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AN INTERACTING PARTICLES MODEL
AND
A PIERI-TYPE FORMULA FOR THE ORTHOGONAL GROUP

MANON DEFOSSEUX

ABSTRACT. We introduce a new interacting particles model with blocking and
pushing interactions. Particles evolve on the positive line jumping on their
own volition rightwards or leftwards according to geometric jumps with pa-
rameter ¢ €]0,1[. We show that the model involves a Pieri-type formula for
the orthogonal group. We prove that the two extreme cases-g=0and g=1 -
lead respectively to a random tiling model studied in [I] and a random matrix
model considered in [4].

1. INTRODUCTION

In [I] A. Borodin and J. Kuan consider a random tiling model with a wall
which is related to the Plancherel measure for the orthogonal group and thus to
representation theory of this group. Similar connection holds for the interacting
particles model and the random matrix model considered in [4]. The aim of this
paper is to establish a direct link between the random tiling model on one side and
the interacting particles model or the random matrix model on the other side. For
this we consider an interacting particle model depending on a parameter and show
that these models correspond to different parameter values. The paper is organized
as follows. Definition of the set of Gelfand-Tsetlin patterns for the orthogonal group
is recalled in section2l Section[3lis devoted to the description of the particles model.
We recall in section [ the description of an interacting particle model equivalent
to the random tiling model studied in [I]. Models considered in that paper involve
Markov kernels which can be obtained with the help of a Pieri-type formula for the
orthogonal group. These Markov kernels are constructed in section [l after recalling
some elements of representation theory. We describe the matrix model related to
our particles model in section Results are stated in section [7] and proved in
section [§

Acknowlegments: The author would like to thank Alexei Borodin for its sugges-
tions and helpful explanations.

2. GELFAND-TSETLIN PATTERNS

Let n be a positive integer. For x,y € R™ such that z, < --- < z; and y, <
- <, we write =< y if  and y are interlaced, i.e.

Tp SYn <Tp1 << a1 <Y1.

When z € R and y € R*"*! we add the relation y,+1 < z,. We denote |z| the
vector whose components are the absolute values of those of z.

Definition 2.1. Let k be a positive integer.
1
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1) We denote by Gy, the set of Gelfand-Tsetlin patterns defined b
Y Y
GTy = {(z*,--- 2" 2" e NN71 X Z when i = 2j — 1,
rt € N when i = 2§, [¢771 < |2],1 < i < k}.
(2) If v = (2',...,2%) is a Gelfand-Tsetlin pattern, x* is called the it" line of
x forie{l,... k}.
3) For \ € ZI*3™) the subset of Gelfand-Tsetlin patterns having a k" line equal
g
to X\ is denoted by GT(\) and its cardinal is denoted by si(\).

Usually, a Gelfand Tsetlin pattern is represented by a triangular array as indi-
cated at figure [I] for k = 27.
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FIGURE 1. A Gelfand—Tsetlin pattern of GT5,

3. AN INTERACTING PARTICLES MODEL WITH EXPONENTIAL JUMPS

Let k be a positive integer. In this section we construct a process (X(t))¢>0
evolving on the set GT} of Gelfand-Tsetlin patterns with non negative valued com-
ponents. This process can be viewed as an interacting particles model. For this, we
associate to a Gelfand-Tsetlin pattern = = (x1,...,2¥), a configuration of particles
on the integer lattice Z* putting one particle labeled by (i, ) at point (k —i,2%) of
Z?fori e {1,...,k},j € {1,...,[52]}. Several particles can be located at the same
point. In the sequel we identify each particles with its corresponding component.
Let ¢ €]0,1]. Consider two independent families

i 1
(& (n+ 5))1':1 ..... k=1
of identically distributed independent random variables such that
1 xr
PE(5) =) =PEM) =) =q¢"(1-q), z€N,
and the markov Kernel R on N defined by
(gl 4 gty) ity e N*

[#];nZO’ and (gé(n))izl,...k,jzl ..... [itl];nZP

.....

R(Iay) =

1—q =
1+qq

for z € N. Actually for z € N the probability measure R(x,.) on N is the law of
the random variable |z + &1 (1) — &1 (3)]-

Particles evolve as follows. At time 0 all particles are at zero, i.e. X(0) = 0. All
particles, except those labeled by (21 — 1,1) for | € {1,..., [k—'QH]}, try to jump to

otherwise,
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the left at times n + % and to the right at times n, n € N. For [ € {1,..., [EE]},

particle labeled by (20 — 1,1) jumps on its own volition at times n only. Suppose
that at time n there is one particle at point (k — i, X;(n)) of Z?, fori=1,...,k,

ji=1,..., [%] Positions of particles are updated recursively as follows (see also
figure 2).
At time n + 1/2 : All particles except particles X ~!(n) for I € {1,..., [EHL]}, try

to jump to the left one after another in the lexicographic order pushing the particles
in order to stay in the set of Gelfand-Tsetlin patterns and being blocked by the
initial configuration X (n) of the particles. Let us indicate how the first three lines
are updated at time n + %

e Particle X{(n) doesn’t move. We let
1

e Particle X?(n) tries to jump to the left according to a geometric jump. It
is blocked by X{(n). If it is necessary it pushes X3(n) to an intermediate
position denoted by X3(n), i.e.

1 1
Xi(n+ 5) = max (Xi(n), Xi(n) =& (n+ 5))

X(n) = min (X3(n), X3(n + 1))

e Particle X3(n) tries to move to the left according to a geometric jump being
blocked by X%(n) :
1 1
X3+ 5) = max (X2(n), X (n) - €} + 5)).
Particle X3(n) doesn’t move. We let

X3(n+ 1) = X3(n).

2
Suppose now that rows 1 through ! — 1 have been updated for some [ > 1. Then
particles X! (n),... ,X[l#] (n) of line | are pushed to intermediate positions

X!(n) = min (Xf(n),Xf:%(n—F %)), ie{l,...,[

K2

[+1
=
whit the convention X}~ (n + 3) = +o0. Then particles Xl(n),... ,X[li](n) try to
2
jump to the left according to geometric jump being blocked as follows by the initial
l

position X (n) of the particles. Fori=1,...,[5],

XL+ ) = max (X7 ), XL () — €n 1 1),

When [ is odd, particle X!, (n) doesn’t move and we let
2
! L Q)
2 2 2

At time n + 1 : All particles except particles Xlzl_l(n—l—%) forl e {1,..., [%]}, try
to jump to the right one after another in the lexicographic order pushing particles
in order to stay in the set of Gelfand-Tsetlin patterns and being blocked by the
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initial configuration X (n + 1) of the particles. The first three lines are updated as
follows.

e Particle X{(n + ) moves according to the law R(X{(n + %),.) pushing
XZ(n+ 1) to an intermediate position XZ(n + 3) :

1 1
Xiln+1)=|X{(n+ = )+§1(n+1) &(n+ 5)‘
1
2 X+ 1)

e Particle X 2(n+ %) jumps to the right according to a geometric jump pushing

- 1
X2(n+ 5) = max (X{(n +

X3}(n+ 1) to an intermediate position X3(n+ 3), ie.
1
Xi(n+1)=Xi(n+ )+€1(n+1)
. 1
XP(n+ 2) max(Xl(n—i— ) Xi(n+1))

e Particle X3(n + 3) tries to move according to the law R(X{(n+ 3),.). It
is blocked by X?(n + 4). Particle X§(n + 3) moves to the right according
to a geometric jump. That is

1

X3(n+1) = maX‘X2 n+1)+§2(n+1) &(n+ ) (n+2))

1
X3n+1)=X}(n+ )+§1(n+1)
Suppose rows 1 through [ — 1 have been updated for some [ > 1. Then particles of
line [ are pushed to intermediate positions
~ 1 1 [+1
X+ 3) = max (X 4+ 1), X0+ 5)) 0 € {1, o),

with the convention X'7!(n + 1) = 0 when [ is odd. Then particles X!(n +
=
2, [ ](n + 1) try to jump to the right according to geometric jump being

blocked by the initial position of the particles as follows. For i =1,. .., [%],

XH(n +1) = min (X} (n + %),Xf(n + %) +¢&(n+1)).

When [ is odd, particle X!,, (n + 1) is updated as follows.
2

X+ 3)

1
XL+1(7’L+1) mln ’XL+1(7’L+ )+§L+1(n+1) L+1(7’L+ ) B

4. AN INTERACTING PARTICLES MODEL WITH EXPONENTIAL WAITING TIMES

In this section we describe an interacting particles model on Z? where particles
try to jump by one rightwards or leftwards after exponentially distributed waiting
times. The evolution of the particles is described by a random process (Y (¢));>0 on
the set GT} of Gelfand-Tsetlin patterns with non negative valued components. As
in the previous model, at time ¢ > 0 there is one particle labeled by (i, j) at point
(k—1, Yf(t)) of the integer lattice, fori =1,...,k, j=1,..., [%] Every particles
try to jump to the left or to the right by one after independent exponentially
distributed waiting time with mean 1. Particles are pushed and blocked according
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to the same rules as previously. That is when particle labeled by (i,j) wants to
jump to the right at time ¢ > 0 then
(1) if 4,7 > 2 and Y} (t7) = Y;:ll (t7) then particles don’t move and Y (¢t) =
Y(t).
(2) else particles (,7), (i +1,7),..., (i +{,7) jump to the right by one for [ the
largest integer such that Yj""l(t’) =Y/(t7) ie.
By Yi(p— i+l i g
Xj(t)=X;(t7)+1,..., X7 (t) = X7 (t7) + 1.
When particle labeled by (i, j) wants to jump to the left at time ¢ > 0 then
(1) if i is odd, j = (i +1)/2 and X}(t~) = 0 then particle labeled by (i, j) is
reflected by 0 and everything happens as described above when this particle
try to jump to the right by one. _ _
(2) ifiisodd, j = (i+1)/2 and X;—(t’)lz 1 then X;(t) =Xi(t7) -1
(3) if i is even or j # (i +1)/2, and Xj(t7) = X;fl(t_) then particles don’t
move. ‘
(4) ifiis evenor j # (i+1)/2, and X}(t7) > X;_l(t_) then particles (4, j), (i+
1,74 1),...,G+ 1,741 jump to the left by one for | the largest integer

such that infr'll (t7) =Y} (t™). Thus

[ (p— i+l il —
Xj(t) = X5(t7) —1,..., X () = X;(t7) — 1.

This random particles model is equivalent to a random tiling model with a wall,
as it has been explained in detail in [IJ.

5. MARKOV KERNEL ON THE SET OF IRREDUCIBLE REPRESENTATIONS OF THE
ORTHOGONAL GROUP

When a finite dimensionnal representation V' of a group G is completely re-
ducible, there is a natural way that we’ll recall later in our particular case to
associate to this decomposition a probability measure on the set of irreducible rep-
resentations of G. Theorem [7.T] claims that the process (X*(¢),t > 0) is Markovian.
It occurs that the transition probabilities of this process can be obtained in that
manner. Actually we recover them considering decomposition into irreducible com-
ponents of tensor products of particular irreducible representations of the special
orthogonal group.

Let d be an integer greater than 2. Let us recall some usual properties of the
finite dimensional representations of the compact group SO(d) of d x d orthogonal
matrices with determinant equal to 1 (see for instance [5] for more details). The
set of finite dimensional representations of SO(d) is indexed by the set

{)\ERTZQ)\TEN,)\i—)\i+1 EN,izl,...,T—l},
when d = 2r 4+ 1 and by the set
{)\ERTZ)\T_l-i-)\TEN, Ai — i1 EN,izl,...,'f‘—l},

when d = 2r. Actually we are only interested with representations indexed by a
subset W; of these sets define by

Wdz{)\ERTZ)\TEN,)\i—)\H_l EN,izl,...,T—l},
when d = 2r + 1 and
Wi={AeR" : N, €Z, 1+ NN N = N1 €N i=1,...,r—1},
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when d = 2r. For A € W, using standard notations, we denote by V, the so called
irreducible representation with highest weight A of SO(d). The subset of W,; whose
elements have non negative components is denoted by W; .

Let m be an integer and A an element of W;. Consider the irreducible repre-
sentations V) and V,, of SO(d), with ~,, = (m,0,---,0). The decomposition of
the tensor product V) ® V,, into irreducible components is given by a Pieri-type
formula for the orthogonal group. It has been recalled in [3]. We have

(1) Vi@ Vs, = @M 4, (B)Vs,
where the direct sum is over all 8 € Wy such that
e when d = 2r + 1, there exists an integer s € {0,1} and ¢ € N" which satisfy
c2A c¢=p

Yici (i —ci+ Bi — i) + 5 =m,

s being equal to 0 if ¢, = 0. In addition, the multiplicity My -, (8) of the
irreducible representation with highest weight 8 is the number of (¢, s) €
N" x {0, 1} satisfying these relations.

e when d = 2r, there exists ¢ € N"~! which verifies

c2 A, e=x|p]

Z;;(Ak — ¢+ Br — ck) + A — | = m.

In addition, the multiplicity M) ,,,(3) of the irreducible representation with

highest weight 3 is the number of ¢ € N"~! satisfying these relations.
Let us consider a family (tm )m>0 of Markov kernels on Wy defined by
- dim(V,\)
~ dim(Vp) dim(V;,,)
for A\, 8 € Wy and m > 0. It is known that for A € W; the dimension of V) is given
by sq—1(A). Thus

ﬂm()\uﬁ) M)\,’Ym(ﬁ)7

Sd—1 ()\)
m(\ B) = My ~, (B).
w ( ﬂ) Sdfl(ﬂ)sdfl('}/m) Ay (B)
Let &1,...,&q be independent geometric random variables with parameter ¢ and €
a Bernoulli random variable such that
q
Pe=1)=1-Ple=0) = ——.
(e=1)=1-Ple=0)=

Consider a random variable 7" on N defined by

d—1
T=> &+e
i=1
when d = 2r + 1 and
d
T=|4 &+ &,
i=3

when d = 2r.
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Lemma 5.1. The law of T is a measure v on N defined by
1

= —(1-¢%'¢"sq-1(ym), meN.
1—|—q( )" q"sa—1(vm)

Proof. When d = 2r + 1, for m = 0 the property is true. For m > 1

v(m)

q d—1 1 d—1
P(T'=m) = mP(Z& =m-—1)+ mp(;@ =m)

i=1

d—1
1
-1 q(1 — )" g Card{(ky,. .., ka—1) € NN ki € {m — 1,m}}
=1
1 - m
= ?(1 —9)" g > (21, >1 + 1k, =0)
! (k1,eoykq—1)ENI=1: 30 ko=
1 - m
=— (1= Q)d 'q $d—1(Vm)-

1+g¢
So the lemma is proved in the odd case. Moreover
1-q k :
2fgq if k>1,

P(l&1 — &l =k) =

—

q .
e otherwise.

Thus when d = 2r,

P(T=m)=—(1—-¢" '¢" > (21k;>1 + 1ky=0)
(k1yeeoykq_1)ENd=1: 397 i =m

= ——(1— )" q"s4-1(ym).
0

Lemma [5.J] implies in particular that the measure v is a probability measure.
Thus one defines a Markov kernel P; on Wy letting

“+00
(2) PaAB) = 3 (A B)(m),
m=0
for A, 8 € Wjy.
Proposition 5.2. For A, € W,
— r 1 _
P >\5 = 1-— dilisd 1(/8) Zizl()\i‘fﬁi*QCi) 1c + cr=0
(N B) CGN%;W( q) O (Le.0 o q)
when d = 2r +1 and
Pa(X\, B) = 1-— dilsd;l(ﬂ) ST (N +Bi—2¢i)+ A — B
1(A, B) Z ( q) Sd—1()\)q

ceN"=L:ex|AL[B]

when d = 2r.

Proof. Proposition follows immediately from the tensor product rules recalled for
the decomposition (). O
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6. RANDOM MATRICES

Let us denote by My 4 the set of d x d’ real matrices. A standard Gaussian
variable on M 4 is a random variable having a density with respect to the Lebesgue
measure on Mg ¢ equal to

1 1

lor exp( 2tr(MM ).

We write Ay for the set {M € Mgq: M + M* = 0} of antisymmetric d x d real
matrices, and A, for the set {iM : M € Ay}. Since a matrix in 4.4, is Hermitian,
it has real eigenvalues \; > Ag > --- > Ag. Morever, antisymmetry implies that
Ad—it1 = —A;, for i = 1,---,[d/2] + 1, in particular Ajg/2+1 = 0 when d is odd.

Consider the subset C4 of R[Jr%] defined by

MEMdd/H

Cd:{xER[%]:x1>~-~>x[%]>0},

and its closure - .
Cd:{IER[i] 2 2~-~2x[%] > 0}.

Definition 6.1. We define the function hq on Cq by
ha(A\) = Cd(/\)ilvd()\), A€ Cy,

where the functions Vg and cq are given by :

.= J[ -2 I ~i+x) I X

1<i<j<[4] 1<i<j<[4] 1<i<[4]

o . d, 1

= [ G-0 I @-i-o I (G1+5-9"
1<i<j<[8] 1<i<j<[4] 1<i<[4]

whit € equal to 1 when d ¢ 2N and 0 otherwise.
Next proposition is an immediate consequence of propositions 4.8 and 5.1 of [3]

Proposition 6.2. Let (M(n),n > 0), be a process on iAy defined by

0l

where the Y;’s are independent standard Gaussian variables on Mgz. If A(n) is
the vector of Cq whose components are the [%] biggest eigenvalues of M (n), n € N,
then the process (A(n),n > 0) is a Markov chain on Cq with transition probabilities

) = B mae.y) dy
(4]

for x,y € Cq, where dy is the Lebesque measure on R?* and

md(xvy) :/ 1{zjw7y}efzzn:1(yi+zi72zi) dz
R’V‘

+

when d = 2r +1 and
r—1
ma(z,y) :/ Loy ype” it TR (el el g em (et g
R~

+

when d = 2r.
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7. RESULTS
Theorem 7.1. The process (X*(t))¢>0 is a Markov process on W,:F_H. If we denote
Ry its transition kernel then

o Rl =R.
o when k is even Ry = Pyy1,
o when k is an odd integer greater than 2

Pry1(2,y) + Preyi(2,9)  if yen #0
Rk(fli, y) =
Py (z,y) otherwise,

fOT T,y € W]:r+17 where g = (2/17-- ay%v_y%)

If (A(n),n > 0) is the process of eigenvalues considered at proposition with
d =k + 1 then the following theorem holds.

Theorem 7.2. Lettingq=1— %, the process (X’;\E") ,m > 1) converges in distri-

bution towards the process of eigenvalues (A(n),n > 1) as N goes to infinity.

Theorem 7.3. Letting ¢ = +, the process (X ([Nt]),t > 0) converges in distribu-
tion towards the process (Y (t),t > 0) as N goes to infinity.

8. PROOFS

Proof of theorem [T.1l Proof of theorem [(1] rests on an intertwining property
and an application of a Pitman and Rogers criterion given in [6].

Definition 8.1. Let & and & be two independent geometric random variables. For
z,a € N such that x > a, the law of the random variable

rnax(a, xr— 51)7
a‘— —b —b
is denote by P (z,.) For z,b € N such that x < b we denote by P (z,.) and R (z,.)
the laws of the random variables
min(b, x + &) and min(d, |x + & — &2).
For z,y € R? such that x < y we let
Pz,y) = (1-q)¢""
The two following lemmas are proved by straightforward computations.

Lemma 8.2. Fora,x,y € N such thata <y <z

“ (1 Q)qw Y lfa 1 S Yy
P xz, - T—a ;
( y) { q lf Yy = a.

Forb,z,y € N such thatb >y > x

> (1-q)¢"™" ify<b-1
P = :
(‘Tv y) { qbfac if y =b.
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€T

For b,z,y € N such that b >y,
2@V g™ ify <b—1,y>0

—

—b ﬁq
R(z,y) =

i)

* ify<b—1,y=0

Pl +q%) ify=by>0

—
=+~
Q

1 ify=0b,y=0.

Lemma 8.3. For (x,y,z) € N? such that 0 < 2 <y

z
U—

(3) D (luo+2Luso)R(u,2) P (y,2) = (1 — q)(Lo—o + 2 Ln0)g” >~

u=0

For (x,y,a) € N® such that a <y and y < x

y Ut—
(4) > q" P (z,y) =q" Vg
For (z,y,a) € N such that y < a and x <y
@ —v
(5) S UP(zy) =q"""q"
v=y
Fory e N,y € N* such that y' < a
- 'UVy—QU*w / 1 —a /
(6) Zq : R(y/\v,y)zﬂq R(y,y")
v=y’

We first prove theorem [[.1l for £ = 2. Consider the set
Wiy = {(zp) € N2 2 < ).
Define a Markov kernel S5 on W2+ 3 letting

(1-q)? Zqo V21 cyony i 2> 0
S2((20,%0), (2,9)) = (1-)? sa(y)
1—q)° sa(y + if z =
1+q 522(yo)qy0 ! ifz=0

for (20,%0),(2,y) € W;fg and another one Lo from W;fg to N x W;fg letting

1
La((z0,y0), (z, 2, = (lgeo +2150)—— o<yl —(20)>
2((20,%0), (z,2,9)) = (la=0 >0)52(y) <yL(z0,90)=(21)

for (20,90), (2,4) € Wi and & € N. The fact that S is a Markov kernels follows
from proposition with d = 3. The process

(X} (), X3 = 5), XE )1,

is clearly Markovian. Its transition kernel is denoted by Q2. Then @2, Lo and S
satisfy the following intertwining.

Lemma 8.4.
LyQ2 = SaLo.
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Proof. For (z,z,y),(2/,2",y') € N x Wi, such that 2 <y and 2/ <y

€Tr<—

Q2((x, z,y), (@', 2",y") = R(x,2") P (y, 2" )P(x' vV 2',y).
Thus

LaQa((eo0). (0 #0) = 3 D RGe ) P 0P v )
x=0

w

As Ly, Sy and Q2 are Markov kernels it is sufficient to prove the identity for 2z’ > 0.
In that case identity (B) of lemma B3] implies that

Z lm: +2 lz T AN W

S Qo0 2Len0) g 0B (g, 27) = (1= ) (Lo + 2 L )g V= 1072
o s2(y)

Thus

(11’20 +2 1m’>0)

e il

L2Q2 ZY)s xlvz/ay/ = q )
() ) = B2t
which proves that

LaQ2 = SaLoa.

([
Proposition 8.5. Letting X?(—1) = X?(1) = 0, the process
1
(X3 - 2. X200

is a Markov process on Wj 3 with transition probability So.

Proof. Since the process
1
(Xll (n)7 X%(TL - 5)7 X%(”))nZl

is Markovian with transition kernel @2, proposition folows from the intertwining

property of lemma [84] and the criterion of Pitman and Rogers given in [6]. O

Theorem [Z.1] follows when k = 2 from proposition For the general case one

defines the process (Z*(n),Y*(n)),>1, letting
1

Zk(n) = (Xf(n - =),... ,X[k%](n -

2 ))7

Y*(n) = X*(n),

for n > 1 and Z*(0) = Y*(0) = 0. Let us notice that Z* is equal to X* when k is
even, whereas it is obtained from X* by deleting its smallest component when k is
odd. We consider the subset W,j 1 Of W]j X W]j 1 defined by

Wi = 1{(zy) e W x Wi 2 <y,

and a Markov kernel Sj on W,:fkﬂ letting for every (z,v), (2',y’) € W,:fkﬂ

!/
" / 1, —
S ")) = (1 — ksk() Y (it =22 (1 i S I
( ) k((’z?y)?(Z?y)) ( q) Sk(y)q ! ( »>0 1+q) =Y,y

when k = 2r, and

_se(y Pty — 22,
(8)  Sk((z,y), (2 y)=(1—q"* k( )R(yr,yé)qzlzl(yﬁyl 2002y
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when k = 2r — 1. The fact that for (z,y) € W/, ., the measure Si((z,y),.) is a
probability measure is a consequence of proposition when d = k + 1.

Notation. Since for (z,y) € le,k-i—l the probability Sk((z,y),.) doesn’t depend on
z it will by denoted by Sk(y,.) when there is no ambiguity.

Lemma 8.6. If the process
(2" 1), Y* " (1) Jnz1s
is a Markov process on W/j—l,k with transition kernel Sy_1 then the process
(Y*1(n), 2" (n), Y ()1
is a Markov process on the set
{(@,(2,9)) EW X Wi jpr i 2y

If we denote its transition kernel by Qi then for (u,z,y), (z,2',y') € W x Wi, 1,
such that u <y and x <y’

—Ur—1

Qk((ua Zvy)u ((E, Zlu y/)) = Z Sk—l(ua (’U,.’Ii)) R (yr A Upr_1, y;)
veENT—1
=1, T i1
(9) X (yz A Vi—1, 27{) H P (Zz/ vV L, y?{)u
=1 i=1
when k = 2r — 1 and
o Urs /
Qk((ua Zay)u (‘Tu zZ,Y )) = Z Sk—l(uv (va)) P (yT A Up_1, Zr)
veNr—1
=1 T i
(10) X P (y; Nvi_1,2}) H P (ziV iy,
=1 =1

when k = 2r. In the odd and the even cases vo = 400 and the sum runs over
v=(v1,...,0.—1) € N'71 such that v; € Wigr, - mi Nz}, forie{l,...,r =1}
Proof. The dynamic of the model implies that the process
(Z*(n), Y* Y(n), Z%(n),Y"*(n),n > 0)
is Markovian. Since for (z,y) € W;Lk the transition probability Sk—1((z,¥),.)
doesn’t depend on z, the Markovianity of the process
(Y*"(n), 25(n), Y*(n),n > 0)

follows. Identities (@) and (I0) is deduced from the blocking and pushing interac-
tions. 0

Let us define Markov Kernel Ly, from W,Ikﬂ to W]j X W,Ikﬂ letting for z € W,j'
and (Zu y)7 (207 yo) € lejk+1

Sk—1(x)
i L = Lag0)=(z _—
(11) #((20,90), (2, 2)) = Lzo yo)=e) 3" Lo
when £ is odd and
_ sp—1(z)
(12) - Le((z0,90), (@,9:2)) = (Loy () + 2 1 (@)L o )=o) —5 3 Loz

when k is even. The following proposition generalizes lemma 8.4
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Proposition 8.7. Markov kernels S, Ly, and Qi defined as in (1), (8), (I1), (I2)
and lemma 8.8 satsify the intertwining

LipQy = Sk Ly.
Proof. For (z,y) € W,:kH, (z,2,y') € Wit x W,Ikﬂ such that x <3/,
Lka((Za y)u ($, Zlu y/)) = Z Lk((Z, y)u (’LL, Z, y))Qk((uu Z, y)7 (JI, 2/7 yl))
uEW;

We prove separately the even and the odd cases. When k& = 2r, the sum is equal to

> @) (1) 2 T () (1 = )72 R, )it (b= 200

(u,v)EN" xXNr—1 Sk(y)
™ T — v 1
X P(z1 V z1,y1) H yl/\vl 1,7 H P (Z Vi)
i=1 =2
where the sum runs over (u,v) € N” x N"=1 such that u, € {0,...,2.}, v; €

Wigts - xi Nz}, wi € {vg V yiga, ..., 2}, fori € {1,...,7 —1}. Thus the sum
equals

T7 r —Vi—1
> 51-1(z) (1— > 2¢== 5Py var,yy) [[a 2 P (v ai,3))

e A C) 12
< 3 (goy () + 2 1w () (1 = @2 2R (upy ) [T 0 P (w3 A vi1, 2).
uw€ENT i=1
For a fixed v the sum over u is
2], ot r—1 Z; e
Z (1403 (up)+2 In= (ur) ) R(ur, 7y) P (yrAUr_1, 21.) H Z q™" P (yiAvi_1, 20).

u,=0 =1 u;=v;Vyit+1

Since Ly and Q) are Markov kernels it is sufficient to consider the case when z, > 0.
In that case, identities @B and ) of lemma imply that the sum over u equals

r—1
(1{0} ($r) + 21y (x’,‘))qmrvz}“l’yr/\vrfl*2z7‘(1 _ Q) H qyi/\vi—lfzi‘i”vivywrl'

=1

ie.

’ ’ r—1 v, —2"
(Lo (2r) + 2 Inwe ()" Vo Hor 2oty vitvi=2i(1 — g,
Thus
L?TQQT((Zu y)7 (:I;v 2/7 y/))
equals
Sk—l(x) — r—1

(1 _ q)2r 1(1{0}($r) +2 1y (CCT))(]ITVZ Lty =220+ T yi— Zlq i=1 Ti

sk(y)

x; 1Vz
T —Vi—1

21 vxlayl H Z qiviil P (Z;\/Ihy;)

=2 Vi—1=Y;
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Identity (Bl) of lemma B3] gives that

’
r Ti—1VZzZ;_

I I } : U ’ ’ ITI i—ziVai—mi_1AZ]
q Vi—1 P (Zi \/ :Eivyi) — qyi Z;VTi—Ti—1N\Z; _q
=2

=2 V;—1=Y;

’ ’ ’ r—1 7 ’
= qyr_zrva_ml/\zlq i=2 YiTTiT 3
)

which implies

Sk—1(x)

Lo Qar((2,9), (.2, y)) = T(y)(l —q)*" (L{o}(xr) + 21y (,))q2imr Vit vi—220,
and achieves the proof for the even case. Similarly when k =2r — 1

Sp—1(T) sor-1, g, U1
L27‘—1Q27‘—1((Zu y)7 (JI, 2/7 y/)) = Z 7()qu:1 i R (yk N Vp_1, y;c)

‘. sk(y)
u,veN
r—1 T
Uj$— —Vi—1
X Hq’uq P (yi/\Ui—hZ;)H P (Z;vxluy;)u

i=1 i=1
where the sum runs over (u,v) € N1 x N"~1 such that v; € {y/,,...,zi A 2]},
u; € {viVyiy1,...,2 }, fori € {1,...,r—1}. We obtain the intertwining in a quite

similar way as in the even case, using identities (@), (B) and (@) of lemmaR3 O

Proposition 8.8. The process (Z¥(n),Y*(n))n>1, is Markovian with transition
kernel Sy defined in (8).

Proof. Conditionally to the process (X*~1(t),t > 0) processes (X*(t),t > 0) and
(X'(t),t > 0),for I =1,...,k—2, are independent. So the property can be proved
by induction on k. Proposition claims that it is true for £ = 2. Suppose that
proposition is true for a fixed interger k — 1 greater that 1. Lemma [R.6 implies that
the process
(Yk_l (n)7 Zk (n)u Yk (n))nZI

is Markovian with transition kernel Q. The intertwining of proposition B.7implies,
by using the Pitman and Rogers criterion given in [6], that the process

(Zk (n)u Yk (n))nZI
is Markovian with probability Sy. O

Theorem [l is an immediate corollary of proposition B8

Proof of theorem Let (zn)n>1 be a sequence of elements of WIQLH such
that = converges to 2 € Cry1 as IV goes to infinity and (vy)n>1 be a sequence of
probability measures on W, defined by

UN = Z Ri(zn,y)01,,

+
yel/\},C+1

Propositions 5.2l and imply that the measure vy converges to the measure pgy1
defined in proposition as N goes to infinity. Theorem follows.
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Proof of theorem Proof of theorem rests on a similar argument as in
section 2.7 of [2].

Lemma 8.9. Let Ti(q) and T(q) be two (possibly infinite) lower and upper tri-
angular matrices, whose matriz coefficients are polynomials in an indeterminate
q>0:

Tl(q) = Aog + qA; +q2A2+...,

T>(q) = Bo+¢B1+ ¢*Ba + .. .,
and assume that Ag = By = 1. Then fort € Ry,

lim (T3 () T2(9)) "/ = exp(t(A1 + B1)).

Proof. Because of the triangularity assumption, lemma follows, as in the proof of
lemma 2.21 of 2], from the claim for finite size matrices which is standard. O

Theorem [7.3] follows immediately from the last lemma taking
T1(g)(z,y) =P(X(n + 3) = y|X(n) = @),

L(q)(z.y) =P(X(n+1) =y|X(n+ 3) = 2),
for z,y € GT.
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Interactions between times n and n + %
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FIGURE 2. An example of blocking and pushing interactions be-

tween times n and n+1 for & = 4. Different kinds of dots represent
different particles.
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