RESONANCE VARIETIES VIA BLOWUPS OF \mathbb{P}^{2} AND SCROLLS

HAL SCHENCK

Abstract

Conjectures of Suciu 36 relate the fundamental group of an arrangement complement $M=\mathbb{C}^{n} \backslash \mathcal{A}$ to the first resonance variety of $H^{*}(M, \mathbb{Z})$. We describe a connection between the first resonance variety and the OrlikTerao algebra $C(\mathcal{A})$ of the arrangement. In particular, we show that non-local components of $R^{1}(\mathcal{A})$ give rise to determinantal syzygies of $C(\mathcal{A})$. As a result, $\operatorname{Proj}(C(\mathcal{A}))$ lies on a scroll, placing geometric constraints on $R^{1}(\mathcal{A})$. The key observation is that $C(\mathcal{A})$ is the homogeneous coordinate ring associated to a nef but not ample divisor on the blowup of \mathbb{P}^{2} at the singular points of \mathcal{A}.

1. Introduction

The fundamental group of the complement M of an arrangement of hyperplanes $\mathcal{A}=\bigcup_{i=1}^{d} H_{i} \subseteq \mathbb{C}^{n}$ is a much studied object. The Lefschetz-type theorem of Hamm-Le [13] implies that taking a generic two dimensional slice of M yields an isomorphism at the level of fundamental groups, so to study $\pi_{1}(M)$ we may assume $\mathcal{A} \subseteq \mathbb{P}^{2}$. Even with this simplifying assumption the situation is nontrivial: in [17] Hirzebruch writes "The topology of the complement of an arrangement of lines in \mathbb{P}^{2} is very interesting, the investigation of the fundamental group very difficult".

Presentations for $\pi_{1}(M)$ are given by Randell [28, Salvetti [29], Arvola [2], and Cohen-Suciu 3]. Perhaps the most compact of these is the braid monodromy presentation of 3, but even this is quite complicated. Somewhat coarser invariants of $\pi_{1}(M)$ are the LCS ranks and Chen ranks. For a finitely generated group G, let $G=G_{1}$ and define a sequence of normal subgroups inductively by $G_{k}=\left[G_{k-1}, G\right]$. This yields an associated Lie algebra

$$
g r(G) \otimes \mathbb{Q}:=\bigoplus_{k=1}^{\infty} G_{k} / G_{k+1} \otimes \mathbb{Q}
$$

with Lie bracket induced by the commutator. The k-th LCS rank $\phi_{k}=\phi_{k}(G)$ is the rank of the k-th quotient. The Chen ranks of a group are the LCS ranks of the maximal metabelian quotient $G /[[G, G],[G, G]]$. Work of Papadima and Suciu [26] shows that the Chen ranks of $\pi_{1}(M)$ are combinatorially determined; but save for some special classes of arrangements, there are no explicit formulas for either the Chen or LCS ranks. However, there are a beautiful pair of conjectures due to Suciu [36], giving formulas for the LCS and Chen ranks in terms of the first resonance variety $R^{1}(\mathcal{A})$. The variety $R^{1}(\mathcal{A})$ is the tangent cone at the origin to the characteristic variety; the study of $R^{1}(\mathcal{A})$ was pioneered by Falk in 10 .

[^0]In the next section, we review the main subjects of investigation: the OrlikSolomon algebra $A=H^{*}(M, \mathbb{Z})$, the Orlik-Terao algebra $C(\mathcal{A})$, the first resonance variety $R^{1}(\mathcal{A})$, and blowups of \mathbb{P}^{2} using certain divisors. Our main result is a description of $C(\mathcal{A})$ as the homogeneous coordinate ring of the blowup X of \mathbb{P}^{2} at the singular points of \mathcal{A}, via a specific (nef but not ample) divisor $D_{\mathcal{A}}$. This allows us to give a geometric interpretation of $R^{1}(\mathcal{A})$ in terms of certain determinantal syzygies; we prove that if \mathcal{A} supports a net, then $\operatorname{Proj}(C(\mathcal{A}))$ lies on a scroll.

2. Background

In [23], Orlik and Solomon gave a presentation for the cohomology ring of the complement M of a set of hyperplanes $\mathcal{A} \subseteq \mathbb{C}^{n}$. A consequence of their work is that the Betti numbers of M are determined by the intersection lattice $L(\mathcal{A})$. This lattice is ranked by codimension: $x \in L_{i}(\mathcal{A})$ corresponds to a linear space of codimension i which is an intersection of hyperplanes of \mathcal{A}. The lattice element $\hat{0}$ corresponds to \mathbb{C}^{n}, and $y \prec x \leftrightarrow x \subsetneq y$. We work with \mathcal{A} central, so \mathcal{A} defines an arrangement in both \mathbb{C}^{n} and \mathbb{P}^{n-1}. We will depict \mathcal{A} projectively, as below:

Example 2.1. The reflecting hyperplanes of the Weyl group of $S L(4)$ are the six hyperplanes in \mathbb{C}^{4} defined by $V\left(x_{i}-x_{j}\right), 1 \leq i<j \leq 4$. Projecting along the common subspace (t, t, t, t) yields the braid arrangement of six planes containing the origin in \mathbb{C}^{3}, or six lines in \mathbb{P}^{2} :

Figure 1. The braid arrangement A_{3} and its intersection lattice in \mathbb{C}^{3}

Definition 2.2. The Möbius function $\mu: L(\mathcal{A}) \longrightarrow \mathbb{Z}$ is defined by

$$
\begin{array}{rlc}
\mu(\hat{0}) & = & 1 \\
\mu(t) & = & -\sum_{s \prec t} \mu(s), \text { if } \hat{0} \prec t
\end{array}
$$

As noted, the Poincaré polynomial of M is determined by $L(\mathcal{A})$:

$$
P(M, t)=\sum_{x \in L(\mathcal{A})} \mu(x) \cdot(-t)^{\mathrm{rank}(x)}
$$

In Example 2.1 $P(M, t)=1+6 t+11 t^{2}+6 t^{3}$. For a central arrangement in \mathbb{C}^{n}, $M \simeq \mathbb{C}^{*} \times\left(\mathbb{P}^{n-1} \backslash \mathcal{A}\right)$, so by Künneth $P(M, t)=(1+t) P\left(\mathbb{P}^{n-1} \backslash \mathcal{A}, t\right)$. For $n=3$, $b_{2}(M)=\sum_{p \in L_{2}(\mathcal{A})} \mu(p)$, where $\mu(p)$ is one less than the number of lines through p.
2.1. Orlik-Solomon algebra and $R^{1}(\mathcal{A})$. The Orlik and Solomon presentation for the cohomology ring of $M=\mathbb{C}^{n} \backslash \mathcal{A}$ is as follows:
Definition 2.3. $A=H^{*}(M, \mathbb{Z})$ is the quotient of the exterior algebra $E=\bigwedge\left(\mathbb{Z}^{d}\right)$ on generators e_{1}, \ldots, e_{d} in degree 1 by the ideal generated by all elements of the form $\partial e_{i_{1} \ldots i_{r}}:=\sum_{q}(-1)^{q-1} e_{i_{1}} \cdots \widehat{e_{i_{q}}} \cdots e_{i_{r}}$, for which $\operatorname{codim} H_{i_{1}} \cap \cdots \cap H_{i_{r}}<r$.

Since A is a quotient of an exterior algebra, multiplication by an element $a \in A^{1}$ gives a degree one differential on A, yielding a cochain complex (A, a) :

$$
(A, a): 0 \longrightarrow A^{0} \xrightarrow{a} A^{1} \xrightarrow{a} A^{2} \xrightarrow{a} \cdots \xrightarrow{a} A^{\ell} \longrightarrow 0 .
$$

The complex (A, a) is exact as long as $\sum_{i=1}^{n} a_{i} \neq 0$; the first resonance variety $R^{1}(\mathcal{A})$ consists of points $a=\sum_{i=1}^{n} a_{i} e_{i} \leftrightarrow\left(a_{1}: \cdots: a_{n}\right)$ in $\mathbb{P}\left(A^{1}\right) \cong \mathbb{P}^{d-1}$ for which $H^{1}(A, a) \neq 0$. Falk initiated the study of $R^{1}(A)$ in 10; among his main innovations was the concept of a neighborly partition: a partition Π of \mathcal{A} is neighborly if, for any rank two flat $Y \in L_{2}(\mathcal{A})$ and any block π of Π,

$$
\mu(Y) \leq|Y \cap \pi| \Longrightarrow Y \subseteq \pi
$$

Falk showed that all components of $R^{1}(A)$ arise from such partitions, and conjectured that $R^{1}(\mathcal{A})$ was a subspace arrangement. This was proved, essentially simultaneously, by Cohen-Suciu [3] and Libgober-Yuzvinsky [21]; we will return to this in $\S 4$.
2.2. The Orlik-Terao algebra. In [25], Orlik and Terao introduced a commutative analog of the Orlik-Solomon algebra in order to answer a question of Aomoto.
Definition 2.4. Let $\mathcal{A}=\cup_{i=1}^{d} V\left(\alpha_{i}\right) \subseteq \mathbb{P}^{n}$, and put $R=\mathbb{C}\left[y_{1}, \ldots, y_{d}\right]$. For each linear dependency $\Lambda=\sum_{j=1}^{k} c_{i_{j}} \alpha_{i_{j}}=0$, define $f_{\Lambda}=\sum_{j=1}^{k} c_{i_{j}}\left(y_{i_{1}} \cdots \hat{y}_{i_{j}} \cdots y_{i_{k}}\right)$, and let I be the ideal generated by the f_{Λ}. The Orlik-Terao algebra $C(\mathcal{A})$ is the quotient of $\mathbb{C}\left[y_{1}, \ldots, y_{d}\right]$ by I, and the Artinian Orlik-Terao algebra (the main object studied in [25]) is $C(\mathcal{A}) /\left\langle y_{1}^{2}, \ldots, y_{d}^{2}\right\rangle$.
Example 2.5. Suppose $\mathcal{A} \subseteq \mathbb{P}^{2}$ is defined by the vanishing of $\alpha_{1}=x_{1}, \alpha_{2}=$ $x_{2}, \alpha_{3}=x_{3}, \alpha_{4}=x_{1}+x_{2}+x_{3}$. The only relation is $\alpha_{1}+\alpha_{2}+\alpha_{3}-\alpha_{4}=0$, so

$$
C(\mathcal{A})=\mathbb{C}\left[y_{1}, \ldots, y_{4}\right] /\left\langle y_{2} y_{3} y_{4}+y_{1} y_{3} y_{4}+y_{1} y_{2} y_{4}-y_{1} y_{2} y_{3}\right\rangle
$$

The homogeneous polynomial $y_{2} y_{3} y_{4}+y_{1} y_{3} y_{4}+y_{1} y_{2} y_{4}-y_{1} y_{2} y_{3}$ is irreducible, hence defines a cubic surface in \mathbb{P}^{3}, and a computation shows that the surface has four singular points. A classical result in algebraic geometry is that the linear system of four cubics through six general points in \mathbb{P}^{2} defines a map from the blowup of \mathbb{P}^{2} at those points to \mathbb{P}^{3} whose image is a smooth cubic surface. As the points move into special position the surface acquires singularities, as in this example.

In 34, properties of the Orlik-Terao algebra were studied in relation to 2 formality. An arrangement is 2 -formal if any dependency among the linear forms defining the the arrangement can be obtained as a linear combination of dependencies which involve only three of the forms. Among the classes of 2 -formal arrangements are $K(\pi, 1)$ arrangements and free arrangements. However, an example of Yuzvinsky 41] shows that 2 -formality is not determined by the intersection lattice $L(\mathcal{A})$. The main result of [34] is that 2 -formality is determined by the quadratic component of the Orlik-Terao ideal; the key is a computation on the tangent space of $V\left(I_{2}\right) \cap\left(\mathbb{C}^{*}\right)^{d-1}$.
2.3. Blowups of \mathbb{P}^{2}. Fix points $p_{1}, \ldots p_{n} \in \mathbb{P}^{2}$, and let

$$
\begin{equation*}
X \xrightarrow{\pi} \mathbb{P}^{2} \tag{1}
\end{equation*}
$$

be the blow up of \mathbb{P}^{2} at these points. Then $\operatorname{Pic}(X)$ is generated by the exceptional curves E_{i} over the points p_{i}, and the proper transform E_{0} of a line in \mathbb{P}^{2}. A classical geometric problem asks for a relationship between numerical properties of a divisor $D_{m}=m E_{0}-\sum a_{i} E_{i}$ on X, and the geometry of

$$
X \xrightarrow{\phi} \mathbb{P}\left(H^{0}\left(D_{m}\right)^{\vee}\right)
$$

First, some basics. Let m and a_{i} be non-negative, let $I_{p_{i}}$ denote the ideal of a point p_{i}, and define

$$
\begin{equation*}
J=\bigcap_{i=1}^{n} I_{p_{i}}^{a_{i}} \subseteq \mathbb{C}[x, y, z]=S \tag{2}
\end{equation*}
$$

Then $H^{0}\left(D_{m}\right)$ is isomorphic to the $m^{t h}$ graded piece J_{m} of J (see [14]). In [5], Davis and Geramita show that if $\gamma(J)$ denotes the smallest degree t such that J_{t} defines J scheme theoretically, then D_{m} is very ample if $m>\gamma(J)$, and if $m=\gamma(J)$, then D_{m} is very ample iff J does not contain m collinear points, counted with multiplicity. Note that $\gamma(J) \leq \operatorname{reg}(J)$. Now suppose that $\mathcal{A}=\cup_{i=1}^{d} L_{i} \subseteq \mathbb{P}^{2}$, and fix defining linear forms α_{i} so that $L_{i}=V\left(\alpha_{i}\right)$. Let X denote the blowup of \mathbb{P}^{2} at $\operatorname{Sing}(\mathcal{A})=L_{2}(\mathcal{A})$. The central object of our investigations is the divisor

$$
\begin{equation*}
D_{\mathcal{A}}=(d-1) E_{0}-\sum_{p_{i} \in L_{2}(\mathcal{A})} \mu\left(p_{i}\right) E_{i} . \tag{3}
\end{equation*}
$$

2.4. Main results. For an arrangement $\mathcal{A} \subseteq \mathbb{P}^{2}$, let

$$
\begin{equation*}
X \xrightarrow{\phi_{\mathcal{A}}} \mathbb{P}\left(H^{0}\left(D_{\mathcal{A}}\right)^{\vee}\right) \tag{4}
\end{equation*}
$$

We show that $C(\mathcal{A})$ is the homogeneous coordinate ring of $\phi_{\mathcal{A}}(X)$, and that $\phi_{\mathcal{A}}$ is an isomorphism on $\pi^{*}\left(\mathbb{P}^{2} \backslash \mathcal{A}\right)$, contracts the lines of \mathcal{A} to points, and blows up the singularities of \mathcal{A}. Combining results of Proudfoot-Speyer [27] and Terao [38, we bound the Castelnuovo-Mumford regularity of $C(\mathcal{A})$. Finally, we interpret the resonance varieties studied in [3], [10, [12], 21], [32], [42] in terms of linear subsystems of $D_{\mathcal{A}}$, and connect these jump loci to linear syzygies on $C(\mathcal{A})$.

3. Connecting $H^{0}\left(D_{\mathcal{A}}\right)$ to the Orlik-Terao algebra

Let $\alpha=\prod_{i=1}^{d} \alpha_{i}$ and define a map $R=\mathbb{C}\left[y_{1}, \ldots, y_{d}\right] \longrightarrow \mathbb{C}\left[1 / \alpha_{1}, \ldots, 1 / \alpha_{d}\right]=T$. The kernel of this map is the OT ideal (see [34), so $C(\mathcal{A}) \simeq T$. In 38, Terao proved that the Hilbert series for T is given by

$$
\begin{equation*}
H S(T, t)=P\left(\mathcal{A}, \frac{t}{1-t}\right) \tag{5}
\end{equation*}
$$

In this section, we show that for $n=2, C(\mathcal{A})$ is the homogeneous coordinate ring of the image of $X \xrightarrow{\phi_{\mathcal{A}}} \mathbb{P}\left(H^{0}\left(D_{\mathcal{A}}\right)^{\vee}\right)$, with X as in Equation 1. For brevity, let $l_{i}=\alpha / \alpha_{i}$.

Lemma 3.1. The ideal $L=\left\langle l_{1}, \ldots, l_{d}\right\rangle$ defines

$$
\bigcap_{p_{i} \in L_{2}(\mathcal{A})} I_{p_{i}}^{\mu\left(p_{i}\right)} \text { scheme-theoretically. }
$$

Proof. Localize at I_{p}, where $p \in L_{2}(\mathcal{A})$. Then in $S_{I_{p}}, \alpha_{i}$ is a unit if $p \notin V\left(\alpha_{i}\right)$. Without loss of generality, suppose forms $\alpha_{1}, \ldots \alpha_{m}$ vanish on p, and the remaining forms do not. Thus,

$$
L_{I_{p}}=\left\langle\alpha_{2} \cdots \alpha_{m}, \alpha_{1} \cdot \alpha_{3} \cdots \alpha_{m}, \ldots, \alpha_{1} \cdots \alpha_{m-1}\right\rangle
$$

Now note that $I_{p}^{\mu(p)}$ has $\mu(p)+1$ generators of degree $\mu(p)$. Since $\mu(p)=m-1$ and the forms in $L_{I_{p}}$ are linearly independent, equality follows.

Lemma 3.2. The minimal free resolution of S / L is

$$
\begin{gathered}
0 \longrightarrow S(-d)^{d-1} \xrightarrow{\psi} S(-d+1)^{d} \xrightarrow{\left[l_{1},\right.}, \cdots \\
\psi=\left[\begin{array}{ccccc}
\alpha_{1} & 0 & \cdots & \cdots & 0 \\
-\alpha_{2} & \alpha_{2} & 0 & \cdots & \vdots \\
0 & -\alpha_{3} & \ddots & \ddots & \vdots \\
\vdots & 0 & & \ddots & 0 \\
\vdots & \vdots & \ddots & & \alpha_{d-1} \\
0 & \cdots & \cdots & 0 & -\alpha_{d}
\end{array}\right]
\end{gathered}
$$

Proof. The columns of ψ are syzygies on L. Since the maximal minors of ψ generate L, the result follows from the Hilbert-Burch theorem and Lemma 3.1

Theorem 3.3. $H^{0}\left(D_{\mathcal{A}}\right) \simeq \operatorname{Span}_{\mathbb{C}}\left\{l_{1}, \ldots, l_{d}\right\}$ and $H^{1}\left(D_{\mathcal{A}}\right)=0=H^{2}\left(D_{\mathcal{A}}\right)$.
Proof. The remark following Equation 2 shows that $H^{0}\left(D_{\mathcal{A}}\right) \simeq J_{d-1}$. Since $K=$ $-3 E_{0}+\sum E_{i}$, by Serre duality

$$
H^{2}\left(D_{\mathcal{A}}\right) \simeq H^{0}\left((-d-2) E_{0}+\sum_{p_{i} \in L_{2}(\mathcal{A})}\left(\mu\left(p_{i}\right)+1\right) E_{i}\right)
$$

which is clearly zero. Using that X is rational, it follows from Riemann-Roch that

$$
h^{0}\left(D_{\mathcal{A}}\right)-h^{1}\left(D_{\mathcal{A}}\right)=\frac{D_{\mathcal{A}}^{2}-D_{\mathcal{A}} \cdot K}{2}+1
$$

The intersection pairing on X is given by $E_{i}^{2}=1$ if $i=0$, and -1 if $i \neq 0$, and

$$
E_{i} \cdot E_{j}=0 \text { if } i \neq j
$$

Thus,

$$
\begin{align*}
D_{\mathcal{A}}^{2} & =(d-1)^{2}-\sum_{p \in L_{2}(\mathcal{A})} \mu(p)^{2} \\
-D_{\mathcal{A}} K & =3(d-1)-\sum_{p \in L_{2}(\mathcal{A})} \mu(p) \tag{6}
\end{align*}
$$

yielding

$$
\begin{align*}
h^{0}\left(D_{\mathcal{A}}\right)-h^{1}\left(D_{\mathcal{A}}\right) & =\frac{(d-1)^{2}-\sum \mu(p)^{2}+3(d-1)-\sum \mu(p)}{2}+1 \tag{7}\\
& =\binom{d+1}{2}-\sum_{p \in L_{2}(\mathcal{A})}\binom{\mu(p)+1}{2}
\end{align*}
$$

Double counting the edges between $L_{1}(\mathcal{A})$ and $L_{2}(\mathcal{A})$ yields

$$
\binom{d}{2}=\sum_{p \in L_{2}(\mathcal{A})}\binom{\mu(p)+1}{2},
$$

hence $h^{0}\left(D_{\mathcal{A}}\right)-h^{1}\left(D_{\mathcal{A}}\right)=d$. From Lemmas 3.1 and 3.2 the Hilbert function satisfies

$$
d=H F\left(\left\langle l_{1}, \ldots, l_{d}\right\rangle, d-1\right)=H F\left(\bigcap_{p_{i} \in L_{2}(\mathcal{A})} I_{p_{i}}^{\mu\left(p_{i}\right)}, d-1\right)
$$

The observation after Equation 2 now implies that $h^{0}\left(D_{\mathcal{A}}\right)=d$.
It follows from Theorem 3.3 that $C(\mathcal{A})$ is the coordinate ring of $\phi_{\mathcal{A}}(X)$. Note also that by Lemmas 3.1 and 3.2, the constant $\gamma(L)=d-1$, so

$$
d E_{0}-\sum_{p_{i} \in L_{2}(\mathcal{A})} \mu\left(p_{i}\right) E_{i}
$$

is very ample, and gives a De Concini-Procesi wonderful model [6: a compactification \bar{M} of M such that $\bar{M} \backslash M$ is a normal crossing divisor. However, since every line of \mathcal{A} contains exactly $d-1$ points counted with multiplicity, the divisor $D_{\mathcal{A}}$ is not very ample. The description of $C(\mathcal{A})$ makes it obvious that $V(I)$ is an irreducible, nondegenerate rational variety, and by [34] $V(I) \backslash V\left(y_{1} \cdots y_{d}\right)$ is smooth. Here is a more explicit description of the map:

Theorem 3.4. The $\operatorname{map} \phi_{\mathcal{A}}$
(1) is an isomorphism on $\pi^{*}\left(\mathbb{P}^{2} \backslash \mathcal{A}\right)$.
(2) contracts the lines of \mathcal{A} to points on X.
(3) takes E_{p} to a rational normal curve of degree $\mu(p)$.

Proof. For the first part, without loss of generality suppose that $\alpha_{1} \cdot \alpha_{2} \cdot \alpha_{3}=x y z$ and write $L=\prod_{i=4}^{d} \alpha_{i}$. Then

$$
\phi_{\mathcal{A}}=[y z L, x z L, x y L, \ldots] .
$$

Thus, the first three entries of $\phi_{\mathcal{A}}$ define the Cremona transformation, which is an isomorphism from $\mathbb{P}^{2} \backslash V(x y z)$ to itself. Since $\mathbb{P}^{2} \backslash \mathcal{A}$ is contained in $\mathbb{P}^{2} \backslash V(x y z)$, (1) follows. For (2), suppose p is a point of $V\left(\alpha_{i}\right)$. Since α_{i} divides l_{j} for all $j \neq i$, this means $l_{j}(p)=0$ if $j \neq i$. Hence $\phi_{\mathcal{A}}\left(V\left(\alpha_{i}\right)\right)$ is the $i^{\text {th }}$ coordinate point of \mathbb{P}^{d-1}. The final part follows from the fact that $\left.D_{\mathcal{A}}\right|_{E_{p}}$ is a divisor on E_{p} of degree $D_{\mathcal{A}} \cdot E_{p}=\mu(p)$, and $E_{p} \simeq \mathbb{P}^{1}$.
3.1. Castelnuovo-Mumford regularity and graded betti numbers. The Castelnuovo-Mumford regularity of a coherent sheaf \mathcal{F} on \mathbb{P}^{n} is usually phrased in terms of vanishing of certain cohomology modules. Letting $N=\oplus_{n} H^{0}(\mathcal{F}(n))$, we may [8] rephrase the condition as

Definition 3.5. For a polynomial ring R, a finitely generated, graded R-module N has Castelnuovo-Mumford regularity j if j is the smallest number such that $\operatorname{Tor}_{i}^{R}(N, \mathbb{C})_{i+j+1}=0$ for all i. The graded betti numbers of a graded R-module N are indexed by

$$
b_{i j}=\operatorname{dim}_{\mathbb{C}} \operatorname{Tor}_{i}^{R}(N, \mathbb{C})_{j}
$$

Example 3.6. We revisit Example 2.1. The four triple points yield four quadratic generators for the Orlik-Terao ideal I. These four quadrics generate I (see [34]), and a computation in Macaulay2 yields the graded betti numbers of $C(\mathcal{A})$:

total	1	4	5	2	
0	1	-	-	-	-
1	-	4	2	-	-
2	-	-	3	2	

This diagram is read as follows: the entry in position (i, j) is simply $b_{i, i+j}$, e.g.

$$
\operatorname{dim}_{\mathbb{K}} \operatorname{Tor}_{2}^{R}(C(\mathcal{A}), \mathbb{C})_{4}=3
$$

The betti table has a very nice interpretation in terms of Castelnuovo-Mumford regularity: the regularity is the index of the last nonzero row.

Theorem 3.7. For $\mathcal{A} \subseteq \mathbb{P}^{n}, C(\mathcal{A})$ is n-regular.
Proof. In [27], Proudfoot and Speyer show that the Orlik-Terao algebra is CohenMacaulay (for $n=2$ this also follows from Theorem 3.3). Thus, there exists a regular sequence on $C(\mathcal{A})$ of $\operatorname{dim}(V(I))+1=n+1$ linear forms; quotienting by this sequence yields an Artinian ring whose Hilbert series is the numerator of the Hilbert series of $C(\mathcal{A})$. The regularity of an Artinian module is equal to the length of the module, so the result follows from Equation 5 .

It follows easily from Theorem 3.7 and Terao's work in [38] that
Proposition 3.8. For $\mathcal{A} \subseteq \mathbb{P}^{n}$ with $|\mathcal{A}|=d$, if $I=I_{2}$, then

$$
\operatorname{dim}_{\mathbb{C}} \operatorname{Tor}_{2}^{R}(C(\mathcal{A}), \mathbb{C})_{3}=2\left(\binom{d}{3}-1\right)-(d-3)\left(\sum_{p_{i} \in L_{2}(\mathcal{A})} \mu\left(p_{i}\right)+1\right)
$$

Example 3.9. The A_{3} arrangement is supersolvable, so by 34$]=I_{2}$, and Proposition 3.8 shows there are two linear first syzygies on I. This explains the top row of the betti table in Example 3.6.

4. Nets, SYZygies, And scrolls

In [21, Libgober-Yuzvinsky found a surprising connection between nets and the first resonance variety. The approach was further developed by Yuzvinsky in 42, with a beautiful complete picture emerging in Falk and Yuzvinsky's paper on multinets 12 . In this section, we connect nets to the linear syzygies of $C(\mathcal{A})$, and hence to $R^{1}(\mathcal{A})$. This allows us to give an interpretation of the first resonance variety in terms of the geometry of X_{A}.

Suppose Z is a subset of the intersection points of \mathcal{A}, and let J denote the $|Z| \times d$ incidence matrix of points and lines and E denote a $d \times d$ matrix with every entry one. If \widehat{Z} is the blowup of \mathbb{P}^{2} at the points of Z, then 21] shows that

$$
J^{t} J-E=Q(\widehat{Z})
$$

is the intersection form on \widehat{Z}, and is a generalized Cartan matrix. Using the Vinberg classification of such matrices [19, they show that any component of $R^{1}(A)$ corresponds to a choice of points Z such that $Q(\widehat{Z})$ consists of at least three affine blocks, with no finite or indefinite blocks, and the block sum decomposition of $Q(\widehat{Z})$ yields a neighborly partition. Before going into the details of the connection between multinets, divisors and syzygies, we give a pair of motivating examples.

Example 4.1. The matroid $\left(9_{3}\right)_{2}$ of Hilbert and Cohn-Vossen is realized below by $\mathcal{A}=V(x y z(x+y)(y+z)(x+3 z)(x+2 y+z)(x+2 y+3 z)(2 x+3 y+3 z))$. It has nine triple points and nine double points, thus $P(\mathcal{A}, t)=(1+t)\left(1+8 t+19 t^{2}\right)$.

Figure 2. An arrangement realizing $\left(9_{3}\right)_{2}$

The graded betti numbers for $C\left(\left(9_{3}\right)_{2}\right)$ are:

total	1	11	75	156	145	66	12
0	1	-	-	-	-	-	-
1	-	9	-	-	-	-	-
2	-	2	75	156	145	66	12

Example 4.2. The $\left(9_{3}\right)_{1}$ matroid of Hilbert and Cohn-Vossen is realized below by $\mathcal{A}=V(x y z(x-y)(y-z)(x-y-z)(2 x+y+z)(2 x+y-z)(2 x-5 y+z))$. It has nine triple points and nine double points, so $P\left(\left(9_{3}\right)_{1}, t\right)=P\left(\left(9_{3}\right)_{2}, t\right)$.

Figure 3. An arrangement realizing $\left(9_{3}\right)_{1}$

However, the graded betti numbers for $C\left(\left(9_{3}\right)_{1}\right)$ are:

total	1	13	77	156	145	66	12
0	1	-	-	-	-	-	-
1	-	9	2	-	-	-	-
2	-	4	75	156	145	66	12

The arrangement $\left(9_{3}\right)_{1}$ possesses a pair of linear first syzygies, while $\left(9_{3}\right)_{2}$ has no linear first syzygies. An easy check shows that $\left(9_{3}\right)_{1}$ admits a neighborly partition $|169| 258|347|$ and has a corresponding non-local component (see below) in $R^{1}(A)$, whereas $\left(9_{3}\right)_{2}$ does not. To better understand the connection between $R^{1}(A)$ and syzygies, we now review two constructions.
4.1. Nets and multinets. It is easy to see that any $p \in L_{2}(\mathcal{A})$ with $\mu(p) \geq 2$ yields a component $\mathbb{P}^{\mu(p)-1} \subseteq R^{1}(A)$. Such components are called local components. Components which are not of this type are called essential. In 42], Yuzvinsky used nets to analyze the essential components of $R^{1}(A)$.
Definition 4.3. Let $3 \leq k \in \mathbb{Z}$. A k-net in \mathbb{P}^{2} is a pair (\mathcal{A}, Z) where \mathcal{A} is a finite set of distinct lines partitioned into k subsets $\mathcal{A}=\bigcup_{i=1}^{k} \mathcal{A}_{i}$ and Z is a finite set of points, such that:
(1) for every $i \neq j$ and every $L \in \mathcal{A}_{i}, L^{\prime} \in \mathcal{A}_{j}, L \cap L^{\prime} \in Z$.
(2) for every $p \in Z$ and every $i \in\{1, \ldots, k\}, \exists$ a unique $L \in A_{i}$ containing Z.

Thus, for a k-net, $\left|A_{i}\right|=|L \cap Z|$ for any block A_{i} and line $L \in \mathcal{A}$; denote this number by m. Following Yuzvinsky, we call m the order of the net, and refer to a k-net of order m as a (k, m)-net; note that $|Z|=m^{2}$. Yuzvinsky shows in 42 that a net must have $k \in\{3,4,5\}$, and improves this in [43] to $k \in\{3,4\}$.

In 12, Falk and Yuzvinsky extend the notion of a net to a multinet; in a multinet lines may occur with multiplicity. Write \mathcal{A}_{w} for a multiarrangement, where $w \in \mathbb{N}^{d}$, and $w(L)$ denotes the multiplicity of a line.
Definition 4.4. A weak (k, m)-multinet on a multi-arrangement \mathcal{A}_{w} is a pair (Π, Z) where Π is a partition of \mathcal{A}_{w} into $k \geq 3$ classes A_{1}, \ldots, A_{k}, and Z is a set of multiple points, such that
(1) $\sum_{L \in A_{i}} w(L)=m$, independent of i.
(2) For every $L \in A_{i}$ and $L^{\prime} \in A_{j}$, with $i \neq j, L \cap L^{\prime} \in Z$.
(3) For each $p \in Z, \sum_{L \in A_{i}, p \in L} w(L)$ is a constant n_{p}, independent of i.

A multinet is a weak multinet satisfying the additional property
(4) For $i \in\{1, \ldots, k\}$ and $L, L^{\prime} \in A_{i}, \exists$ a sequence $L=L_{0}, L_{1}, \ldots, L_{r}=L^{\prime}$ such that $L_{j-1} \cap L_{j} \notin Z$ for $1 \leq j \leq r$.

Example 4.5. The reflection arrangement of type B_{3} is depicted below (there is also a line at infinity). Falk and Yuzvinsky show that this arrangement supports a multinet which is not a net: assign weight two to lines $(3,6,8)$ and weight one to the remaining lines.

Figure 4. The B_{3}-arrangement

The following lemma of 12 will be useful:
Lemma 4.6. Suppose $\left(\mathcal{A}_{w}, Z\right)$ is a weak (k, m)-multinet. Then
(1) $\sum_{L \in \mathcal{A}_{w}} w(L)=k m$.
(2) $\sum_{p \in Z} n_{p}^{2}=m^{2}$
(3) For each $L \in \mathcal{A}_{w}, \sum_{p \in Z \cap L} n_{p}=m$.
4.2. Determinantal syzygies and factoring divisors. One simple way in which linear syzygies can arise comes from a factorization of divisors. First, a definition

Definition 4.7. A matrix of linear forms is $1-$ generic if it has no zero entry, and cannot be transformed by row and column operations to have a zero entry.

For $Y \subseteq \mathbb{P}^{n}$ irreducible and linearly normal, if there exist line bundles \mathcal{L}_{1} and \mathcal{L}_{2} such that $\mathcal{O}_{Y}(1)=\mathcal{L}_{1} \otimes \mathcal{L}_{2}$ with $h^{0}\left(\mathcal{L}_{i}\right)=a_{i}$, then the $a_{1} \times a_{2}$ matrix γ representing the multiplication table

$$
H^{0}\left(\mathcal{L}_{1}\right) \otimes H^{0}\left(\mathcal{L}_{2}\right) \longrightarrow H^{0}\left(\mathcal{O}_{Y}(1)\right)
$$

is 1 -generic. More explicitly (see [8]), if

$$
H^{0}\left(\mathcal{L}_{1}\right)=\operatorname{Span}_{\mathbb{C}}\left\{e_{1}, \ldots, e_{a_{1}}\right\} \text { and } H^{0}\left(\mathcal{L}_{2}\right)=\operatorname{Span}_{\mathbb{C}}\left\{f_{1}, \ldots, f_{a_{2}}\right\}
$$

then γ has (i, j) entry $e_{i} \otimes f_{j}$, corresponding to a linear form on \mathbb{P}^{n}, and elements of the ideal $I_{2}(\gamma)$ of 2×2 minors of γ vanish on Y. The most familiar example occurs when $a_{1}=2$ and $a_{2}=k$. In this case, the minimal free resolution of $I_{2}(\gamma)$ is an Eagon-Northcott complex. This relates to geometry via scrolls: let Ψ be the locus of points where a 1-generic matrix

$$
\gamma=\left[\begin{array}{ccc}
l_{1} & \cdots & l_{k} \\
m_{1} & \cdots & m_{k}
\end{array}\right]
$$

has rank one. If

$$
L_{[\lambda: \nu]}=\left\{p \in \mathbb{P}^{n} \mid \lambda l_{1}(p)+\mu m_{1}(p)=\cdots=\lambda l_{k}(p)+\mu m_{k}(p)=0\right\}
$$

then (see 9.10 of [16])

$$
\Psi=\bigcup_{[\lambda: \nu] \in \mathbb{P}^{1}} L_{[\lambda: \nu]}
$$

where $L_{[\lambda: \nu]} \simeq \mathbb{P}^{n-k}$, so Ψ is a union of linear spaces. Geometrically, the zero locus of the 2×2 minors of γ is a scroll which contains $V\left(I_{Y}\right)$.
4.3. Connecting nets and determinantal syzygies. The computation in the proof of Theorem 3.3 and the fact that $h^{1}(D) \geq 0$ shows that if $D_{\mathcal{A}}=A+B$ with $A=m E_{0}-\sum a_{i} E_{i}$, then
$h^{0}(A) \geq\binom{ m+2}{2}-\sum_{p \in L_{2}(\mathcal{A})}\binom{a_{i}+1}{2}, h^{0}(B) \geq\binom{ d+1-m}{2}-\sum_{p \in L_{2}(\mathcal{A})}\binom{\mu(p)-a_{i}+1}{2}$.
For an arrangement \mathcal{A}, if there exists a choice of parameters m and a_{i} such that $h^{0}(A)=a \geq 2$ and $h^{0}(B)=b \geq 3$, then the results of the previous section show that there will exist linear first syzygies on I.

Example 4.8. We revisit Example 4.2, Let $A=3 E_{0}-\sum_{\{p \mid \mu(p)=2\}} E_{p}$. Clearly $A^{2}=A K=0$, so we can only guarantee that $h^{0}(A) \geq 1$. In fact, $h^{0}(A)=2$, hence $h^{1}(A)=1$. To see this, note that a direct computation shows that the space of cubics passing through the nine multiple points of \mathcal{A} is two dimensional. Since

$$
\operatorname{Span}_{\mathbb{C}}\left(L_{1} L_{6} L_{9}, L_{3} L_{4} L_{7}, L_{2} L_{5} L_{8}\right) \subseteq H^{0}(A)
$$

and any two of these are independent, we see that the sections are given by the net. Next, consider the residual divisor $B=D_{\mathcal{A}}-A$. Since $B^{2}=16-18=-2$ and $-B K=15-9=6$, we have that $h^{0}(B) \geq 3$. In fact, equality holds, so I contains the 2×2 minors of a 2×3 matrix of linear forms, explaining the linear syzygies.

Lemma 4.9. $A(k, m)$ multinet gives a divisor A on X such that $h^{0}(A)=2$.
Proof. Let

$$
A=m E_{0}-\sum_{p \in Z} n_{p} E_{p}
$$

Condition (1) of Definition 4.4 implies that for each block A_{i} of the multinet, $\prod_{L \in A_{i}} L^{w(L)}$ is homogeneous of degree m, and Condition (3) shows that it vanishes to order exactly n_{p} on E_{p}. In particular, this shows that $\prod_{L \in A_{i}} L^{w(L)} \in H^{0}(A)$. If all the blocks of the partition were independent, then this would imply that $h^{0}(A) \geq k$, but it turns out that the sections are all fibers of a pencil of plane curves, which follows from Theorem 3.11 of [12].

In [12], Falk and Yuzvinsky show that the following are equivalent:
(1) $R^{1}(A)$ contains a nonlocal component $\simeq \mathbb{P}^{k-2}$.
(2) \mathcal{A} supports a (k, m) multinet.
(3) \exists a pencil of plane curves with connected fibers, with at least three fibers (loci of) products of linear forms, and \mathcal{A} is the union of all such fibers.
In general, determining the dimension of $h^{1}(D)$ for $D \in \operatorname{Pic}(X)$ is not easy. However, in the special case of a net, there is enough information to give a lower bound for the dimension of the sections of the residual divisor which is often exact.

Theorem 4.10. If \mathcal{A} is a (k, m) net, then $D_{\mathcal{A}}=A+B$, with

$$
h^{0}(A)=2 \text { and } h^{0}(B) \geq k m-\binom{m+1}{2}
$$

Proof. For a (k, m) net, all lines occur with multiplicity one. Let

$$
A=m E_{0}-\sum_{p \in Z} E_{p}
$$

By Lemma 4.9, $h^{0}(A)=2$. Since $B=D_{\mathcal{A}}-m E_{0}+\sum_{p \in Z} E_{p}, \frac{B^{2}-B K}{2}+1$

$$
\begin{array}{cc}
= & \frac{(d-m-1)(d-m-1+3)+2}{2}+\left(\sum_{p \in L_{2}(\mathcal{A})} \mu(p) E_{p}+\sum_{p \in Z} E_{p}\right)\left(\sum_{p \in L_{2}(\mathcal{A})}(\mu(p)-1) E_{p}+\sum_{p \in Z} E_{p}\right) \\
= & \binom{d+1-m}{2}-\binom{d}{2}+\sum_{p \in Z} \mu(p) \\
= & \binom{m}{2}-d(m-1)+\sum_{p \in Z} \mu(p) .
\end{array}
$$

We now compute that

$$
\begin{aligned}
\sum_{p \in Z} \mu(p)+|Z| & =\sum_{p \in Z}(\mu(p)+1) \\
& =k \sum_{p \in Z} n_{p} \\
& =k m^{2} .
\end{aligned}
$$

The second line follows since n_{p} lines from each block A_{i} pass through p, and there are k blocks. The third line follows from Lemma 4.6 and the fact that $n_{p}=1$ for a net, hence $n_{p}^{2}=n_{p}$. Since for a $(k, m)-$ net $|Z|=m^{2}$,

$$
\sum_{p \in Z} \mu(p)=(k-1) m^{2}=d m-m^{2}
$$

Combining this with the previous calculation shows that for a $(k, m)-$ net

$$
h^{0}(B)=h^{1}(B)+\binom{m}{2}-d(m-1)+d m-m^{2} \geq d-\binom{m+1}{2}
$$

Recalling that $k m=d$ concludes the proof.
Corollary 4.11. If \mathcal{A} is $a(k, m)$ net with $k \geq m$, then I contains the 2×2 minors of a 1-generic $2 \times\left(k m-\binom{m+1}{2}\right)$ matrix. Thus the resolution of I contains an Eagon-Northcott complex as a subcomplex.

Proof. Since $k \in\{3,4\}$, if $(k, m)=(3,2)$ or $(3,3)$ then by Theorem4.10 $h^{0}(B) \geq 3$, and if $(k, m)=(4,3)$ or $(4,4)$ then $h^{0}(B) \geq 6$. Note that the only known example of a 4 -net is the $(4,3)$ net corresponding to the Hessian configuration.

Example 4.12. For the arrangement A_{3} appearing in Example 2.1, Z is the collection of multiple points, and

$$
A=2 E_{0}-\sum_{\{p \mid \mu(p)=2\}} E_{p}
$$

and

$$
B=3 E_{0}-\sum_{p \in L_{2}(\mathcal{A})} E_{p}
$$

So $d-\binom{m+1}{2}=6-3=3$ and I contains the 2×2 minors of a 2×3 matrix.

5. Connection to Derivations

In this section, we show that the generators of the Jacobian ideal of $\mathcal{A} \subseteq \mathbb{P}^{2}$ are contained in $H^{0}\left(D_{\mathcal{A}}\right)$, and that the associated projection map $X \rightarrow \mathbb{P}^{2}$ has degree $\sum_{p \in L_{2}(\mathcal{A})} \mu(p)-|\mathcal{A}|+1$. This relates X to one of the fundamental objects in arrangement theory: the module $D(\mathcal{A})$ of derivations tangent to \mathcal{A}.

Definition 5.1. $D(\mathcal{A})=\left\{\theta \mid \theta\left(\alpha_{i}\right) \in\left\langle\alpha_{i}\right\rangle\right.$ for all α_{i} such that $\left.V\left(\alpha_{i}\right) \in \mathcal{A}\right\}$.
The module $D(\mathcal{A})$ is a graded $S=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ module, and over a field of characteristic zero, $D(\mathcal{A}) \simeq E \oplus D_{0}(\mathcal{A})$, where E is the Euler derivation and $D_{0}(\mathcal{A})$ corresponds to the module of syzygies on the Jacobian ideal J_{α} of the defining polynomial $\alpha=\prod_{i=1}^{d} \alpha_{i}$ of \mathcal{A}. An arrangement \mathcal{A} is free if $D(\mathcal{A}) \simeq \oplus S\left(-a_{i}\right)$; the a_{i} are called the exponents of \mathcal{A}. Terao's theorem [37] is that if $D(\mathcal{A}) \simeq \oplus S\left(-a_{i}\right)$, then $P(M, t)=\prod\left(1+a_{i} t\right)$. Supersolvable arrangements are free, so Example 2.1 is of this type, and

$$
P\left(A_{3}, t\right)=(1+t)(1+2 t)(1+3 t)
$$

On the other hand, the arrangement \mathcal{A} of Example 2.5 is not free, and $P(\mathcal{A}, t)$ does not factor. However, it is shown in 30 that for $\mathcal{A} \subseteq \mathbb{P}^{2}$ the Poincare polynomial is $(1+t) \cdot c_{t}\left(D_{0}^{\vee}\right)$, where c_{t} is the Chern polynomial and D_{0}^{\vee} is the dual of the rank two vector bundle associated to D_{0}. An easy localization argument [31] shows that in this case, the Jacobian ideal is a local complete intersection with

$$
\operatorname{deg}\left(J_{\alpha}\right)=\sum_{p \in L_{2}(\mathcal{A})} \mu(p)^{2}
$$

For $\mathcal{A} \subseteq \mathbb{P}^{n}$ with $n \geq 3$, some generalizations are possible, see 22 .

Proposition 5.2. For an arrangement $\mathcal{A} \subseteq \mathbb{P}^{2}$,

$$
J_{\alpha} \subseteq L=\left\langle l_{1}, \ldots, l_{d}\right\rangle=\left\langle\frac{\alpha}{\alpha_{1}}, \ldots, \frac{\alpha}{\alpha_{d}}\right\rangle
$$

Proof. By Lemma 3.2,

$$
L=\bigcap_{p \in L_{2}(\mathcal{A})} I_{p}^{\mu(p)} \subseteq \mathbb{C}[x, y, z]
$$

The ideal J_{α} is generated in degree $d-1$. The result of 31 mentioned above implies that at any point $p \in L_{2}(\mathcal{A})$, the localization $\left(J_{\alpha}\right)_{p}$ is a local complete intersection: changing coordinates so that $p=(0: 0: 1)$, and writing $\mathcal{A}=V\left(L_{0} L_{1}\right)$ with L_{0} the product of the defining linear forms which vanish at p and L_{1} the product of the remaining forms, we have

$$
\left(J_{\alpha}\right)_{p}=\left\langle\partial\left(L_{0}\right) / \partial_{x}, \partial\left(L_{0}\right) / \partial_{y}\right\rangle
$$

In particular, both generators are of degree $\mu(p)$, so in the primary decomposition of J_{α}, the primary component associated to $I(p)$ is contained in $I_{p}^{\mu(p)}$. Now,

$$
\operatorname{Sing}(\mathcal{A})=\bigcup_{I(p) \in A s s\left(\sqrt{J_{\alpha}}\right)} V(I(p))
$$

If Q_{p} is the $I(p)$-primary component of J_{α}, then

$$
\bigcap_{I(p) \in S} Q_{p} \subseteq L
$$

Since the saturation of J_{α} with respect to $\langle x, y, z\rangle$ is the left hand side, and J_{α} is generated in degree $d-1$, the result follows.

The inclusion $W=J_{\alpha} \subseteq H^{0}\left(D_{\mathcal{A}}\right)$ corresponds to an induced map

Proposition 5.3. The degree of π is $\sum_{p \in L_{2}(\mathcal{A})} \mu(p)-|\mathcal{A}|+1$.
Proof. In [7, Dimca and Papadima show that on a projective hyperplane complement $\mathbb{P}^{n} \backslash V(\alpha)$, the degree of the gradient map ψ

$$
\mathbb{P}^{n} \backslash V(\alpha) \xrightarrow{\left[\partial(\alpha) / \partial x_{0}: \quad \cdots \quad: \partial(\alpha) / \partial x_{n}\right]} \mathbb{P}^{n}
$$

is equal to $b_{n}\left(\mathbb{P}^{n} \backslash V(\alpha)\right)$; for a configuration of $\mathcal{A} \subseteq \mathbb{P}^{2}$ this means the degree of the gradient map is

$$
\sum_{p \in L_{2}(\mathcal{A})} \mu(p)-|\mathcal{A}|+1
$$

By Theorem 3.4, ϕ_{A} is an isomorphism on $\mathbb{P}^{2} \backslash V(\alpha)$, and the result follows.

Concluding Remarks and Questions

(1) To study $\operatorname{Tor}_{i}^{R}(C(A), \mathbb{C})_{i+1}$, it suffices to restrict to the case of line arrangements. This follows since the quadratic generators of $C(A)$ depend only on $L_{2}(\mathcal{A})$, hence taking the intersection of \mathcal{A} with a generic \mathbb{P}^{2} leaves these generators (and relations among them) unchanged. The graded betti numbers for I_{2} are not combinatorial invariants; it would be interesting to understand how the geometry of \mathcal{A} governs $b_{i j}$, even for $j=i+1$.
(2) Can freeness of $D(\mathcal{A})$ be related to the surface X and divisor $D_{\mathcal{A}}$? It seems possible that there is a connection between $D_{\mathcal{A}}$ and multiarrangements, studied recently in [1, 39, 40.
(3) For $n \geq 3$, is $C(\mathcal{A})$ the homogeneous coordinate ring of a blowup of \mathbb{P}^{n} along a locus related to the arrangement \mathcal{A} ? Since $C(\mathcal{A})$ is Cohen-Macaulay, if this is true, then combining Riemann-Roch with Terao's result would yield a formula for the global sections of $D_{\mathcal{A}}$.

Acknowledgements Computations were performed using Macaulay2, by Grayson and Stillman, and available at: http://www.math.uiuc.edu/Macaulay2/. Many of the examples in this paper appear in Suciu's survey [36] that paper is also an excellent reference for the many questions on resonance varieties not treated here. This work began during a visit to the Fields institute for a conference in honour of Peter Orlik.

References

[1] T. Abe, H. Terao, M. Wakefield, The e-multiplicity and addition-deletion theorems for multiarrangements, J. Lond. Math. Soc. 77 (2008), 335-348.
[2] W. Arvola, The fundamental group of the complement of an arrangement of complex hyperplanes, Topology 31 (1992), 757-765.
[3] D. Cohen, A. Suciu, The braid monodromy of plane algebraic curves and hyperplane arrangements, Comment. Math. Helv. 72 (1997), 285-315.
[4] D. Cohen, A. Suciu, Characteristic varieties of arrangements, Math. Proc. Cambridge Phil. Soc. 127 (1999), 33-53.
[5] E. Davis, A. Geramita, Birational morphisms to \mathbb{P}^{2} : an ideal-theoretic perspective, Math. Ann. 279 (1988), 435-448.
[6] C. De Concini, C. Procesi, Wonderful models of subspace arrangements. Selecta Math. 1 (1995), no. 3, 459-494.
[7] A. Dimca, S. Papadima, Hypersurface complements, Milnor fibers and higher homotopy groups of arrangments, Ann. Math. 158 (2003), 473-507.
[8] D. Eisenbud, The geometry of syzygies, Graduate Texts in Mathematics, vol. 229, SpringerVerlag, Berlin-Heidelberg-New York, 2005.
[9] D. Eisenbud, Linear sections of determinantal varieties, Amer. J. Math. 110 (1988), no. 3, 541-575.
[10] M. Falk, Arrangements and cohomology, Ann. Combin. 1 (1997), 135-157.
[11] M. Falk, Resonance varieties over fields of positive characteristic, IMRN 3 (2007)
[12] M. Falk, S. Yuzvinsky, Multinets, resonance varieties, and pencils of plane curves, Compos. Math. 143 (2007), 1069-1088 MR 2339840
[13] H. Hamm, D. T. Lê, Un théorème de Zariski du type de Lefschetz, Ann. Sci. École Norm. Sup. 6 (1973), 317-366.
[14] B. Harbourne, Problems and progress: survey on fat points in \mathbb{P}^{2}, Queens Papers in Pure and Applied Mathematics 123 (2002), 85-132.
[15] B. Harbourne, Free resolutions of fat point ideals on \mathbb{P}^{2}. J. Pure Appl. Algebra 125 (1998), 213-234.
[16] J. Harris, Algebraic Geometry, Graduate Texts in Mathematics, vol. 133, Springer-Verlag, Berlin-Heidelberg-New York, 1992.
[17] F. Hirzebruch, Arrangements of lines and algebraic surfaces, In: Arithmetic and Geometry, vol. II, Progress in Math., vol. 36, Birkhäuser, Boston, 1983, pp. 113-140.
[18] P. Lima-Filho, H. Schenck, The holonomy Lie algebra of subarrangements of A_{n}, IMRN, (2009), 1421-1432.
[19] V. Kac, Infinite dimensional Lie algebras, Cambridge University Press, 1990.
[20] J. Koh, M. Stillman, Linear syzygies and line bundles on an algebraic curve, J. Algebra 125 (1989), 120-132.
[21] A. Libgober, S. Yuzvinsky, Cohomology of the Orlik-Solomon algebras and local systems, Compositio Math. 121 (2000), 337-361.
[22] M. Mustaţǎ, H. Schenck, The module of logarithmic p-forms of a locally free arrangement, J. Algebra, 241 (2001), 699-719.
[23] P. Orlik, L. Solomon, Combinatorics and topology of complements of hyperplanes, Invent. Math. 56 (1980), 167-189.
[24] P. Orlik, H. Terao, Arrangements of Hyperplanes, Grundlehren Math. Wiss., Bd. 300, Springer-Verlag, Berlin-Heidelberg-New York, 1992.
[25] P. Orlik, H. Terao, Commutative algebras for arrangements, Nagoya Math Journal, 134 (1994), 65-73.
[26] S. Papadima, A. Suciu, Chen Lie algebras, IMRN 2004:21 (2004), 1057-1086.
[27] N. Proudfoot, D. Speyer, A broken circuit ring, Beiträge zur Algebra und Geometrie, 47 (2006), 161-166.
[28] R. Randell, The fundamental group of the complement of a union of complex hyperplanes, Invent. Math. 69 (1982), 103-108.
[29] M. Salvetti, Topology of the complement of real hyperplanes in \mathbb{C}^{N}, Invent. Math. 88 (1987), 603-618.
[30] H. Schenck, A rank two vector bundle associated to a three arrangement, and its Chern polynomial, Advances in Mathematics, 149 (2000), 214-229.
[31] H. Schenck, Elementary modifications and line configurations in \mathbb{P}^{2}, Commentarii Mathematici Helvetici, 78 (2003), 447-462.
[32] H. Schenck, A. Suciu, Lower central series and free resolutions of hyperplane arrangements, Trans. Amer. Math. Soc. 354 (2002), 3409-3433.
[33] H. Schenck, A. Suciu, Resonance, linear syzygies, Chen groups, and the Bernstein-GelfandGelfand correspondence, Trans. Amer. Math. Soc. 358 (2006), 2269-2289.
[34] H. Schenck, S. Tohaneanu, The Orlik-Terao algebra and 2-formality, Math. Res. Lett. 16 (2009), 171-182.
[35] R. Stanley, Supersolvable lattices, Algebra Universalis 2 (1972), 197-217.
[36] A. Suciu, Fundamental groups of line arrangements: Enumerative aspects, Contemporary Math. 276 (2001), AMS, Providence, RI, 43-79.
[37] H. Terao, Generalized exponents of a free arrangement of hyperplanes and Shepard-ToddBrieskorn formula, Inventiones Mathematicae 63 (1981), 159-179.
[38] H. Terao, Algebras generated by reciprocals of linear forms, J. Algebra, 250 (2002), 549-558.
[39] M. Yoshinaga, Characterization of a free arrangement and conjecture of Edelman and Reiner, Invent. Math. 157 (2004), no. 2, 449-454.
[40] M. Yoshinaga, On the freeness of 3-arrangements, Bull. London Math. Soc. 37 (2005), no. 1, 126-134.
[41] S. Yuzvinsky, First two obstructions to the freeness of arrangements, Transactions of the A.M.S., 335 (1993), 231-244.
[42] S. Yuzvinsky, Realization of finite Abelian groups by nets in \mathbb{P}^{2}, Compos. Math. 140 (2004), 1614-1624.
[43] S. Yuzvinsky, A new bound on the number of special fibers in a pencil of plane curves, Proc. Amer. Math. Soc. 137 (2009), 1641-1648.

Schenck: Mathematics Department, University of Illinois, Urbana, IL 61801, USA
E-mail address: schenck@math.uiuc.edu

[^0]: 2000 Mathematics Subject Classification. 13D02, 52C35, 14J26, 14C20.
 Key words and phrases. Rational surface, Line arrangement, syzygy.
 Schenck supported by NSF 07-07667, NSA 904-03-1-0006.

