on it are the same, or at least lie in the same deformation class. We also would like to compare the complex structures obtained using \mathbb{P}^{4} in Friedman [7], Lu and Tian [12] and that obtained using these toric 4 - folds with rank 2 Picard groups . Obviously this question is closely related to the second problem preceding Conjecture 1. Because these complex manifolds are not Kähler manifolds (they have vanishing b_{2}), very few techniques are available in dealing with them, and very little is known about complex structures over connected sums of $S^{3} \times S^{3}$. Still and all, the results obtained in this paper can be viewed to be a
first step for finding connections of these Calabi-Yau threefolds and provide examples of non-intersecting isolated rational curves in some Calabi-Yau threefolds other than quintics (compare T.Johnsen and A.L.Knutsen [10], T. Johnsen and S. L. Kleiman [9]).

The paper is organized as follows .
In Sec. 2, we recall the homogenous coordinates on a toric variety of D.Cox [4], and give the homogenous coordinates representations for embeddings of \mathbb{P}^{1} to complete nonsingular toric varieties .

In Sec. 3, we extend an argument from Clemens [2] to conclude that, if we can find some anti-canonical hypersurface containing a smooth rational curve with normal bundle $\mathcal{O}(-1) \oplus \mathcal{O}(-1)$ and with a fixed topological type , then generic anti-canonical hypersurfaces will contain a smooth rational curve with normal bundle $\mathcal{O}(-1) \oplus \mathcal{O}(-1)$ and with the same topological type. At the end of this section, we give a direct method to get the non-intersecting property for the rational curves in an anti-canonical hypersurface .

In Sec. 4, we analyze each toric smooth Fano 4 -folds X with rank 2 Picard groups, and for each case we construct three rational curves C_{10}, C_{20}, C_{30} and three anti-canonical hypersurfaces Y_{10}, Y_{20}, Y_{30} such that $C_{i 0}$ lies in $Y_{i 0}$ with normal bundle $\mathcal{O}(-1) \oplus \mathcal{O}(-1)$ for $i=1,2,3$. We obtain the non-intersecting property for the rational curves, with the exception of the variety B_{1}. Then using the results in Sec. 3 we get our main theorem .

Acknowledgements : The author would like to sincerely thank his thesis advisor Professor Gang Tian for proposing this study and for his continuous encouragement .

2 Embeddings of \mathbb{P}^{1} to complete nonsingular toric varieties

In this section, we will describe all the embeddings of \mathbb{P}^{1} to complete nonsingular toric varieties using the homogeneous coordinates on a toric variety of D.Cox 4]. First recall the homogeneous coordinates on a toric variety.

Let X be the toric variety determined by a fan Δ in $N \simeq \mathbb{Z}^{n}$. As usual, M will denote the \mathbb{Z} dual of N, and cones in Δ will be denoted by σ. The one dimensional cones of Δ form the set $\Delta(1)$. And given $\rho \in \Delta(1)$, let n_{ρ} denote the generator of $\rho \cap N$. If σ is any cone in Δ, then $\sigma(1)=\{\rho \in \Delta(1): \rho \subset \sigma\}$ is the set of one dimensional faces of the cone σ. Throughout of this section, we assume X to be a complete nonsingular toric variety. So for each maximal cone $\sigma,\left\{n_{\rho}: \rho \in \sigma(1)\right\}$ form a base of N.

Each $\rho \in \Delta(1)$ corresponds to a T-invariant irreducible Weil divisor D_{ρ} in X.

Where T is the torus in X. The free abelian group of T-invariant irreducible Weil divisor on X will be denoted by $\mathbb{Z}^{\Delta(1)}$.

We consider the map

$$
M \rightarrow \mathbb{Z}^{\Delta(1)} \text { defined by } m \rightarrow D_{m}=\sum_{\rho \in \Delta(1)}<m, n_{\rho}>D_{\rho}
$$

Where $<,>$ means the pairing between elements in M and N. The map is injective since $\Delta(1)$ spans $N \otimes_{\mathbb{Z}} \mathbb{R}$. We have an exact sequence

$$
\begin{equation*}
0 \rightarrow M \rightarrow \mathbb{Z}^{\Delta(1)} \rightarrow A_{n-1}(X) \rightarrow 0 \tag{1}
\end{equation*}
$$

Where $A_{n-1}(X)$ denotes the divisor class group of X. Since X is complete and nonsingular , $A_{n-1}(X) \simeq \operatorname{Pic}(X)$ is a free abelian group of rank $d-n$, where d is the number of one-dimensional faces of Δ, and n is the dimension of X.

For each $\rho \in \Delta(1)$, we introduce a variable X_{ρ}. And for each cone $\sigma \in \Delta$, let $X_{\hat{\sigma}}=\prod_{\rho \notin \sigma} X_{\rho}$, then we can think of the variety

$$
Z=\left\{x \in \mathbb{C}^{\Delta(1)}: X_{\hat{\sigma}}=0 \text { for all } \sigma \in \Delta\right\} \subset \mathbb{C}^{\Delta(1)}
$$

as the "exceptional" subset of $\mathbb{C}^{\Delta(1)}$.
If we apply $\operatorname{Hom}\left(--, \mathbb{C}^{*}\right)$ to the exact sequence (1), then we get the exact sequence

$$
1 \rightarrow G \rightarrow\left(\mathbb{C}^{*}\right)^{\Delta(1)} \rightarrow T \rightarrow 1
$$

where $G=\operatorname{Hom}\left(A_{n-1}(X), \mathbb{C}^{*}\right)$ and $T=\operatorname{Hom}\left(M, \mathbb{C}^{*}\right)$, both are products of copies of \mathbb{C}^{*}.

Since $\left(\mathbb{C}^{*}\right)^{\Delta(1)}$ acts naturally on $\mathbb{C}^{\Delta(1)}$, its subgroup $G \subset\left(\mathbb{C}^{*}\right)^{\Delta(1)}$ acts on $\mathbb{C}^{\Delta(1)}$ also. Now X is the geometric quotient of $\mathbb{C}^{\Delta(1)}-Z$ by $G: X \simeq \mathbb{C}^{\Delta(1)}-Z / G$

For each $\rho \in \Delta(1)$, we will canonically associate to it a line bundle L_{ρ} and a section s_{ρ} of this line bundle as follows.

For each maximal cone σ of Δ, denote the corresponding affine piece of X by $U_{\sigma} \simeq \operatorname{Spec} \mathbb{C}[\check{\sigma} \cap M]$, then define $f_{\rho, \sigma} \in M$:

$$
f_{\rho, \sigma}\left(n_{\tau}\right)= \begin{cases}1 & \text { if } \tau=\rho \tag{2}\\ 0 & \text { otherwise }\end{cases}
$$

for $\tau \in \Delta(1) \cap \sigma$.
Since $\left\{n_{\tau}: \tau \in \Delta(1) \cap \sigma\right\}$ form a base of $N, f_{\rho, \sigma}$ is well defined, and $f_{\rho, \sigma} \in \check{\sigma} \cap M$. So $\chi^{f_{\rho, \sigma}}$ is a regular function on U_{σ}. One can check easily that for two maximal cones σ_{1} and $\sigma_{2}, \chi^{f_{\rho, \sigma_{1}}}=g_{\sigma_{1} \sigma_{2}} \chi^{f_{\rho, \sigma_{2}}}$ on $U_{\sigma_{1}} \cap U_{\sigma_{2}}$, where $g_{\sigma_{1} \sigma_{2}}$ is a nowhere vanishing
regular function on $U_{\sigma_{1}} \cap U_{\sigma_{2}}$. Using these $g_{\sigma_{1} \sigma_{2}}$ as transition functions, we ge a line bundle L_{ρ}, and those $\chi^{f \rho, \sigma}$ for maximal cones ρ determine a section s_{ρ} of this line bundle. It's easy to see that the zero divisor of s_{ρ} is just the Weil divisor D_{ρ}.

Generally, if we choose $\rho_{1}, \rho_{2}, \ldots, \rho_{m} \in \Delta(1)$, and $d_{1}, d_{2}, \ldots, d_{m}$ integers, we define $f_{\sum_{i=1}^{m} d_{i} \rho_{i}, \sigma}=\sum_{i=1}^{m} d_{i} f_{\rho_{i}, \sigma}$, and similarly , using $g_{\sum_{i=1}^{m} d_{i} \rho_{i}, \sigma_{1} \sigma_{2}}=\chi^{f_{i=1}^{m} d_{i} \rho_{i}, \sigma_{1}} / \chi^{f_{i=1}^{m} d_{i} \rho_{i}, \sigma_{2}}$ on the intersection of $U_{\sigma_{1}} \cap U_{\sigma_{2}}$ for two maximal cones σ_{1} and σ_{2} as transition functions , we get a meromorphic section $s_{\sum_{i=1}^{m} d_{i} \rho_{i}}$ of a line bundle $L_{\sum_{i=1}^{m} d_{i} \rho_{i}}$, which is isomorphic to $L_{\rho_{1}}^{d_{1}} \otimes L_{\rho_{2}}^{d_{2}} \otimes \ldots \otimes L_{\rho_{m}}^{d_{m}}$. Moreover, this section is regular if $d_{1}, d_{2}, \ldots, d_{m}$ are all nonnegative integers . one can check that for integers $d_{1}, d_{2}, \ldots, d_{m}$ and $c_{1}, c_{2}, \ldots, c_{m}$, if $\sum_{i=1}^{m} d_{i} D_{\rho_{i}}=\sum_{i=1}^{m} c_{i} D_{\rho_{i}}$ in A_{n-1}, then $g_{\sum_{i=1}^{m} d_{i} \rho_{i}, \sigma_{1} \sigma_{2}}=g_{\sum_{i=1}^{m} c_{i} \rho_{i}, \sigma_{1} \sigma_{2}}$ for any two maximal cones σ_{1} and σ_{2}. That is, the transition functions of $L_{\sum_{i=1}^{m} d_{i} \rho_{i}}$ and $L_{\sum_{i=1}^{m} c_{i} \rho_{i}}$ coincide. So in this case, the quotient $s_{\sum_{i=1}^{m} d_{i} \rho_{i}} / s_{\sum_{i=1}^{m} c_{i} \rho_{i}}$ is well defined at the points on which $s_{\sum_{i=1}^{m} c_{i} p_{i}}$ is not vanishing .

Using the discussion above, we see that the sections s_{ρ} for $\rho \in \Delta(1)$ can be used to determine the homogenous coordinates of $X(\Delta) \simeq \mathbb{C}^{\Delta(1)}-Z / G$

As an application of the homogenous coordinate description for the complete nonsingular toric variety $X(\Delta)$, we will obtain all of the homogenous coordinate representations for the anti-canonical hypersurfaces on X. Recall the anti-canonical bundle of X is isomorphic to $L_{\sum_{\Delta(1)}} \rho$, and a base of regular sections is determined by points in $Q=\left\{m \in M:<m, n_{\rho}>\geq-1, \forall \rho \in \Delta(1)\right\}$. Since for any maximal cone σ, the section $\left.s_{\sum_{\Delta(1)} \rho}\right|_{U_{\sigma}}=\chi^{\sum_{\rho \in \sigma(1)} f_{\rho, \sigma}}$, so when restricted on U_{σ}, an anti-canonical section represented by $m \in Q$ is equal to $\chi^{\sum_{\rho \in \sigma(1)} f_{\rho, \sigma}+m}$. Then using the homogenous coordinates $\left(X_{\rho}\right)_{\rho \in \Delta(1)}, \chi^{\sum_{\rho \in \sigma(1)} f_{\rho, \sigma}+m}=0$ is equivalent to $\prod_{\rho \in \Delta(1)} X_{\rho}^{<m, n_{\rho}>+1}=0$. So any anti-canonical hypersurface on X has the form $\sum_{m \in Q} a_{m} \prod_{\rho \in \Delta(1)} X_{\rho}^{<m, n_{\rho}>+1}=0$, where $a_{m} \in \mathbb{C}$ are complex numbers .

Now we will describe all the embeddings of \mathbb{P}^{1} to $X(\Delta)$. Let $i: \mathbb{P}^{1} \rightarrow X$ be a morphism from \mathbb{P}^{1} to the toric variety X. Then we have a homomorphism of their Picard groups : $i^{*}: \operatorname{Pic}(X)=A_{n-1}(X) \rightarrow \operatorname{Pic}\left(\mathbb{P}^{1}\right)=\mathbb{Z}$. Under this homomorphism , suppose $i^{*}\left(L_{\rho}\right)=d_{\rho}$ for $\rho \in \Delta(1)$, then the section s_{ρ} is pulled back to a d_{ρ} form $f_{\rho}(s, t)$ on \mathbb{P}^{1}. So under the homogenous coordinates on X, the morphism i has the following form :

$$
\begin{array}{r}
\mathbb{P}^{1} \rightarrow X \\
(s, t) \rightarrow\left(f_{\rho}(s, t)\right)_{\rho \in \Delta(1)}
\end{array}
$$

We call this rational curve in X has type $\left(d_{\rho}\right)_{\rho \in \Delta(1)}$. It is a generalization of the concept of degree for rational curves in projective spaces . Note the homomorphism
from $\mathbb{Z}^{\Delta(1)}$ to \mathbb{Z} determined by the integers $d_{\rho}(\rho \in \Delta(1))$ is the composition of the map $\mathbb{Z}^{\Delta(1)} \rightarrow A_{n-1}(X)$ in the exact sequence (1) and the homomorphism $i^{*}: A_{n-1}(X) \rightarrow \mathbb{Z}$. So a set of integers $d_{\rho}(\rho \in \Delta(1))$ is induced by a morphism of \mathbb{P}^{1} to X if and only if $d_{\rho}(\rho \in \Delta(1))$ satisfy $\sum_{\rho \in \Delta(1)} d_{\rho} n_{\rho}=0$, where recall that n_{ρ} is the generator of $\rho \cap N$.

Next we want to determine the homology class represented by an embedding of \mathbb{P}^{1}. Since X is complete and nonsingular, $H^{2}(X, \mathbb{Z}) \simeq H_{2 n-2}(X, \mathbb{Z}) \simeq A_{n-1}(X)$ is a finitely generated free abelian group. So if an embedding of \mathbb{P}^{1} has the form $f_{\rho}(s, t)(\rho \in \Delta(1))$, where $f_{\rho}(s, t)$ is a degree d_{ρ} homogenous form of s, t. Then the cohomology class in $H^{2}(X, \mathbb{Z}) \simeq H_{2 n-2}(X, \mathbb{Z}) \simeq A_{n-1}(X)$ represented by this rational curve is $\sum_{\rho \in \Delta(1)} d_{\rho}\left[D_{\rho}\right]$, where $\left[D_{\rho}\right]$ is the class in $A_{n-1}(X)$ represented by the divisor D_{ρ}. Note the type and the cohomological class determines each other for a rational curve in X.

3 Rational curves in a general anti-canonical hypersurface

In this section, we fix a complete nonsingular toric Fano 4 -fold $X=X(\Delta)$, and use the same notations as the last section . We will prove that if an anti-canonical hypersurface of X contains a smooth rational curve C with normal bundle $\mathcal{O}(-1) \oplus$ $\mathcal{O}(-1)$, then a generic anti-canonical hypersurface of X will contain a smooth rational curve with the same type as C, and the normal bundle is also $\mathcal{O}(-1) \oplus \mathcal{O}(-1)$. More precisely, we have the following theorem .

Theorem 3. Suppose Y_{0} is an anti-canonical hypersurface in X, C_{0} is a smooth rational curve in X with type $\left(d_{\rho}\right)_{\rho \in \Delta(1)}$. Assume C_{0} lies in the smooth part of Y_{0}, and the normal bundle satisfies $N_{C_{0}, Y_{0}} \simeq \mathcal{O}(-1) \oplus \mathcal{O}(-1)$. Then

1. $d_{\rho} \geq-1$, for any $\rho \in \Delta(1)$.
2. For a generic anti-canonical hypersurface Y (so Y is smooth, according to Bertini's theorem), there is a smooth rational curve C embedded in Y, such that the type of C in X is the same as that of $C_{0}\left(\right.$ so $[C]=\left[C_{0}\right]$ in $H_{2}(X, \mathbb{Z})$), and the normal bundle satisfies $N_{C, Y} \simeq \mathcal{O}(-1) \oplus \mathcal{O}(-1)$.

Proof. We use an argument analogous to the one used in [2]. First of all we will construct two spaces parameterizing all the anti-canonical hypersurfaces in X and all the rational curves embedded in X with type $\left(d_{\rho}\right)_{\rho \in \Delta(1)}$ respectively . For the anticanonical hypersurfaces, take $Q=\left\{w \in M:<w, n_{\rho}>\geq-1, \forall \rho \in \Delta(1)\right\}$. It is well
known that Q is a finite set and we have shown in the last section that any anti-canonical hypersurface of X has the form $\sum_{w \in Q} a_{w} \prod_{\rho \in \Delta(1)} X_{\rho}^{<w, n_{\rho}>+1}=0$, where $a_{w} \in \mathbb{C}$ are complex numbers, and obviously, not all the constants a_{w} are zero . Denote $d=\sharp|Q|$ as the number of elements in Q. Then we can take \mathbb{P}^{d-1} as a parameter space for all the anti-canonical hypersurfaces in X.

For all the rational curves embedded in X with type $\left(d_{\rho}\right)_{\rho \in \Delta(1)}$, note under the homogenous coordinates of X, any such rational curve has the form $\left(f_{d_{\rho}}(s, t)\right)_{\rho \in \Delta(1)}$, where s, t are the homogenous coordinates of \mathbb{P}^{1}, and $f_{d_{\rho}}(s, t)$ is a homogenous polynomial of s, t with degree d_{ρ}. By convention,$f_{d_{\rho}}(s, t) \equiv 0$ if $d_{\rho}<0$. Let $\Delta_{*}(1)=\left\{\rho \in \Delta(1): d_{\rho}<0\right\}, \Delta^{*}(1)=\left\{\rho \in \Delta(1): d_{\rho} \geq 0\right\}$. Suppose $f_{d_{\rho}}=$ $\sum_{i=0}^{d_{\rho}} b_{\rho, i} s^{i} t^{d_{\rho}-i}$, for $\rho \in \Delta^{*}(1)$. Then it is natural to collect all the coefficients $b_{\rho, i}$ for $\rho \in \Delta^{*}(1), i=0, \ldots, d_{\rho}$ to construct a parameterizing space for all the rational curves with type $\left(d_{\rho}\right)_{\rho \in \Delta(1)}$ in X. Next we give the precise definition. Recall if $A_{n-1}(X) \simeq$ \mathbb{Z}^{m}, then $X \simeq \mathbb{C}^{\Delta(1)}-Z /\left(\mathbb{C}^{*}\right)^{m}$, where $Z=\left\{x \in \mathbb{C}^{\Delta(1)}: X_{\hat{\sigma}}=\prod_{\rho \notin \sigma} X_{\rho}=\right.$ 0 , for all $\sigma \in \Delta\} \subset \mathbb{C}^{\Delta(1)}$, and $\left(\mathbb{C}^{*}\right)^{m}$ acts on $\mathbb{C}^{\Delta(1)}$ in the form $\left(\lambda_{1}, \ldots, \lambda_{m}\right)$. $\left(X_{\rho}\right)_{\rho \in \Delta(1)}=\left(\varphi_{\rho}\left(\lambda_{1}, \ldots, \lambda_{m}\right) X_{\rho}\right)_{\rho \in \Delta(1)}$, with $\varphi_{\rho}:\left(\mathbb{C}^{*}\right)^{m} \rightarrow \mathbb{C}^{*}$ a homomorphism for $\rho \in \Delta(1)$. Now define

$$
\mathcal{M}^{\prime}=\mathbb{C}^{\sharp\left(\Delta_{*}(1)\right)} \times \mathbb{C}^{\sum_{\rho \in \Delta^{*}(1)}\left(d_{\rho}+1\right)}-Z^{\prime} /\left(\mathbb{C}^{*}\right)^{m}
$$

where

$$
\begin{gathered}
Z^{\prime}=\left\{\left(b_{\rho, 0}\right)_{\rho \in \Delta_{*}(1)} \times\left(b_{\rho, 0}, \ldots, b_{\rho, d_{\rho}}\right)_{\rho \in \Delta^{*}(1)}: \prod_{\rho \notin \sigma} b_{\rho, i(\rho)}=0, \forall \sigma \in \Delta, \forall i(\rho)\right. \text { such that } \\
\left.0 \leq i(\rho) \leq d_{\rho} \text { if } \rho \in \Delta^{*}(1), \text { and } i(\rho)=0 \text { if } \rho \in \Delta_{*}(1)\right\} \subseteq \mathbb{C}^{\sharp\left(\Delta_{*}(1)\right)} \times \mathbb{C}^{\sum_{\rho \in \Delta^{*}(1)}\left(d_{\rho}+1\right)}
\end{gathered}
$$

, and $\left(\mathbb{C}^{*}\right)^{m}$ acts on $\mathbb{C}^{\sharp\left(\Delta_{*}(1)\right)} \times \mathbb{C}^{\sum_{\rho \in \Delta^{*}(1)}\left(d_{\rho}+1\right)}$ in the form

$$
\begin{array}{r}
\left(\lambda_{1}, \ldots, \lambda_{m}\right) \cdot\left(b_{\rho, 0}\right)_{\rho \in \Delta_{*}(1)} \times\left(b_{\rho, 0}, \ldots, b_{\rho, d_{\rho}}\right)_{\rho \in \Delta^{*}(1)}= \\
\left(\varphi_{\rho}\left(\lambda_{1}, \ldots, \lambda_{m}\right) b_{\rho, 0}\right)_{\rho \in \Delta_{*}(1)} \times\left(\varphi_{\rho}\left(\lambda_{1}, \ldots, \lambda_{m}\right) b_{\rho, 0}, \ldots, \varphi_{\rho}\left(\lambda_{1}, \ldots, \lambda_{m}\right) b_{\rho, d_{\rho}}\right)_{\rho \in \Delta^{*}(1)}
\end{array}
$$

Now define \mathcal{M} to be the subvariety of \mathcal{M}^{\prime} with $b_{\rho, 0}=0$ for all $\rho \in \Delta_{*}(1)$. It's not hard to verify that \mathcal{M}^{\prime} is a nonsingular complete toric variety with dimension $4+\sum_{\rho \in \Delta^{*}(1)} d_{\rho}$, and \mathcal{M} is a nonsingular subvariety of \mathcal{M}^{\prime} with dimension $4+\sum_{\rho \in \Delta^{*}(1)} d_{\rho}-\sharp\left(\Delta_{*}(1)\right)$.

Consider the incidence variety

$$
I=\left\{(a, b) \in \mathbb{P}^{d-1} \times \mathcal{M}: F_{a}\left(f_{d_{\rho}}^{b}(s, t)\right)_{\rho \in \Delta(1)} \equiv 0\right\} \subseteq \mathbb{P}^{d-1} \times \mathcal{M}
$$

where for $a=\left(a_{w}\right)_{w \in Q} \in \mathbb{P}^{d-1}, F_{a}\left(X_{\rho}\right)_{\rho \in \Delta(1)}=\sum_{w \in Q} a_{w} \prod_{\rho \in \Delta(1)} X_{\rho}^{<w, n_{\rho}>+1}$. And for $\left.b=(0)_{\rho \in \Delta_{*}(1)} \times\left(b_{\rho, 0}, \ldots, b_{\rho, d_{\rho}}\right)_{\rho \in \Delta^{*}(1)} \in \mathcal{M}, f_{d_{\rho}}^{b}(s, t)\right) \equiv 0$ if $\rho \in \Delta_{*}(1)$, and $\left.f_{d_{\rho}}^{b}(s, t)\right)=\sum_{i=0}^{d_{\rho}} b_{\rho, i} s^{i} t^{d_{\rho}-i}$, for $\rho \in \Delta^{*}(1)$.

Using the equality $\sum_{\rho \in \Delta(1)} d_{\rho}<w, n_{\rho}>=0$ for any $w \in M$, we see that $F_{a}\left(f_{d_{\rho}}^{b}(s, t)\right)_{\rho \in \Delta(1)}$ is a homogenous polynomial of s, t with degree $\sum_{\rho \in \Delta(1)} d_{\rho}$, if it is not 0 . Hence elementary dimension theory implies that every irreducible component of I has dimension not less than

$$
\begin{equation*}
\operatorname{dim} \mathbb{P}^{d-1}+\operatorname{dim} \mathcal{M}-1-\sum_{\rho \in \Delta(1)} d_{\rho}=\operatorname{dim} \mathbb{P}^{d-1}+4+\sum_{\rho \in \Delta^{*}(1)} d_{\rho}-\sharp\left(\Delta_{*}(1)\right)-1-\sum_{\rho \in \Delta(1)} d_{\rho} \tag{3}
\end{equation*}
$$

On the other hand, the existence of C_{0} and Y_{0} in the hypothesis implies there is a point $\left(a_{0}, b_{0}\right) \in I$, where a_{0} is the coefficients of the defining equation of Y_{0}, and b_{0} denotes a parameterization for C_{0}. Since the normal bundle of C_{0} in Y_{0} has no nonzero sections, C_{0} is infinitesimally rigid in Y_{0}. This implies that the fibre dimension of the projection $I \rightarrow \mathbb{P}^{d-1}$ at $\left(a_{0}, b_{0}\right)$ is exactly 3 . In fact the fiber is parametrized by $P G L(2)$. So taking an irreducible component I_{0} of I going through $\left(a_{0}, b_{0}\right)$, we have

$$
\begin{equation*}
\operatorname{dim} I_{0} \leq \operatorname{dim} \mathbb{P}^{d-1}+3 \tag{4}
\end{equation*}
$$

Now (3)and (4) implies

$$
\begin{equation*}
\operatorname{dim} \mathbb{P}^{d-1}+4+\sum_{\rho \in \Delta^{*}(1)} d_{\rho}-\sharp\left(\Delta_{*}(1)\right)-\sum_{\rho \in \Delta(1)} d_{\rho}-1 \leq \operatorname{dim} I_{0} \leq \operatorname{dim} \mathbb{P}^{d-1}+3 \tag{5}
\end{equation*}
$$

Since $\sum_{\rho \in \Delta^{*}(1)} d_{\rho}+\sum_{\rho \in \Delta_{*}(1)} d_{\rho}=\sum_{\rho \in \Delta(1)} d_{\rho}$, and $d_{\rho} \geq 0$ for $\rho \in \Delta^{*}(1), d_{\rho} \leq-1$ for $\rho \in \Delta_{*}(1)$. We conclude that all the inequalities in (5) are in fact equalities, in particular $d_{\rho} \geq-1$, for any $\rho \in \Delta(1)$. That proves the first claim of the theorem .

Now $\operatorname{dim} I_{0}=\operatorname{dim} \mathbb{P}^{d-1}+3$ and that the fibre dimension of the composed morphism $I_{0} \hookrightarrow I \rightarrow \mathbb{P}^{d-1}$ at $\left(a_{0}, b_{0}\right)$ is exactly 3 will imply that this morphism $I_{0} \rightarrow \mathbb{P}^{d-1}$ is surjective, and the generic fiber has dimension 3 . This will imply that for generic hypersurface Y, there is a rational curve C embedded in Y, such that the type of C in X is the same as that of C_{0}, and the normal bundle satisfies $N_{C, Y} \simeq \mathcal{O}(-1) \oplus \mathcal{O}(-1)$. The smoothness of C comes from C_{0} is smooth and that to be a regular embedding is an open condition on \mathcal{M}. So we have proven the second claim in the theorem .

Remark 1. Using some basic deformation theory, one can prove a similar result replacing the toric variety X by any complete smooth Fano 4-fold .

Remark 2. In the above theorem, suppose there is a Zariski open subset U of \mathcal{M} such that C_{0} lies in U (more precisely, there is a parametrization of C_{0} in \mathcal{M} which lies in $U)$. Then the rational curve C in the above theorem can be chosen to lie in U, too . This can be easily seen in the proof.

According to the above theorem, for a nonsingular complete Fano toric variety X, if we can find some smooth rational curves $C_{10}, \ldots, C_{l 0}$ in X such that their types are all different with each other, and for each curve $C_{i 0}, 1 \leq i \leq l$, there is an anti-canonical hypersurface $Y_{i 0}$ of X going through $C_{i 0}$ such that they satisfy the hypothesis of the above theorem. Then for generic anti-canonical hypersurface $Y . Y$ contains smooth rational curves C_{1}, \ldots, C_{l} such that they all have normal bundles $\mathcal{O}(-1) \oplus \mathcal{O}(-1)$ in Y , and the type of C_{i} is equal to that of $C_{i 0}$ (so the cohomological class represented by C_{i} is equal to that represented by $C_{i 0}$), for $1 \leq i \leq l$. So if the cohomological classes $\left[C_{10}\right], \ldots,\left[C_{l 0}\right]$ satisfy the condition in Theorem 1 , then the same is true for the curves C_{i}.

By Remark 2, if we choose Zariski open subset $U_{i}(1 \leq i \leq l)$ of \mathcal{M} such that $C_{i 0}$ lies in U_{i} for each $1 \leq i \leq l$, then the curves C_{1}, \ldots, C_{l} in Y can be also chosen to lie in U_{1}, \ldots, U_{l} respectively. In practice, we usually choose U_{i} to be the Zariski subset of \mathcal{M} which represents all the regular embeddings of \mathbb{P}^{1}, or at the same time, some homogenous coordinates of X have no zero points on the embedded rational curve.

Using the same notation as the last paragraph, note in the hypothesis of Theorem 1, we require the smooth rational curves C_{1}, \ldots, C_{l} lying in Y do not intersect each other. So next we want to analyze when can we guarantee that for generic anti-canonical hypersurface Y, the rational curves C_{1}, \ldots, C_{l} lying in Y do not intersect each other. Take any two of these curves, suppose they are C_{1}, C_{2} without loss of generality. We fix two Zariski open set U_{1}, U_{2} of the corresponding parametrizing space $\mathcal{M}_{1}, \mathcal{M}_{2}$ such that C_{i} lies in U_{i} and every point in U_{i} represents a regular embedding, for $i=1,2$. Consider the subvariety U_{12} of $\mathcal{M}_{1} \times \mathcal{M}_{2}$:

$$
U_{12}=\left\{\left(b_{1}, b_{2}\right) \in U_{1} \times U_{2}: C_{1} \cap C_{2} \neq \emptyset\right\}
$$

Where C_{1}, C_{2} denotes the rational curves represented by b_{1}, b_{2} respectively .
Consider the following incident variety :

$$
\begin{array}{r}
J=\left\{\left(a, b_{1}, b_{2}\right) \in \mathbb{P}^{d-1} \times U_{12}: F_{a}\left(f_{d_{\rho}}^{b_{1}}(s, t)\right)_{\rho \in \Delta(1)}=\right. \\
\left.F_{a}\left(f_{d_{\rho}}^{b_{2}}(s, t)\right)_{\rho \in \Delta(1)} \equiv 0\right\} \subseteq \mathbb{P}^{d-1} \times \mathcal{M}_{1} \times \mathcal{M}_{2}
\end{array}
$$

Roughly speaking, J represents the configuration that two intersecting rational curves lying in an anti-canonical hypersurface.

Now all we want to do is to find conditions to guarantee the dimension of the image of $P r_{1}$ is strictly less than $\operatorname{dim} \mathbb{P}^{d-1}$ (where Pr_{1} denotes the natural projection morphism form J to \mathbb{P}^{d-1}), for then the image of $P r_{1}$ is a lower dimensional constructible set (i.e. finite union of locally closed set) of \mathbb{P}^{d-1}, so the closure of this image is a lower dimensional closed subvariety in \mathbb{P}^{d-1}. Note each fibre of the natural projection
morphism form J to \mathbb{P}^{d-1} has dimension not less than 6 , because of the free action of $P G L(2)$ on each of the two rational curves. So it suffices to prove $\operatorname{dim} J<\operatorname{dim}$ $\mathbb{P}^{d-1}+6$. Considering the natural projection morphism $P r_{2}$ from J to U_{12}, we only have to prove that each fibre of Pr_{2} has dimension strictly less than $\operatorname{dim} \mathbb{P}^{d-1}+6-\operatorname{dim}$ U_{12}. By the definition of J, for each point $\left(b_{1}, b_{2}\right) \in U_{12}$, the fibre of Pr_{2} at $\left(b_{1}, b_{2}\right)$ is the linear subspace of \mathbb{P}^{d-1} such that its points represent exactly the anti-canonical hypersurfaces containing both of the rational curves represented by b_{1} and b_{2}. So if for any rational curve pair $\left(C_{1}, C_{2}\right)$ represented by a point in U_{12}, we can find $\operatorname{dim} U_{12}-5$ anti-canonical sections of X, such that the hypersurface corresponding to any nonzero linear combination of these anti-canonical sections never contain C_{1} and C_{2} at the same time, then we would be done. That is what we will do for each concrete toric variety in the next section. Unfortunately, this method fails in the case of the variety B_{1}. That's why in our main theorem we have an exceptional case .

4 Examinations for toric Fano 4-folds with rank 2 Picard groups

In this section, we give homogenous coordinates representations for each toric Fano 4-folds with Picard group rank 2 . Using these representations, we will find three smooth rational curves C_{10}, C_{20}, C_{30} and anti-canonical hypersurfaces Y_{10}, Y_{20}, Y_{30} such that $\left[C_{i 0}\right]$ satisfy the conditions in Theorem 1 , and $C_{i 0}$ is embedded in the smooth part of $Y_{i 0}$ with normal bundle $\mathcal{O}(-1) \oplus \mathcal{O}(-1)$. Then Theorem 3 implies a generic hypersurface Y will contain three smooth rational curves C_{1}, C_{2}, C_{3} such that $\left[C_{i}\right]$ satisfy the conditions in Theorem 1 , and C_{i} is embedded in Y with normal bundle $\mathcal{O}(-1) \oplus \mathcal{O}(-1)$ for $i=1,2,3$. Similar to the definition of U_{12} at the end in the last section, we can define $U_{i j}$ parameterizing intersecting rational curves C_{i}, C_{j} and analyze the dimension of the space $U_{i j}$. Finally we prove that a generic anti-canonical hypersurface does not contain intersecting rational curves with our chosen topological types.

4.1 The toric variety B_{1}

In the classification of Batyrev [1], the toric variety B_{1} is defined by a fan Δ in \mathbb{R}^{4} such that $\Delta(1)=\left\{v_{1}, \ldots, v_{6}\right\}, \Delta(1)$ generates \mathbb{Z}^{4}, and elements in $\Delta(1)$ satisfy the following linear relations (cf. [1]) :

$$
\left\{\begin{array}{r}
v_{1}+v_{2}+v_{3}+v_{4}=3 v_{6} \\
v_{5}+v_{6}=0
\end{array}\right.
$$

$\mathbb{C}^{*} \times \mathbb{C}^{*}$ acts on this toric variety as follows :

$$
\left(X_{1}, \ldots, X_{6}\right) \rightarrow\left(\lambda_{1} X_{1}, \ldots, \lambda_{1} X_{4}, \lambda_{1}^{3} \lambda_{2} X_{5}, \lambda_{2} X_{6}\right)
$$

For $\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{C}^{*} \times \mathbb{C}^{*}$.
Under this action, $X \simeq \mathbb{C}^{6}-Z / \mathbb{C}^{*} \times \mathbb{C}^{*}$, where $Z=\left\{X_{1} X_{5}=X_{2} X_{5}=X_{3} X_{5}=\right.$ $\left.X_{4} X_{5}=X_{1} X_{6}=X_{2} X_{6}=X_{3} X_{6}=X_{4} X_{6}=0\right\}$

The anti-canonical forms of X are linear combinations of the following forms :

$$
X_{5}^{2} f_{1}\left(X_{1}, \ldots, X_{4}\right), X_{5} X_{6} f_{4}\left(X_{1}, \ldots, X_{4}\right), X_{6}^{2} f_{7}\left(X_{1}, \ldots, X_{4}\right) .
$$

where $f_{i}\left(X_{1}, \ldots, X_{4}\right)$ denotes a degree i homogenous form of $X_{1}, X_{2}, X_{3}, X_{4}$, for $i \geq 1$.
Now $H^{2}(X, \mathbb{Z}) \simeq H_{6}(X, \mathbb{Z}) \simeq A_{3}(X)$ is a rank 2 free abelian group, and $\left[D_{4}\right],\left[D_{5}\right]$ form a base of this group.

Consider the rational curve $(0,0,0,1, s, t)$ in X, which has the type $(0,0,0,0,1,1)$. Its cohomology class is [D_{5}], and this rational curve is embedded in the anti-canonical hypersurface $X_{1} X_{5}^{2}+X_{2} X_{4}^{3} X_{5} X_{6}+X_{3} X_{4}^{6} X_{6}^{2}=0$ with normal bundle $\mathcal{O}(-1) \oplus \mathcal{O}(-1)$

We explain the computation of the normal bundle .
Denote Y as the anti-canonical hypersurface $X_{1} X_{5}^{2}+X_{2} X_{4}^{3} X_{5} X_{6}+X_{3} X_{4}^{6} X_{6}^{2}=0$, and $i: \mathbb{P}^{1} \rightarrow Y$ the embedding of the rational curve $(0,0,0,1, s, t)$. Then we have two exact sequences :

$$
\begin{equation*}
N_{Y, X}^{*} \rightarrow \Omega_{X / \mathbb{C}} \rightarrow \Omega_{Y / \mathbb{C}} \rightarrow 0 \tag{6}
\end{equation*}
$$

Where $N_{Y, X}^{*}$ is the conormal bundle of the hypersurface Y in the toric 4 -fold X. Pull back this exact sequence to \mathbb{P}^{1} using i, we get:

$$
\begin{equation*}
i^{*}\left(N_{Y, X}^{*}\right) \rightarrow i^{*}\left(\Omega_{X / \mathbb{C}}\right) \rightarrow i^{*}\left(\Omega_{Y / \mathbb{C}}\right) \rightarrow 0 \tag{7}
\end{equation*}
$$

Since the rational curve lies in the smooth part of Y, we have the exact sequence :

$$
\begin{equation*}
0 \rightarrow N_{\mathbb{P}^{1}, Y}^{*} \rightarrow i^{*}\left(\Omega_{Y / \mathbb{C}}\right) \rightarrow \Omega_{\mathbb{P}^{1} / \mathbb{C}} \rightarrow 0 \tag{8}
\end{equation*}
$$

Where $N_{\mathbb{P}^{1}, Y}^{*} \simeq \operatorname{Hom}\left(N_{\mathbb{P}^{1}, Y}, \mathcal{O}_{\mathbb{P}^{1}}\right)$ is the conormal bundle of the rational curve in Y.
Using the two exact sequence (7) and (8), we can compute concretely the rank 2 locally free sheaf $N_{\mathbb{P}^{1}, Y} \simeq \mathcal{O}(-1) \oplus \mathcal{O}(-1)$

Similarly , the rational curve ($s, t, 0,0,0,1$) has the type ($1,1,1,1,3,0$). Its cohomology class is $\left[D_{4}\right]+3\left[D_{5}\right]$, and this rational curve is embedded in the anti-canonical section $X_{3} X_{1}^{6} X_{6}^{2}+X_{4} X_{1}^{4} X_{2}^{2} X_{6}^{2}+X_{5} X_{2}^{4} X_{6}=0$ with normal bundle $\mathcal{O}(-1) \oplus \mathcal{O}(-1)$.

We summarize the results in the following table .

Table 1: B_{1}

rational curve $C_{i 0}$	type	cohomology class	anti-canonical hypersurface $Y_{i 0}$
$(0,0,0,1, \mathrm{~s}, \mathrm{t})$	$(0,0,0,0,1,1)$	$\left[D_{5}\right]$	$X_{1} X_{5}^{2}+X_{2} X_{4}^{3} X_{5} X_{6}+X_{3} X_{4}^{6} X_{6}^{2}=0$
$(\mathrm{~s}, \mathrm{t}, 0,0,0,1)$	$(1,1,1,1,3,0)\left[D_{4}\right]+3\left[D_{5}\right]$	$X_{3} X_{1}^{6} X_{6}^{2}+X_{4} X_{1}^{4} X_{2}^{2} X_{6}^{2}+X_{5} X_{2}^{4} X_{6}=0$	
$\left(\mathrm{~s}, \mathrm{t}, 0,0, s^{4}, \mathrm{t}\right)$	$(1,1,1,1,4,1)\left[D_{4}\right]+4\left[D_{5}\right]$	$X_{3} X_{5}^{2}+X_{4} X_{1}^{6} X_{6}^{2}+X_{5} X_{6} X_{2}^{4}-X_{6}^{2} X_{2}^{3} X_{1}^{4}=0$	

Where in each row, the computation shows $C_{i 0}$ is embedded in the smooth part of $Y_{i 0}$ with normal bundle $\mathcal{O}(-1) \oplus \mathcal{O}(-1)$.

Now the three curves $(0,0,0,1, s, t),(s, t, 0,0,0,1),\left(s, t, 0,0, s^{4}, t\right)$ are denoted by C_{10}, C_{20}, C_{30} respectively, and the corresponding parameterizing spaces are denoted by $\mathcal{M}_{1}, \mathcal{M}_{2}, \mathcal{M}_{3}$. Take the Zariski open set U_{1} of \mathcal{M}_{1} such that points in U_{1} represent regular embedded rational curves on which the homogenous X_{4} does not have zero points. So U_{1} parameterizes exactly smooth rational curves in X having the form $\left(c_{1}, c_{2}, c_{3}, c_{4}, \alpha_{1}(s, t), \beta_{1}(s, t)\right)$, where $\alpha_{1}(s, t), \beta_{1}(s, t)$ denote linear forms of $s, t, c_{i}(1 \leq$ $i \leq 4)$ are constants and c_{4} is not zero. Similarly, take U_{2} as the open set of \mathcal{M}_{2} parameterizing regular embedded rational curves on which the homogenous coordinate X_{6} does not have zero points. Take U_{3} to be the open set of \mathcal{M}_{3} parameterizing the regular embedded rational curves. Using the similar notation as the end of last section, we want to analyze $\operatorname{dim} U_{i j}(i, j=1,2,3, i \neq j)$ and find $\operatorname{dim} U_{i j}-5$ anti-canonical sections such that any nonzero linear combinations of these sections will not contain both of the rational curves represented by points in $U_{i j}$. This will suffice to prove that generic anti-canonical hypersurface will contain smooth rational curves in U_{1}, U_{2}, U_{3}, and these curves do not intersect each other. We will use C_{1}, C_{2}, C_{3} to denote curves represented by points in U_{1}, U_{2}, U_{3} respectively.

The case of C_{1} and C_{2}
By definition, C_{1} has a representation with the form $\left(c_{1}, c_{2}, c_{3}, 1, \alpha_{1}(s, t), \beta_{1}(s, t)\right)$, where $c_{i}(1 \leq i \leq 3)$ are constants, and $\alpha_{1}(s, t), \beta_{1}(s, t)$ are degree 1 homogenous forms of $s, t . C_{2}$ has a representation with the form $\left(\alpha_{1}(s, t), \beta_{1}(s, t), \gamma_{1}(s, t), \delta_{1}(s, t), \alpha_{3}(s, t), 1\right)$, where the subscript numbers denote the degrees of the corresponding homogenous forms of s, t. Now consider $\operatorname{dim} U_{12}$. In the representation of C_{2}, there are 12 coefficients in the homogenous forms $\alpha_{1}(s, t), \beta_{1}(s, t), \gamma_{1}(s, t), \delta_{1}(s, t), \alpha_{3}(s, t)$, and modulo the action of $\mathbb{C}^{*} \times \mathbb{C}^{*}$, the appearance of C_{2} will contribute 11 to $\operatorname{dim} U_{12}$. When fixing C_{2}, since C_{1} has to intersect with $C_{2},\left(c_{1}, c_{2}, c_{3}, 1\right)$ has to lie in the rational curve $\left(\alpha_{1}(s, t), \beta_{1}(s, t), \gamma_{1}(s, t), \delta_{1}(s, t)\right)$, this contributes 1 to $\operatorname{dim} U_{12}$. At last, the 4
coefficients of $\alpha_{1}(s, t), \beta_{1}(s, t)$ in the representation of C_{1} modulo the action of \mathbb{C}^{*} will contribute 3 to $\operatorname{dim} U_{12}$. So we get $\operatorname{dim} U_{12}=15$, and we have to find 10 anti-canonical sections satisfying the condition we just required.

Note that an invertible linear substitution of the homogenous coordinates X_{1}, X_{2} , X_{3}, X_{4} induces an automorphism of X, so for any point $\left(b_{1}, b_{2}\right) \in U_{12}$, the two rational curves C_{1}, C_{2} represented by b_{1}, b_{2} can be assumed to be ($0,0,0,1, s, t$) and $\left(0,0, s, t, \alpha_{3}(s, t), 1\right)$, after choosing appropriate homogenous coordinates on \mathbb{P}^{1}. Then its easy to verify the following 10 anti-canonical forms satisfy our requirement.

$$
X_{5}^{2} X_{4}, X_{5} X_{6} X_{4}^{4}, X_{6}^{2} X_{4}^{7}, X_{6}^{2} X_{3} X_{3}^{i} X_{4}^{6-i}(i=0, \ldots, 6)
$$

The case of C_{1} and C_{3}
Similar to the analysis in the last paragraph, $\operatorname{dim} U_{13}=17$, and without loss of generality, we can assume $C_{1}=(0,0,0,1, s, t), C_{3}=\left(0,0, s, t, \alpha_{4}(s, t), \alpha_{1}(s, t)\right)$, since C_{3} is a smooth rational curve, the homogenous forms $\alpha_{4}(s, t), \alpha_{1}(s, t)$ have no common factors in $\mathbb{C}[s, t]$. Pick a degree 3 homogenous form $\beta_{3}(s, t)$ such that it has no common factors with $\alpha_{1}(s, t)$, then it's easy to verify that the following 12 anti-canonical forms will suffice :

$$
X_{5}^{2} X_{4}, X_{5} X_{6} X_{4}^{4}, X_{6}^{2} X_{4}^{7}, X_{5}^{2} X_{3}, X_{5} X_{6} X_{3} \beta_{3}\left(X_{3}, X_{4}\right), X_{6}^{2} X_{3} X_{3}^{i} X_{4}^{6-i}(i=0, \ldots, 6)
$$

The case of C_{2} and C_{3}
In this case, our method fails. So we have an exceptional case in the main theorem

4.2 The toric variety B_{2}

This variety is defined by a fan Δ such that elements in $\Delta(1)$ satisfy :

$$
\left\{\begin{array}{r}
v_{1}+v_{2}+v_{3}+v_{4}=2 v_{6} \\
v_{5}+v_{6}=0
\end{array}\right.
$$

$\mathbb{C}^{*} \times \mathbb{C}^{*}$ acts on this toric variety as follows :

$$
\left(X_{1}, \ldots, X_{6}\right) \rightarrow\left(\lambda_{1} X_{1}, \ldots, \lambda_{1} X_{4}, \lambda_{1}^{2} \lambda_{2} X_{5}, \lambda_{2} X_{6}\right)
$$

Under this action, $X \simeq \mathbb{C}^{6}-Z / \mathbb{C}^{*} \times \mathbb{C}^{*}$, where $Z=\left\{X_{1} X_{5}=X_{2} X_{5}=X_{3} X_{5}=\right.$ $\left.X_{4} X_{5}=X_{1} X_{6}=X_{2} X_{6}=X_{3} X_{6}=X_{4} X_{6}=0\right\}$

The anti-canonical forms of X are linear combinations of the following forms :

$$
X_{5}^{2} f_{2}\left(X_{1}, \ldots, X_{4}\right), X_{5} X_{6} f_{4}\left(X_{1}, \ldots, X_{4}\right), X_{6}^{2} f_{6}\left(X_{1}, \ldots, X_{4}\right) .
$$

where $f_{i}\left(X_{1}, \ldots, X_{4}\right)$ are degree i homogenous forms of $X_{1}, X_{2}, X_{3}, X_{4}$, for $i \geq 1$.
Now $H^{2}(X, \mathbb{Z}) \simeq H_{6}(X, \mathbb{Z}) \simeq A_{3}(X)$ is a rank 2 free abelian group, and $\left[D_{4}\right],\left[D_{5}\right]$ form a base of this group .

Table 2: B_{2}

rational curve $C_{i 0}$	type	cohomology class	anti-canonical section $Y_{i 0}$	
$(0,0,0,1, \mathrm{~s}, \mathrm{t})$	$(0,0,0,0,1,1)$	$\left[D_{5}\right]$	$X_{1} X_{5}^{2} X_{4}+X_{2} X_{4}^{3} X_{5} X_{6}+X_{3} X_{4}^{5} X_{6}^{2}=0$	
$(\mathrm{~s}, \mathrm{t}, 0,0,0,1)$	$(1,1,1,1,2,0)\left[D_{4}\right]+2\left[D_{5}\right]$	$X_{3} X_{1}^{5} X_{6}^{2}+X_{4} X_{1}^{3} X_{2}^{2} X_{6}^{2}+X_{5} X_{2}^{4} X_{6}=0$		
$\left(\mathrm{~s}, \mathrm{t}, 0,0, s^{3}, \mathrm{t}\right)$	$(1,1,1,1,3,1)\left[D_{4}\right]+3\left[D_{5}\right]$	$X_{3} X_{1} X_{5}^{2}+X_{4} X_{2}^{5} X_{6}^{2}+X_{5} X_{6} X_{1}^{2} X_{2}^{2}-X_{6}^{2} X_{2} X_{1}^{5}=0$		

Denote the three rational curves in the first column by C_{10}, C_{20}, C_{30} respectively , and denote the corresponding parameterizing spaces by $\mathcal{M}_{1}, \mathcal{M}_{2}, \mathcal{M}_{3}$, then take the corresponding three Zariski open sets U_{1}, U_{2}, U_{3} such that the rational curves parameterized by points in U_{i} are smooth. We will use the same notation as the last case and proceed in a similar way.

The case of C_{1} and C_{2}
$\operatorname{dim} U_{12}=14, C_{1}, C_{2}$ can be assumed to be $(0,0,0,1, s, t),\left(0,0, s, t, \alpha_{2}(s, t), 1\right)$, and the following 9 anti-canonical forms will suffice:

$$
X_{5}^{2} X_{4}^{2}, X_{5} X_{6} X_{4}^{4}, X_{6}^{2} X_{3}^{i} X_{4}^{6-i}(i=0, \ldots, 6)
$$

The case of C_{1} and C_{3}
$\operatorname{dim} U_{13}=16, C_{1}, C_{3}$ can be assumed to be $(0,0,0,1, s, t),\left(0,0, s, t, \alpha_{3}(s, t), \alpha_{1}(s, t)\right)$
, and the following 11 anti-canonical forms will suffice :
$X_{5}^{2} X_{4}^{2}, X_{5} X_{6} X_{4}^{4}, X_{6}^{2} X_{4}^{6}, X_{5}^{2} X_{3} \hat{\beta}_{1}\left(X_{3}, X_{4}\right), X_{5} X_{6} X_{3} \hat{\beta}_{3}\left(X_{3}, X_{4}\right), X_{6}^{2} X_{3} X_{3}^{i} X_{4}^{5-i}(i=0, \ldots, 5)$.
Where $\hat{\beta}_{1}(s, t), \hat{\beta}_{3}(s, t)$ are homogenous forms with degree 1,3 respectively and neither one has common factors with $\alpha_{1}(s, t)$. This can be used to guarantee that when restricting on the rational curve C_{3}, the 8 forms

$$
X_{5}^{2} X_{3} \hat{\beta}_{1}\left(X_{3}, X_{4}\right), X_{5} X_{6} X_{3} \hat{\beta}_{3}\left(X_{3}, X_{4}\right), X_{6}^{2} X_{3} X_{3}^{i} X_{4}^{5-i}(i=0, \ldots, 5)
$$

are linearly independent as degree 8 homogenous forms of s, t.
The case of C_{2} and C_{3}
$\operatorname{dim} U_{23}=20$, the rational curve pair C_{2}, C_{3} can be assumed to be :

$$
C_{2}=\left(\alpha_{1}(s, t), \beta_{1}(s, t), \gamma_{1}(s, t), \delta_{1}(s, t), \alpha_{2}(s, t), 1\right)
$$

$$
C_{3}=\left(\tilde{\alpha}_{1}(s, t), \tilde{\beta}_{1}(s, t), \tilde{\gamma}_{1}(s, t), \tilde{\delta}_{1}(s, t), \alpha_{3}(s, t), \tau_{1}(s, t)\right)
$$

Note $\left(\alpha_{1}(s, t), \beta_{1}(s, t), \gamma_{1}(s, t), \delta_{1}(s, t)\right),\left(\tilde{\alpha}_{1}(s, t), \tilde{\beta}_{1}(s, t), \tilde{\gamma}_{1}(s, t), \tilde{\delta}_{1}(s, t)\right)$ represent two rational curves in \mathbb{P}^{3}. Denote them by $C_{2}^{\prime}, C_{3}^{\prime}$ respectively. Recall the notation at the end of Section 2 , if for the morphism form J to U_{23}, there is a rational curve pair C_{2}, C_{3} in the image of J such that C_{2}^{\prime} does not coincide with C_{3}^{\prime} as lines in \mathbb{P}^{3}, then modulo a re-parameterization and an automorphism of X, C_{2}, C_{3} can be assumed to be :

$$
C_{2}=\left(0, s, 0, t, \alpha_{2}(s, t), 1\right), C_{3}=\left(0,0, s, t, \alpha_{3}(s, t), \alpha_{1}(s, t)\right) .
$$

And the following 15 anti-canonical forms will suffice :
$X_{6}^{2} X_{2}^{i} X_{4}^{6-i}(i=0, \ldots, 6), X_{5}^{2} X_{3} \hat{\beta}_{1}\left(X_{3}, X_{4}\right), X_{5} X_{6} X_{3} \hat{\beta}_{3}\left(X_{3}, X_{4}\right), X_{6}^{2} X_{3} X_{3}^{i} X_{4}^{5-i}(i=0, \ldots, 5)$.
Where the homogenous forms $\hat{\beta}_{1}, \hat{\beta}_{3}$ are the same as those in the case of C_{1} and C_{3}. If for any rational curve pair C_{2}, C_{3} in the image of J, C_{2}^{\prime} coincides with C_{3}^{\prime} as lines in \mathbb{P}^{3} , then the dimension of this image $\operatorname{dim} \operatorname{Im}(J) \leq 18$, and modulo a re-parameterization and an automorphism of X, C_{2}, C_{3} can be assumed to be :

$$
C_{2}=\left(0,0, s, t, \alpha_{2}(s, t), 1\right), C_{3}=\left(0,0, s, t, \alpha_{3}(s, t), \alpha_{1}(s, t)\right) .
$$

Since $\alpha_{1}(s, t)$ has no common factors with $\alpha_{3}(s, t)$, we can find degree 3 homogenous forms $\gamma_{3}(s, t), \delta_{3}(s, t)$ such that the 4 homogenous forms $\alpha_{1} \alpha_{2}, \alpha_{3}, \gamma_{3}, \delta_{3}$ are linearly independent as homogenous forms of s, t. Now consider the 7 anti-canonical forms :

$$
\begin{array}{r}
X_{5}^{2} \alpha_{1}^{2}\left(X_{3}, X_{4}\right), X_{5} X_{6} \alpha_{1}\left(X_{3}, X_{4}\right) \alpha_{3}\left(X_{3}, X_{4}\right), X_{5} X_{6} \alpha_{1}\left(X_{3}, X_{4}\right) \gamma_{3}\left(X_{3}, X_{4}\right), \\
X_{5} X_{6} \alpha_{1}\left(X_{3}, X_{4}\right) \delta_{3}\left(X_{3}, X_{4}\right), X_{6}^{2} \alpha_{3}\left(X_{3}, X_{4}\right) \alpha_{3}\left(X_{3}, X_{4}\right), \tag{9}\\
X_{6}^{2} \alpha_{3}\left(X_{3}, X_{4}\right) \gamma_{3}\left(X_{3}, X_{4}\right), X_{6}^{2} \alpha_{3}\left(X_{3}, X_{4}\right) \delta_{3}\left(X_{3}, X_{4}\right) .
\end{array}
$$

When restricted to C_{3}, they reduce to 3 homogenous forms of s, t with degree 8 . Since the anti-canonical forms could generate all the degree 8 forms on C_{3}, we can pick 6 anti-canonical forms $f_{i}(1 \leq i \leq 6)$ such that with the 7 forms in (9), these 13 anticanonical forms generate all the degree 8 forms on C_{3} when restricted on it . Next it's direct to verify that when restricted on C_{2}, the 7 forms in (11) generate a dimension 7,6 , or 5 linear subspace of degree 6 forms on C_{2}, depending on $\alpha_{2}(s, t)$ and $\alpha_{3}(s, t)$ has a degree 0,1 , or 2 greatest common divisor respectively. According to the above analysis, we can always find $\operatorname{dim} \operatorname{Im}(J)-5$ anti-canonical forms such that any nonzero linear combination of them does not contain C_{2} and C_{3} at the same time, for C_{2} and C_{3} represented by points in J.

4.3 The toric variety B_{3}

This variety is defined by a fan Δ such that elements in $\Delta(1)$ satisfy :

$$
\left\{\begin{array}{r}
v_{1}+v_{2}+v_{3}+v_{4}=v_{6} \\
v_{5}+v_{6}=0
\end{array}\right.
$$

$\mathbb{C}^{*} \times \mathbb{C}^{*}$ acts on this toric variety as follows :

$$
\left(X_{1}, \ldots, X_{6}\right) \rightarrow\left(\lambda_{1} X_{1}, \lambda_{1} X_{2}, \lambda_{1} X_{3}, \lambda_{1} X_{4}, \lambda_{1} \lambda_{2} X_{5}, \lambda_{2} X_{6}\right)
$$

Under this action, $X \simeq \mathbb{C}^{6}-Z / \mathbb{C}^{*} \times \mathbb{C}^{*}$, where $Z=\left\{X_{1} X_{5}=X_{2} X_{5}=X_{3} X_{5}=\right.$ $\left.X_{4} X_{5}=X_{1} X_{6}=X_{2} X_{6}=X_{3} X_{6}=X_{4} X_{6}=0\right\}$

The anti-canonical forms of X are linear combinations of the following forms :

$$
\begin{array}{r}
X_{5}^{2} f_{3}\left(X_{1}, \ldots, X_{4}\right), X_{5} X_{6} f_{4}\left(X_{1}, \ldots, X_{4}\right), \\
X_{6}^{2} f_{5}\left(X_{1}, \ldots, X_{4}\right)
\end{array}
$$

where $f_{i}\left(X_{1}, \ldots, X_{4}\right)$ are degree i homogenous forms, for $i \geq 1$.
Now $H^{2}(X, \mathbb{Z}) \simeq H_{6}(X, \mathbb{Z}) \simeq A_{3}(X)$ is a rank 2 free abelian group, and $\left[D_{4}\right],\left[D_{5}\right]$ form a base of this group .

Table 3: B_{3}

rational curve $C_{i 0}$	type	cohomology class	
$(\mathrm{s}, \mathrm{t}, 0,0,1,0)$	$(1,1,1,1,0,-1)$	$\left[D_{4}\right]$	$X_{3} X_{1}^{2} X_{5}^{2}+X_{4} X_{2}^{2} X_{5}^{2}+X_{6} X_{5} X_{2}^{4}=0$
$(\mathrm{~s}, \mathrm{t}, 0,0,0,1)$	$(1,1,1,1,1,0)\left[D_{4}\right]+\left[D_{5}\right]$	$X_{3} X_{1}^{4} X_{6}^{2}+X_{4} X_{1}^{2} X_{2}^{2} X_{6}^{2}+X_{5} X_{6} X_{2}^{4}=0$	
$(1,0,0,0, \mathrm{~s}, \mathrm{t})$	$(0,0,0,0,1,1)$	$\left[D_{5}\right]$	$X_{2} X_{1}^{2} X_{5}^{2}+X_{3} X_{1}^{3} X_{5} X_{6}+X_{4} X_{1}^{4} X_{6}^{2}=0$

Denote the three rational curves in the first column by C_{10}, C_{20}, C_{30} respectively , and denote the corresponding parameterizing spaces by $\mathcal{M}_{1}, \mathcal{M}_{2}, \mathcal{M}_{3}$, then take the corresponding three Zariski open sets U_{1}, U_{2}, U_{3} such that the rational curves parameterized by points in U_{i} are smooth, and the homogenous coordinates X_{5}, X_{6}, X_{1} have no zero points on rational curves in U_{1}, U_{2}, U_{3} respectively .

The case of C_{1} and C_{2}
This case is trivial. Since the homogenous coordinate X_{6} has no zero points on C_{2} , and it's always zero on C_{1}, so $U_{12}=\emptyset$.

The case of C_{1} and C_{3}
$\operatorname{dim} U_{13}=11, C_{1}, C_{3}$ can be assumed to be $(s, t, 0,0,1,0),(1,0,0,0, s, t)$, and the following 6 forms will suffice :

$$
X_{1}^{4} X_{5} X_{6}, X_{1}^{5} X_{6}^{2}, X_{5}^{2} X_{1}^{i} X_{2}^{3-i}(0 \leq i \leq 3)
$$

The case of C_{2} and C_{3}
$\operatorname{dim} U_{23}=13, C_{2}, C_{3}$ can be assumed to be $\left(s, t, 0,0, \alpha_{1}(s, t), 1\right),(1,0,0,0, s, t)$, and the following 8 forms will suffice :

$$
X_{1}^{4} X_{5} X_{6}, X_{1}^{5} X_{6}^{2}, X_{5}^{2} X_{1}^{3}, X_{6}^{2} X_{2} X_{1}^{i} X_{2}^{4-i}(0 \leq i \leq 4)
$$

4.4 The toric variety B_{4}

This variety is defined by a fan Δ such that elements in $\Delta(1)$ satisfy :

$$
\left\{\begin{array}{r}
v_{1}+v_{2}+v_{3}+v_{4}=0 \\
v_{5}+v_{6}=0
\end{array}\right.
$$

$\mathbb{C}^{*} \times \mathbb{C}^{*}$ acts on this toric variety as follows :

$$
\left(X_{1}, \ldots, X_{6}\right) \rightarrow\left(\lambda_{1} X_{1}, \lambda_{1} X_{2}, \lambda_{1} X_{3}, \lambda_{1} X_{4}, \lambda_{2} X_{5}, \lambda_{2} X_{6}\right)
$$

Under this action, $X \simeq \mathbb{C}^{6}-Z / \mathbb{C}^{*} \times \mathbb{C}^{*} \simeq \mathbb{P}^{1} \times \mathbb{P}^{3}$, where $Z=\left\{X_{1} X_{5}=X_{2} X_{5}=\right.$ $\left.X_{3} X_{5}=X_{4} X_{5}=X_{1} X_{6}=X_{2} X_{6}=X_{3} X_{6}=X_{4} X_{6}=0\right\}$

The anti-canonical forms of X are linear combinations of the forms $f_{4}\left(X_{1}, X_{2}, X_{3}, X_{4}\right) g_{2}\left(X_{5}, X_{6}\right)$, where $f_{i}\left(X_{1}, X_{2}, X_{3}, X_{4}\right), g_{i}\left(X_{5}, X_{6}\right)$ are degree i homogenous forms, for $i \geq 1$.

Now $H^{2}(X, \mathbb{Z}) \simeq H_{6}(X, \mathbb{Z}) \simeq A_{3}(X)$ is a rank 2 free abelian group, and $\left[D_{4}\right],\left[D_{5}\right]$ form a base of this group .

Table 4: B_{4}

rational curve $C_{i 0}$	type	cohomology class	anti-canonical section $Y_{i 0}$
$(1,0,0,0, \mathrm{~s}, \mathrm{t})$	$(0,0,0,0,1,1)$	$\left[D_{5}\right]$	$X_{2} X_{5}^{2} X_{1}^{3}+X_{3} X_{5} X_{6} X_{1}^{3}+X_{4} X_{6}^{2} X_{1}^{3}=0$
$(\mathrm{~s}, \mathrm{t}, 0,0,1,0)$	$(1,1,1,1,0,0)$	$\left[D_{4}\right]$	$X_{3} X_{5}^{2} X_{1}^{3}+X_{4} X_{5}^{2} X_{2}^{3}+X_{6} X_{1}^{2} X_{5} X_{2}^{2}=0$
$(\mathrm{~s}, \mathrm{t}, 0,0, \mathrm{~s}, \mathrm{t})$	$(1,1,1,1,1,1)\left[D_{4}\right]+\left[D_{5}\right]$	$X_{3} X_{1}^{3} X_{5}^{2}+X_{4} X_{1}^{3} X_{6}^{2}+X_{2}^{4} X_{5} X_{6}-X_{1} X_{2}^{3} X_{6}^{2}=0$	

Denote the three rational curves in the first column by C_{10}, C_{20}, C_{30} respectively , and denote the corresponding parameterizing spaces by $\mathcal{M}_{1}, \mathcal{M}_{2}, \mathcal{M}_{3}$, then take the corresponding three Zariski open sets U_{1}, U_{2}, U_{3} such that the rational curves parameterized by points in U_{i} are smooth .

The case of C_{1} and C_{2}
$\operatorname{dim} U_{12}=12, C_{1}, C_{2}$ can be assumed to be $(1,0,0,0, s, t),(s, t, 0,0,1,0)$, and the following 7 forms will suffice :

$$
X_{5}^{i} X_{6}^{4-i} X_{1}^{2}(0 \leq i \leq 4), X_{1} X_{2} X_{5}^{4}, X_{2}^{2} X_{5}^{4}
$$

The case of C_{1} and C_{3}
$\operatorname{dim} U_{13}=14, C_{1}, C_{3}$ can be assumed to be $(1,0,0,0, s, t),(s, t, 0, s, 0, t)$ or $(1,0,0,0, s, t),(s, t, 0,0, s, t)$. In the first case, the following 10 forms will suffice :

$$
X_{5}^{i} X_{6}^{4-i} X_{1}^{2}(0 \leq i \leq 4), X_{4}^{i} X_{6}^{4-i} X_{2}^{2}(0 \leq i \leq 4)
$$

And in the second case, the following 10 forms will suffice :

$$
X_{5}^{i} X_{6}^{4-i} X_{1}^{2}(0 \leq i \leq 4), X_{5}^{i} X_{6}^{4-i} X_{2}^{2}(0 \leq i \leq 4)
$$

The case of C_{2} and C_{3}
$\operatorname{dim} U_{12}=11, C_{2}, C_{3}$ can be assumed to be $(s, t, 0,0,1,0),(s, t, 0,0, s, t)$, and the following 6 forms will suffice :

$$
X_{1}^{i} X_{2}^{2-i} X_{5}^{4}(0 \leq i \leq 2), X_{1}^{i} X_{2}^{2-i} X_{6}^{4}(0 \leq i \leq 2)
$$

4.5 The toric variety B_{5}

This variety is defined by a fan Δ such that elements in $\Delta(1)$ satisfy :

$$
\left\{\begin{array}{r}
v_{1}+v_{2}+v_{3}+v_{4}=0 \\
v_{5}+v_{6}=v_{4}
\end{array}\right.
$$

$\mathbb{C}^{*} \times \mathbb{C}^{*}$ acts on this toric variety as follows :

$$
\left(X_{1}, \ldots, X_{6}\right) \rightarrow\left(\lambda_{1} \lambda_{2} X_{1}, \lambda_{1} \lambda_{2} X_{2}, \lambda_{1} \lambda_{2} X_{3}, \lambda_{1} X_{4}, \lambda_{2} X_{5}, \lambda_{2} X_{6}\right)
$$

Under this action, $X \simeq \mathbb{C}^{6}-Z / \mathbb{C}^{*} \times \mathbb{C}^{*}$, where $Z=\left\{X_{1} X_{5}=X_{2} X_{5}=X_{3} X_{5}=\right.$ $\left.X_{4} X_{5}=X_{1} X_{6}=X_{2} X_{6}=X_{3} X_{6}=X_{4} X_{6}=0\right\}$

The anti-canonical forms of X are linear combinations of the following forms:

$$
\begin{array}{r}
X_{4}^{4} f_{5}\left(X_{5}, X_{6}\right), X_{4}^{3} g_{1}\left(X_{1}, X_{2}, X_{3}\right) f_{4}\left(X_{5}, X_{6}\right), X_{4}^{2} g_{2}\left(X_{1}, X_{2}, X_{3}\right) f_{3}\left(X_{5}, X_{6}\right), \\
X_{4} g_{3}\left(X_{1}, X_{2}, X_{3}\right) f_{2}\left(X_{5}, X_{6}\right), g_{4}\left(X_{1}, X_{2}, X_{3}\right) f_{1}\left(X_{5}, X_{6}\right)
\end{array}
$$

where $g_{i}\left(X_{1}, X_{2}, X_{3}\right), f_{i}\left(X_{5}, X_{6}\right)$ are degree i homogenous forms, for $i \geq 1$.
Now $H^{2}(X, \mathbb{Z}) \simeq H_{6}(X, \mathbb{Z}) \simeq A_{3}(X)$ is a rank 2 free abelian group, and $\left[D_{4}\right],\left[D_{5}\right]$ form a base of this group .

Table 5: B_{5}

rational curve $C_{i 0}$	type	cohomology class	

Denote the three rational curves in the first column by C_{10}, C_{20}, C_{30} respectively , and denote the corresponding parameterizing spaces by $\mathcal{M}_{1}, \mathcal{M}_{2}, \mathcal{M}_{3}$, then take the corresponding three Zariski open sets U_{1}, U_{2}, U_{3} such that the rational curves parameterized by points in U_{i} are smooth, and the homogenous coordinates X_{4}, X_{5}, X_{1} have no zero points on rational curves in U_{1}, U_{2}, U_{3} respectively .

The case of C_{1} and C_{2}
$\operatorname{dim} U_{12}=15, C_{1}, C_{2}$ can be assumed to be ($\left.\alpha_{1}(s, t), \beta_{1}(s, t), \gamma_{1}(s, t), 1, s, t\right)$, $\left(s, \tilde{\alpha}_{1}(s, t), \tilde{\beta}_{1}(s, t), t, 1,0\right)$, and the following 10 forms will suffice :

$$
X_{4}^{4} X_{5}^{5}, X_{4}^{3} X_{1} X_{5}^{4}, X_{4}^{2} X_{1}^{2} X_{5}^{3}, X_{4} X_{1}^{3} X_{5}^{2}, X_{1}^{4} X_{5}, X_{4}^{4} X_{6} X_{5}^{i} X_{6}^{4-i}(0 \leq i \leq 4)
$$

The case of C_{2} and C_{3}
$\operatorname{dim} U_{23}=11, C_{2}, C_{3}$ can be assumed to be $\left(s, \tilde{\alpha}_{1}(s, t), \tilde{\beta}_{1}(s, t), t, 1,0\right),(1,0,0,0, s, t)$, and the following 6 forms will suffice :

$$
X_{4}^{4} X_{5}^{5}, X_{4}^{3} X_{1} X_{5}^{4}, X_{4}^{2} X_{1}^{2} X_{5}^{3}, X_{4} X_{1}^{3} X_{5}^{2}, X_{1}^{4} X_{5}, X_{1}^{4} X_{6}
$$

The case of C_{1} and C_{3}
This case is trivial. Since the homogenous coordinate X_{4} has no zero points on C_{1} , and it's always zero on C_{3}, so $U_{13}=\emptyset$.

4.6 The toric variety C_{1}

This variety is defined by a fan Δ such that elements in $\Delta(1)$ satisfy :

$$
\left\{\begin{array}{r}
v_{1}+v_{2}+v_{3}=0 \\
v_{4}+v_{5}+v_{6}=2 v_{3}
\end{array}\right.
$$

$\mathbb{C}^{*} \times \mathbb{C}^{*}$ acts on this toric variety as follows :

$$
\left(X_{1}, \ldots, X_{6}\right) \rightarrow\left(\lambda_{1} \lambda_{2}^{2} X_{1}, \lambda_{1} \lambda_{2}^{2} X_{2}, \lambda_{1} X_{3}, \lambda_{2} X_{4}, \lambda_{2} X_{5}, \lambda_{2} X_{6}\right)
$$

Under this action, $X \simeq \mathbb{C}^{6}-Z / \mathbb{C}^{*} \times \mathbb{C}^{*}$, where $Z=\left\{X_{1} X_{4}=X_{1} X_{5}=X_{1} X_{6}=\right.$ $\left.X_{2} X_{4}=X_{2} X_{5}=X_{2} X_{6}=X_{3} X_{4}=X_{3} X_{5}=X_{3} X_{6}=0\right\}$

The anti-canonical forms of X are linear combinations of the following forms :

$$
\begin{gathered}
X_{3}^{3} f_{7}\left(X_{4}, X_{5}, X_{6}\right), X_{3}^{2} f_{5}\left(X_{4}, X_{5}, X_{6}\right) g_{1}\left(X_{1}, X_{2}\right), X_{3} f_{3}\left(X_{4}, X_{5}, X_{6}\right) g_{2}\left(X_{1}, X_{2}\right), \\
f_{1}\left(X_{4}, X_{5}, X_{6}\right) g_{3}\left(X_{1}, X_{2}\right) .
\end{gathered}
$$

where $g_{i}\left(X_{1}, X_{2}\right), f_{i}\left(X_{4}, X_{5}, X_{6}\right)$ are degree i homogenous forms, for $i \geq 1$.
Now $H^{2}(X, \mathbb{Z}) \simeq H_{6}(X, \mathbb{Z}) \simeq A_{3}(X)$ is a rank 2 free abelian group, and $\left[D_{3}\right],\left[D_{6}\right]$ form a base of this group .

Table 6: C_{1}

rational curve $C_{i 0}$	type	cohomology class	anti-canonical section $Y_{i 0}$	
$(\mathrm{~s}, 0, \mathrm{t}, 0,0,1)$	$(1,1,1,0,0,0)$	$\left[D_{3}\right]$	$X_{2} X_{1}^{2} X_{6}+X_{4} X_{3}^{2} X_{6}^{4} X_{1}+X_{5} X_{3}^{3} X_{6}^{6}=0$	
$(0,0,1, \mathrm{~s}, 0, \mathrm{t})$	$(2,2,0,1,1,1)$	$\left[D_{6}\right]$	$X_{1} X_{3}^{2} X_{4}^{5}+X_{2} X_{4}^{2} X_{3}^{2} X_{6}^{3}+X_{5} X_{3}^{3} X_{6}^{6}=0$	
$(\mathrm{~s}, \mathrm{t}, 0, \mathrm{~s}, 0, \mathrm{t})$	$(1,1,-1,1,1,1)\left[D_{6}\right]-\left[D_{3}\right]$	$X_{3} X_{2}^{2} X_{6}^{3}+X_{5} X_{1}^{3}+X_{1} X_{6} X_{2}^{2}-X_{2}^{3} X_{4}=0$		

Denote the three rational curves in the first column by C_{10}, C_{20}, C_{30} respectively , and denote the corresponding parameterizing spaces by $\mathcal{M}_{1}, \mathcal{M}_{2}, \mathcal{M}_{3}$, then take the corresponding three Zariski open sets U_{1}, U_{2}, U_{3} such that the rational curves parameterized by points in U_{i} are smooth, and the homogenous coordinates X_{6}, X_{3} have no zero points on rational curves in U_{1}, U_{2} respectively .

The case of C_{1} and C_{2}
$\operatorname{dim} U_{12}=16, C_{1}, C_{2}$ can be assumed to be $\left(s, \alpha_{1}(s, t), t, 0,0,1\right),\left(\alpha_{2}(s, t), \beta_{2}(s, t), 1, s, 0, t\right)$, and the following 11 forms will suffice :

$$
X_{3}^{3} X_{6}^{7}, X_{3}^{2} X_{1} X_{6}^{5}, X_{1}^{2} X_{6}^{3} X_{3}, X_{6} X_{1}^{3}, X_{3}^{3} X_{4} X_{4}^{i} X_{6}^{6-i}(0 \leq i \leq 6)
$$

The case of C_{1} and C_{3}
$\operatorname{dim} U_{13}=13, C_{1}, C_{3}$ can be assumed to be $\left(s, \alpha_{1}(s, t), t, 0,0,1\right),\left(\tilde{\alpha}_{1}(s, t), \tilde{\beta}_{1}(s, t), 0, s, 0, t\right)$, and the following 8 forms will suffice :

$$
X_{3}^{3} X_{6}^{7}, X_{3}^{2} X_{1} X_{6}^{5}, X_{1}^{2} X_{6}^{3} X_{3}, X_{6} X_{1}^{3}, X_{4} X_{1}^{3}, X_{4} X_{1}^{2} X_{2}, X_{4} X_{1} X_{2}^{2}, X_{4} X_{2}^{3}
$$

The case of C_{2} and C_{3}
This case is trivial. Since the homogenous coordinate X_{3} has no zero points on C_{2} , and it's always zero on C_{3}, so $U_{23}=\emptyset$.

4.7 The toric variety C_{2}

This variety is defined by a fan Δ such that elements in $\Delta(1)$ satisfy :

$$
\left\{\begin{array}{c}
v_{1}+v_{2}+v_{3}=0 \\
v_{4}+v_{5}+v_{6}=v_{3}
\end{array}\right.
$$

$\mathbb{C}^{*} \times \mathbb{C}^{*}$ acts on this toric variety as follows :

$$
\left(X_{1}, \ldots, X_{6}\right) \rightarrow\left(\lambda_{1} \lambda_{2} X_{1}, \lambda_{1} \lambda_{2} X_{2}, \lambda_{1} X_{3}, \lambda_{2} X_{4}, \lambda_{2} X_{5}, \lambda_{2} X_{6}\right)
$$

Under this action, $X \simeq \mathbb{C}^{6}-Z / \mathbb{C}^{*} \times \mathbb{C}^{*}$, where $Z=\left\{X_{1} X_{4}=X_{1} X_{5}=X_{1} X_{6}=\right.$ $\left.X_{2} X_{4}=X_{2} X_{5}=X_{2} X_{6}=X_{3} X_{4}=X_{3} X_{5}=X_{3} X_{6}=0\right\}$

The anti-canonical forms of X are linear combinations of the following forms :

$$
\begin{gathered}
X_{3}^{3} f_{5}\left(X_{4}, X_{5}, X_{6}\right), X_{3}^{2} f_{4}\left(X_{4}, X_{5}, X_{6}\right) g_{1}\left(X_{1}, X_{2}\right), X_{3} f_{3}\left(X_{4}, X_{5}, X_{6}\right) g_{2}\left(X_{1}, X_{2}\right), \\
f_{2}\left(X_{4}, X_{5}, X_{6}\right) g_{3}\left(X_{1}, X_{2}\right) .
\end{gathered}
$$

where $g_{i}\left(X_{1}, X_{2}\right), f_{i}\left(X_{4}, X_{5}, X_{6}\right)$ are degree i homogenous forms, for $i \geq 1$.
Now $H^{2}(X, \mathbb{Z}) \simeq H_{6}(X, \mathbb{Z}) \simeq A_{3}(X)$ is a rank 2 free abelian group, and $\left[D_{3}\right],\left[D_{6}\right]$ form a base of this group.

Table 7: C_{2}

rational curve $C_{i 0}$	type	cohomology class	

Denote the three rational curves in the first column by C_{10}, C_{20}, C_{30} respectively , and denote the corresponding parameterizing spaces by $\mathcal{M}_{1}, \mathcal{M}_{2}, \mathcal{M}_{3}$, then take the corresponding three Zariski open sets U_{1}, U_{2}, U_{3} such that the rational curves parameterized by points in U_{i} are smooth, and the homogenous coordinates X_{6}, X_{3} have no zero points on rational curves in U_{1}, U_{2} respectively .

The case of C_{1} and C_{2}
$\operatorname{dim} U_{12}=14, C_{1}, C_{2}$ can be assumed to be $\left(s, \alpha_{1}(s, t), t, 0,0,1\right),\left(\tilde{\alpha}_{1}(s, t), \tilde{\beta}_{1}(s, t), 1, s, 0, t\right)$, and the following 9 forms will suffice:

$$
X_{3}^{3} X_{6}^{5}, X_{3}^{2} X_{1} X_{6}^{4}, X_{1}^{2} X_{6}^{3} X_{3}, X_{6}^{2} X_{1}^{3}, X_{3}^{3} X_{4} X_{4}^{i} X_{6}^{4-i}(0 \leq i \leq 4)
$$

The case of C_{1} and C_{3}
$\operatorname{dim} U_{13}=11, C_{1}, C_{3}$ can be assumed to be $\left(s, \alpha_{1}(s, t), t, 0,0,1\right),(1,0,0, s, 0, t)$, and the following 6 forms will suffice :

$$
X_{3}^{3} X_{6}^{5}, X_{3}^{2} X_{1} X_{6}^{4}, X_{1}^{2} X_{6}^{3} X_{3}, X_{6}^{2} X_{1}^{3}, X_{4} X_{6} X_{1}^{3}, X_{4}^{2} X_{1}^{3} .
$$

The case of C_{2} and C_{3}
This case is trivial. Since the homogenous coordinate X_{3} has no zero points on C_{2} , and it's always zero on C_{3}, so $U_{23}=\emptyset$.

4.8 The toric variety C_{3}

This variety is defined by a fan Δ such that elements in $\Delta(1)$ satisfy :

$$
\left\{\begin{array}{r}
v_{1}+v_{2}+v_{3}=0 \\
v_{4}+v_{5}+v_{6}=v_{1}+v_{2}=-v_{3}
\end{array}\right.
$$

$\mathbb{C}^{*} \times \mathbb{C}^{*}$ acts on this toric variety as follows :

$$
\left(X_{1}, \ldots, X_{6}\right) \rightarrow\left(\lambda_{1} \lambda_{2}^{-1} X_{1}, \lambda_{1} \lambda_{2}^{-1} X_{2}, \lambda_{1} X_{3}, \lambda_{2} X_{4}, \lambda_{2} X_{5}, \lambda_{2} X_{6}\right)
$$

Under this action, $X \simeq \mathbb{C}^{6}-Z / \mathbb{C}^{*} \times \mathbb{C}^{*}$, where $Z=\left\{X_{1} X_{4}=X_{1} X_{5}=X_{1} X_{6}=\right.$ $\left.X_{2} X_{4}=X_{2} X_{5}=X_{2} X_{6}=X_{3} X_{4}=X_{3} X_{5}=X_{3} X_{6}=0\right\}$

The anti-canonical forms of X are linear combinations of the following forms :

$$
\begin{gathered}
X_{3}^{3} f_{1}\left(X_{4}, X_{5}, X_{6}\right), X_{3}^{2} f_{2}\left(X_{4}, X_{5}, X_{6}\right) g_{1}\left(X_{1}, X_{2}\right), X_{3} f_{3}\left(X_{4}, X_{5}, X_{6}\right) g_{2}\left(X_{1}, X_{2}\right), \\
f_{4}\left(X_{4}, X_{5}, X_{6}\right) g_{3}\left(X_{1}, X_{2}\right) .
\end{gathered}
$$

where $g_{i}\left(X_{1}, X_{2}\right), f_{i}\left(X_{4}, X_{5}, X_{6}\right)$ are degree i homogenous forms, for $i \geq 1$.
Now $H^{2}(X, \mathbb{Z}) \simeq H_{6}(X, \mathbb{Z}) \simeq A_{3}(X)$ is a rank 2 free abelian group, and $\left[D_{3}\right],\left[D_{6}\right]$ form a base of this group .

Table 8: C_{3}

rational curve $C_{i 0}$	type	cohomology class	anti-canonical section $Y_{i 0}$
$(\mathrm{~s}, 0, \mathrm{t}, 0,0,1)$	$(1,1,1,0,0,0)$	$\left[D_{3}\right]$	$X_{2} X_{1}^{2} X_{6}^{4}+X_{4} X_{3}^{2} X_{6} X_{1}+X_{5} X_{3}^{3}=0$
$(0,0,1, \mathrm{~s}, 0, \mathrm{t})$	$(-1,-1,0,1,1,1)$	$\left[D_{6}\right]$	$X_{1} X_{3}^{2} X_{4}^{2}+X_{2} X_{3}^{2} X_{4}^{2}+X_{5} X_{3}^{3}=0$
$(1,0,0, \mathrm{~s}, 0, \mathrm{t})$	$(0,0,1,1,1,1)\left[D_{3}\right]+\left[D_{6}\right]$	$X_{2} X_{1}^{2} X_{4}^{4}+X_{3} X_{1}^{2} X_{4}^{2} X_{6}+X_{5} X_{1}^{3} X_{6}^{3}=0$	

Denote the three rational curves in the first column by C_{10}, C_{20}, C_{30} respectively , and denote the corresponding parameterizing spaces by $\mathcal{M}_{1}, \mathcal{M}_{2}, \mathcal{M}_{3}$, then take the corresponding three Zariski open sets U_{1}, U_{2}, U_{3} such that the rational curves parameterized by points in U_{i} are smooth, and the homogenous coordinates X_{6}, X_{3}, X_{1} have no zero points on rational curves in U_{1}, U_{2}, U_{3} respectively .

The case of C_{1} and C_{2}
$\operatorname{dim} U_{12}=10, C_{1}, C_{2}$ can be assumed to be $\left(s, \alpha_{1}(s, t), t, 0,0,1\right),(0,0,1, s, 0, t)$, and the following 5 forms will suffice :

$$
X_{3}^{3} X_{6}, X_{3}^{2} X_{1} X_{6}^{2}, X_{1}^{2} X_{6}^{3} X_{3}, X_{6}^{4} X_{1}^{3}, X_{3}^{3} X_{4} .
$$

The case of C_{1} and C_{3}
$\operatorname{dim} U_{13}=13, C_{1}, C_{3}$ can be assumed to be $\left(s, \alpha_{1}(s, t), t, 0,0,1\right),\left(1,0, \tilde{\alpha}_{1}(s, t), t, 0, s\right)$, and the following 8 forms will suffice :

$$
X_{3}^{3} X_{6}, X_{3}^{2} X_{1} X_{6}^{2}, X_{1}^{2} X_{6}^{3} X_{3}, X_{6}^{4} X_{1}^{3}, X_{4} X_{1}^{3} X_{4}^{i} X_{6}^{3-i}(0 \leq i \leq 3) .
$$

The case of C_{2} and C_{3}
This case is trivial. Since the homogenous coordinate X_{1} has no zero points on C_{3} , and it's always zero on C_{2}, so $U_{23}=\emptyset$.

4.9 The toric variety C_{4}

This variety is defined by a fan Δ such that elements in $\Delta(1)$ satisfy :

$$
\left\{\begin{array}{l}
v_{1}+v_{2}+v_{3}=0 \\
v_{4}+v_{5}+v_{6}=0
\end{array}\right.
$$

$\mathbb{C}^{*} \times \mathbb{C}^{*}$ acts on this toric variety as follows :

$$
\left(X_{1}, \ldots, X_{6}\right) \rightarrow\left(\lambda_{1} X_{1}, \lambda_{1} X_{2}, \lambda_{1} X_{3}, \lambda_{2} X_{4}, \lambda_{2} X_{5}, \lambda_{2} X_{6}\right)
$$

Under this action, $X \simeq \mathbb{C}^{6}-Z / \mathbb{C}^{*} \times \mathbb{C}^{*} \simeq \mathbb{P}^{2} \times \mathbb{P}^{2}$, where $Z=\left\{X_{1} X_{4}=X_{1} X_{5}=\right.$ $\left.X_{1} X_{6}=X_{2} X_{4}=X_{2} X_{5}=X_{2} X_{6}=X_{3} X_{4}=X_{3} X_{5}=X_{3} X_{6}=0\right\}$

The anti-canonical forms of X are linear combinations of the forms $f_{3}\left(X_{1}, X_{2}, X_{3}\right) g_{3}\left(X_{4}, X_{5}, X_{6}\right)$, where $f_{i}\left(X_{1}, X_{2}, X_{3}\right), g_{i}\left(X_{4}, X_{5}, X_{6}\right)$ are degree i homogenous forms, for $i \geq 1$.

Now $H^{2}(X, \mathbb{Z}) \simeq H_{6}(X, \mathbb{Z}) \simeq A_{3}(X)$ is a rank 2 free abelian group, and $\left[D_{3}\right],\left[D_{6}\right]$ form a base of this group .

In the following Table 9 , denote the three rational curves in the first column by C_{10}, C_{20}, C_{30} respectively, and denote the corresponding parameterizing spaces by $\mathcal{M}_{1}, \mathcal{M}_{2}, \mathcal{M}_{3}$, then take the corresponding three Zariski open sets U_{1}, U_{2}, U_{3} such that the rational curves parameterized by points in U_{i} are smooth .

Table 9: C_{4}

rational curve $C_{i 0}$	type	cohomology class	anti-canonical section $Y_{i 0}$
$(\mathrm{~s}, \mathrm{t}, 0,1,0,0)$	$(1,1,1,0,0,0)$	$\left[D_{3}\right]$	$X_{5} X_{4}^{2} X_{2}^{3}+X_{6} X_{4}^{2} X_{1} X_{2}^{2}+X_{3} X_{4}^{3} X_{1}^{2}=0$
$(1,0,0, \mathrm{~s}, \mathrm{t}, 0)$	$(0,0,0,1,1,1)$	$\left[D_{6}\right]$	$X_{2} X_{1}^{2} X_{5}^{3}+X_{3} X_{1}^{2} X_{4} X_{5}^{2}+X_{6} X_{1}^{3} X_{4}^{2}=0$
$(\mathrm{~s}, \mathrm{t}, 0, \mathrm{~s}, \mathrm{t}, 0)$	$(1,1,1,1,1,1)\left[D_{3}\right]+\left[D_{6}\right]$	$X_{3} X_{1}^{2} X_{4} X_{5}^{2}+X_{6} X_{1}^{3} X_{4}^{2}+X_{1} X_{2}^{2} X_{5}^{3}-X_{2}^{3} X_{4} X_{5}^{2}=0$	

The case of C_{1} and C_{2}
$\operatorname{dim} U_{12}=12, C_{1}, C_{2}$ can be assumed to be $(s, t, 0,1,0,0),(1,0,0, s, t, 0)$, and the following 7 forms will suffice :

$$
X_{1}^{i} X_{2}^{3-i} X_{4}^{3}(0 \leq i \leq 3), X_{1}^{3} X_{5} X_{4}^{i} X_{5}^{2-i}(0 \leq i \leq 2) .
$$

The case of C_{1} and C_{3}
$\operatorname{dim} U_{13}=13 . C_{1}, C_{3}$ can be assumed to be $(s, t, 0,1,0,0),(s, 0, t, s, t, 0)$ or $(s, t, 0,1,0,0),(s, t, 0, s, t, 0)$. And in the first case , the following 8 forms will suffice :

$$
X_{1}^{i} X_{2}^{3-i} X_{4}^{3}(0 \leq i \leq 3), X_{1}^{i} X_{3}^{3-i} X_{5}^{3}(0 \leq i \leq 3)
$$

In the second case, the following 8 forms will suffice :

$$
X_{1}^{i} X_{2}^{3-i} X_{4}^{3}(0 \leq i \leq 3), X_{1}^{i} X_{2}^{3-i} X_{5}^{3}(0 \leq i \leq 3)
$$

The case of C_{2} and C_{3}
This follows from a similar argument as we did in the last case .

References

[1] V. V. Batyrev, On the classification of smooth projective toric varieties, Tohoku Math. J. 43, 569C585, 1991 .
[2] H. Clemens, Homological equivalece, modulo algebraic equivalence, is not finitely generated, Publ. Math. I.H.E.S. 58, 19C38, 1983 .
[3] H. Clemens, Double solids, Adv . in Math . 47, 107-230, 1983 .
[4] D. A. Cox , The homogeneous coordinate ring of a toric variety, J. Algebraic Geom. 4 (1): 17-50, 1995 .
[5] D. A. Cox , The functor of a smooth toric variety, Tohoku Math. J. 47(2): 251-262, 1995.
[6] R. Friedman , Simultaneous resolution of threefold double points ,Math. Ann. 274(4) : 671-689, 1986.
[7] R. Friedman , On threefolds with trivial canonical bundle, Proc. Symp. Pure. Math. 53 (1991) .
[8] P.S.Green, T.Hübsch, Connetting moduli spaces of Calabi-Yau threefolds, Comm. Math. Phys. 119 : 431C441, 1988 .
[9] T. Johnsen , S. L. Kleiman , Rational curves of degree at most 9 on a general quintic threefold, Comm. Algebra. 24(8) : 2721-2753, 1996.
[10] T.Johnsen , A.L.Knutsen , Rational curves in Calabi-Yau threefolds, Comm. Algebra. 31(8) : 3917-3953, 2003.
[11] M. Kreuzer , H. Skarke , Complete classification of reflexive polyhedra in four dimensions, Adv. Theor. Math. Phys. 4 , no. 6, 1209-1230, 2000.
[12] P.Lu , G.Tian , Complex Structures on Connected Sums of $S^{3} \times S^{3}$, Manifolds and geometry (Pisa , 1993), 284-293.
[13] M. Reid , The moduli space of 3 -folds with $K=0$ may neverthless be irreducible, Math.Ann. 287 : 329-334 ,1987.
[14] M. Rossi , Geometric Transitions, J. Geom. Phys. 56(9), 1940-1983, 2006.
[15] G. Tian , Smoothing 3-folds with trivial canonical bundle and ordinary double points, Essays on Mirror Manifolds (S.T.Yau ed.) , Hongk Kong : International Press , 458-479, 1992 .
[16] T.C.T.Wall , Classification problems in differential topology V. On certain 6manifolds, Invent. Math. (1) 355-374 , 1966 ; corrigendum ibid . (2) 306 , 1967.

