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RESONANCE VARIETIES VIA

BLOWUPS OF P2 AND SCROLLS

HAL SCHENCK

Abstract. Conjectures of Suciu [36] relate the fundamental group of an ar-
rangement complement M = Cn \A to the first resonance variety of H∗(M,Z).

We describe a connection between the first resonance variety and the Orlik-
Terao algebra C(A) of the arrangement. In particular, we show that non-local
components of R1(A) give rise to determinantal syzygies of C(A). As a result,
Proj(C(A)) lies on a scroll, placing geometric constraints on R1(A). The key
observation is that C(A) is the homogeneous coordinate ring associated to a
nef but not ample divisor on the blowup of P2 at the singular points of A.

1. Introduction

The fundamental group of the complement M of an arrangement of hyperplanes

A =
⋃d
i=1Hi ⊆ Cn is a much studied object. The Lefschetz-type theorem of

Hamm-Le [13] implies that taking a generic two dimensional slice of M yields an
isomorphism at the level of fundamental groups, so to study π1(M) we may assume
A ⊆ P2. Even with this simplifying assumption the situation is nontrivial: in [17]
Hirzebruch writes “The topology of the complement of an arrangement of lines in
P2 is very interesting, the investigation of the fundamental group very difficult”.

Presentations for π1(M) are given by Randell [28], Salvetti [29], Arvola [2],
and Cohen-Suciu [3]. Perhaps the most compact of these is the braid monodromy
presentation of [3], but even this is quite complicated. Somewhat coarser invariants
of π1(M) are the LCS ranks and Chen ranks. For a finitely generated group G, let
G = G1 and define a sequence of normal subgroups inductively by Gk = [Gk−1, G].
This yields an associated Lie algebra

gr(G) ⊗Q :=

∞⊕

k=1

Gk/Gk+1 ⊗Q,

with Lie bracket induced by the commutator. The k-th LCS rank φk = φk(G) is
the rank of the k-th quotient. The Chen ranks of a group are the LCS ranks of
the maximal metabelian quotient G/[[G,G], [G,G]]. Work of Papadima and Suciu
[26] shows that the Chen ranks of π1(M) are combinatorially determined; but save
for some special classes of arrangements, there are no explicit formulas for either
the Chen or LCS ranks. However, there are a beautiful pair of conjectures due
to Suciu [36], giving formulas for the LCS and Chen ranks in terms of the first
resonance variety R1(A). The variety R1(A) is the tangent cone at the origin to
the characteristic variety; the study of R1(A) was pioneered by Falk in [10].
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In the next section, we review the main subjects of investigation: the Orlik-
Solomon algebra A = H∗(M,Z), the Orlik-Terao algebra C(A), the first resonance
variety R1(A), and blowups of P2 using certain divisors. Our main result is a
description of C(A) as the homogeneous coordinate ring of the blowup X of P2 at
the singular points of A, via a specific (nef but not ample) divisor DA. This allows
us to give a geometric interpretation of R1(A) in terms of certain determinantal
syzygies; we prove that if A supports a net, then Proj(C(A)) lies on a scroll.

2. Background

In [23], Orlik and Solomon gave a presentation for the cohomology ring of the
complement M of a set of hyperplanes A ⊆ Cn. A consequence of their work
is that the Betti numbers of M are determined by the intersection lattice L(A).
This lattice is ranked by codimension: x ∈ Li(A) corresponds to a linear space of

codimension i which is an intersection of hyperplanes of A. The lattice element 0̂
corresponds to Cn, and y ≺ x ↔ x ( y. We work with A central, so A defines an
arrangement in both Cn and Pn−1. We will depict A projectively, as below:

Example 2.1. The reflecting hyperplanes of the Weyl group of SL(4) are the six
hyperplanes in C4 defined by V (xi − xj), 1 ≤ i < j ≤ 4. Projecting along the
common subspace (t, t, t, t) yields the braid arrangement of six planes containing
the origin in C3, or six lines in P2:
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Figure 1. The braid arrangement A3 and its intersection lattice in C3

Definition 2.2. The Möbius function µ : L(A) −→ Z is defined by

µ(0̂) = 1

µ(t) = −
∑
s≺t

µ(s), if 0̂ ≺ t

As noted, the Poincaré polynomial of M is determined by L(A):

P (M, t) =
∑

x∈L(A)

µ(x) · (−t)rank(x).

In Example 2.1, P (M, t) = 1 + 6t + 11t2 + 6t3. For a central arrangement in Cn,
M ≃ C∗ × (Pn−1 \ A), so by Künneth P (M, t) = (1 + t)P (Pn−1 \ A, t). For n = 3,
b2(M) =

∑
p∈L2(A) µ(p), where µ(p) is one less than the number of lines through p.
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2.1. Orlik-Solomon algebra and R1(A). The Orlik and Solomon presentation
for the cohomology ring of M = Cn \ A is as follows:

Definition 2.3. A = H∗(M,Z) is the quotient of the exterior algebra E =
∧
(Zd)

on generators e1, . . . , ed in degree 1 by the ideal generated by all elements of the

form ∂ei1...ir :=
∑

q(−1)q−1ei1 · · · êiq · · · eir , for which codimHi1 ∩ · · · ∩Hir < r.

Since A is a quotient of an exterior algebra, multiplication by an element a ∈ A1

gives a degree one differential on A, yielding a cochain complex (A, a):

(A, a) : 0 // A0 a
// A1 a

// A2 a
// · · ·

a
// Aℓ // 0 .

The complex (A, a) is exact as long as
∑n

i=1 ai 6= 0; the first resonance variety

R1(A) consists of points a =
∑n

i=1 aiei ↔ (a1 : · · · : an) in P(A1) ∼= Pd−1 for which
H1(A, a) 6= 0. Falk initiated the study of R1(A) in [10]; among his main innovations
was the concept of a neighborly partition: a partition Π of A is neighborly if, for
any rank two flat Y ∈ L2(A) and any block π of Π,

µ(Y ) ≤ |Y ∩ π| =⇒ Y ⊆ π,

Falk showed that all components of R1(A) arise from such partitions, and con-
jectured that R1(A) was a subspace arrangement. This was proved, essentially
simultaneously, by Cohen–Suciu [3] and Libgober–Yuzvinsky [21]; we will return to
this in §4.

2.2. The Orlik-Terao algebra. In [25], Orlik and Terao introduced a commuta-
tive analog of the Orlik-Solomon algebra in order to answer a question of Aomoto.

Definition 2.4. Let A = ∪di=1V (αi) ⊆ Pn, and put R = C[y1, . . . , yd]. For each

linear dependency Λ =
∑k
j=1 cijαij = 0, define fΛ =

∑k
j=1 cij (yi1 · · · ŷij · · · yik),

and let I be the ideal generated by the fΛ. The Orlik-Terao algebra C(A) is the

quotient of C[y1, . . . , yd] by I, and the Artinian Orlik-Terao algebra (the main object

studied in [25]) is C(A)/〈y21 , . . . , y
2
d〉.

Example 2.5. Suppose A ⊆ P2 is defined by the vanishing of α1 = x1, α2 =
x2, α3 = x3, α4 = x1 + x2 + x3. The only relation is α1 + α2 + α3 − α4 = 0, so

C(A) = C[y1, . . . , y4]/〈y2y3y4 + y1y3y4 + y1y2y4 − y1y2y3〉.

The homogeneous polynomial y2y3y4+y1y3y4+y1y2y4−y1y2y3 is irreducible, hence
defines a cubic surface in P3, and a computation shows that the surface has four
singular points. A classical result in algebraic geometry is that the linear system of
four cubics through six general points in P2 defines a map from the blowup of P2

at those points to P3 whose image is a smooth cubic surface. As the points move
into special position the surface acquires singularities, as in this example.

In [34], properties of the Orlik-Terao algebra were studied in relation to 2–
formality. An arrangement is 2–formal if any dependency among the linear forms
defining the the arrangement can be obtained as a linear combination of dependen-
cies which involve only three of the forms. Among the classes of 2–formal arrange-
ments are K(π, 1) arrangements and free arrangements. However, an example of
Yuzvinsky [41] shows that 2–formality is not determined by the intersection lattice
L(A). The main result of [34] is that 2–formality is determined by the quadratic
component of the Orlik-Terao ideal; the key is a computation on the tangent space
of V (I2) ∩ (C∗)d−1.
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2.3. Blowups of P2. Fix points p1, . . . pn ∈ P2, and let

(1) X
π

−→ P2

be the blow up of P2 at these points. Then Pic(X) is generated by the exceptional
curves Ei over the points pi, and the proper transform E0 of a line in P2. A classical
geometric problem asks for a relationship between numerical properties of a divisor
Dm = mE0 −

∑
aiEi on X , and the geometry of

X
φ

−→ P(H0(Dm)∨).

First, some basics. Let m and ai be non-negative, let Ipi denote the ideal of a point
pi, and define

(2) J =

n⋂

i=1

Iaipi ⊆ C[x, y, z] = S.

ThenH0(Dm) is isomorphic to themth graded piece Jm of J (see [14]). In [5], Davis
and Geramita show that if γ(J) denotes the smallest degree t such that Jt defines
J scheme theoretically, then Dm is very ample if m > γ(J), and if m = γ(J),
then Dm is very ample iff J does not contain m collinear points, counted with
multiplicity. Note that γ(J) ≤ reg(J). Now suppose that A = ∪di=1Li ⊆ P2, and
fix defining linear forms αi so that Li = V (αi). Let X denote the blowup of P2 at
Sing(A) = L2(A). The central object of our investigations is the divisor

(3) DA = (d− 1)E0 −
∑

pi∈L2(A)

µ(pi)Ei.

2.4. Main results. For an arrangement A ⊆ P2, let

(4) X
φA

−→ P(H0(DA)
∨).

We show that C(A) is the homogeneous coordinate ring of φA(X), and that φA
is an isomorphism on π∗(P2 \ A), contracts the lines of A to points, and blows
up the singularities of A. Combining results of Proudfoot-Speyer [27] and Terao
[38], we bound the Castelnuovo-Mumford regularity of C(A). Finally, we interpret
the resonance varieties studied in [3], [10], [12], [21], [32], [42] in terms of linear
subsystems of DA, and connect these jump loci to linear syzygies on C(A).

3. Connecting H0(DA) to the Orlik-Terao algebra

Let α =
∏d
i=1 αi and define a map R = C[y1, . . . , yd] −→ C[1/α1, . . . , 1/αd] = T .

The kernel of this map is the OT ideal (see [34]), so C(A) ≃ T . In [38], Terao
proved that the Hilbert series for T is given by

(5) HS(T, t) = P
(
A,

t

1− t

)
.

In this section, we show that for n = 2, C(A) is the homogeneous coordinate ring

of the image of X
φA

−→ P(H0(DA)∨), with X as in Equation 1. For brevity, let
li = α/αi.

Lemma 3.1. The ideal L = 〈l1, . . . , ld〉 defines⋂

pi∈L2(A)

Iµ(pi)pi
scheme-theoretically.
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Proof. Localize at Ip, where p ∈ L2(A). Then in SIp , αi is a unit if p 6∈ V (αi).
Without loss of generality, suppose forms α1, . . . αm vanish on p, and the remaining
forms do not. Thus,

LIp = 〈α2 · · ·αm, α1 · α3 · · ·αm, . . . , α1 · · ·αm−1〉.

Now note that I
µ(p)
p has µ(p) + 1 generators of degree µ(p). Since µ(p) = m − 1

and the forms in LIp are linearly independent, equality follows. �

Lemma 3.2. The minimal free resolution of S/L is

0 −→ S(−d)d−1 ψ
−→ S(−d+ 1)d

[

l1, · · · , ld
]

−−−−−−−−−−−−−→ S −→ S/L −→ 0, where

ψ =





































α1 0 · · · · · · 0

−α2 α2 0 · · ·

.

.

.

0 −α3

.

.

.

.

.

.

.

.

.

.

.

. 0

.

.

. 0

.

.

.

.

.

.

.

.

. αd−1

0 · · · · · · 0 −αd





































Proof. The columns of ψ are syzygies on L. Since the maximal minors of ψ generate
L, the result follows from the Hilbert-Burch theorem and Lemma 3.1. �

Theorem 3.3. H0(DA) ≃ SpanC{l1, . . . , ld} and H1(DA) = 0 = H2(DA).

Proof. The remark following Equation 2 shows that H0(DA) ≃ Jd−1. Since K =
−3E0 +

∑
Ei, by Serre duality

H2(DA) ≃ H0((−d− 2)E0 +
∑

pi∈L2(A)

(µ(pi) + 1)Ei),

which is clearly zero. Using that X is rational, it follows from Riemann-Roch that

h0(DA)− h1(DA) =
D2

A −DA ·K

2
+ 1.

The intersection pairing on X is given by E2
i = 1 if i = 0, and −1 if i 6= 0, and

Ei · Ej = 0 if i 6= j.

Thus,

(6)

D2
A = (d− 1)2 −

∑

p∈L2(A)

µ(p)2

−DAK = 3(d− 1)−
∑

p∈L2(A)

µ(p),

yielding

(7)
h0(DA)− h1(DA) =

(
d− 1

)2

−
∑
µ
(
p
)2

+ 3
(
d− 1

)
−
∑
µ
(
p
)

2
+ 1

=

(
d+ 1

2

)
−

∑

p∈L2(A)

(
µ(p) + 1

2

)
.
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Double counting the edges between L1(A) and L2(A) yields
(
d

2

)
=

∑

p∈L2(A)

(
µ(p) + 1

2

)
,

hence h0(DA) − h1(DA) = d. From Lemmas 3.1 and 3.2 the Hilbert function
satisfies

d = HF (〈l1, . . . , ld〉, d− 1) = HF (
⋂

pi∈L2(A)

Iµ(pi)pi
, d− 1).

The observation after Equation 2 now implies that h0(DA) = d. �

It follows from Theorem 3.3 that C(A) is the coordinate ring of φA(X). Note also
that by Lemmas 3.1 and 3.2, the constant γ(L) = d− 1, so

dE0 −
∑

pi∈L2(A)

µ(pi)Ei

is very ample, and gives a De Concini-Procesi wonderful model [6]: a compactifica-
tionM ofM such thatM \M is a normal crossing divisor. However, since every line
of A contains exactly d− 1 points counted with multiplicity, the divisor DA is not
very ample. The description of C(A) makes it obvious that V (I) is an irreducible,
nondegenerate rational variety, and by [34] V (I) \ V (y1 · · · yd) is smooth. Here is a
more explicit description of the map:

Theorem 3.4. The map φA

(1) is an isomorphism on π∗(P2 \ A).
(2) contracts the lines of A to points on X.

(3) takes Ep to a rational normal curve of degree µ(p).

Proof. For the first part, without loss of generality suppose that α1 · α2 · α3 = xyz

and write L =
∏d
i=4 αi. Then

φA = [yzL, xzL, xyL, . . .].

Thus, the first three entries of φA define the Cremona transformation, which is an
isomorphism from P2 \ V (xyz) to itself. Since P2 \ A is contained in P2 \ V (xyz),
(1) follows. For (2), suppose p is a point of V (αi). Since αi divides lj for all j 6= i,
this means lj(p) = 0 if j 6= i. Hence φA(V (αi)) is the ith coordinate point of
Pd−1. The final part follows from the fact that DA|Ep

is a divisor on Ep of degree

DA · Ep = µ(p), and Ep ≃ P1. �

3.1. Castelnuovo–Mumford regularity and graded betti numbers. The
Castelnuovo–Mumford regularity of a coherent sheaf F on Pn is usually phrased in
terms of vanishing of certain cohomology modules. Letting N = ⊕nH

0(F(n)), we
may [8] rephrase the condition as

Definition 3.5. For a polynomial ring R, a finitely generated, graded R–module

N has Castelnuovo-Mumford regularity j if j is the smallest number such that

TorRi (N,C)i+j+1 = 0 for all i. The graded betti numbers of a graded R–module N
are indexed by

bij = dimCTor
R
i (N,C)j .
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Example 3.6. We revisit Example 2.1. The four triple points yield four quadratic
generators for the Orlik-Terao ideal I. These four quadrics generate I (see [34]),
and a computation in Macaulay2 yields the graded betti numbers of C(A):

total 1 4 5 2

0 1 – – – –
1 – 4 2 – –
2 – – 3 2

This diagram is read as follows: the entry in position (i, j) is simply bi,i+j , e.g.

dimK TorR2 (C(A),C)4 = 3.

The betti table has a very nice interpretation in terms of Castelnuovo-Mumford
regularity: the regularity is the index of the last nonzero row.

Theorem 3.7. For A ⊆ Pn, C(A) is n–regular.

Proof. In [27], Proudfoot and Speyer show that the Orlik-Terao algebra is Cohen-
Macaulay (for n = 2 this also follows from Theorem 3.3). Thus, there exists a
regular sequence on C(A) of dim(V (I)) + 1 = n + 1 linear forms; quotienting by
this sequence yields an Artinian ring whose Hilbert series is the numerator of the
Hilbert series of C(A). The regularity of an Artinian module is equal to the length
of the module, so the result follows from Equation 5. �

It follows easily from Theorem 3.7 and Terao’s work in [38] that

Proposition 3.8. For A ⊆ Pn with |A| = d, if I = I2, then

dimC Tor
R
2 (C(A),C)3 = 2

((d
3

)
− 1

)
−
(
d− 3

)( ∑

pi∈L2(A)

µ(pi) + 1
)
.

Example 3.9. The A3 arrangement is supersolvable, so by [34] I = I2, and Propo-
sition 3.8 shows there are two linear first syzygies on I. This explains the top row
of the betti table in Example 3.6.

4. Nets, syzygies, and scrolls

In [21], Libgober-Yuzvinsky found a surprising connection between nets and
the first resonance variety. The approach was further developed by Yuzvinsky in
[42], with a beautiful complete picture emerging in Falk and Yuzvinsky’s paper on
multinets [12]. In this section, we connect nets to the linear syzygies of C(A), and
hence to R1(A). This allows us to give an interpretation of the first resonance
variety in terms of the geometry of XA.

Suppose Z is a subset of the intersection points of A, and let J denote the |Z|×d
incidence matrix of points and lines and E denote a d× d matrix with every entry

one. If Ẑ is the blowup of P2 at the points of Z, then [21] shows that

J tJ − E = Q(Ẑ)

is the intersection form on Ẑ, and is a generalized Cartan matrix. Using the Vin-
berg classification of such matrices [19], they show that any component of R1(A)

corresponds to a choice of points Z such that Q(Ẑ) consists of at least three affine
blocks, with no finite or indefinite blocks, and the block sum decomposition of

Q(Ẑ) yields a neighborly partition. Before going into the details of the connection
between multinets, divisors and syzygies, we give a pair of motivating examples.
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Example 4.1. The matroid (93)2 of Hilbert and Cohn-Vossen is realized below by
A = V (xyz(x+ y)(y + z)(x + 3z)(x+ 2y + z)(x+ 2y + 3z)(2x+ 3y + 3z)). It has
nine triple points and nine double points, thus P (A, t) = (1 + t)(1 + 8t+ 19t2).

HHHHHHHHH

HHHHHHHHH

Q
Q
Q
Q
Q
Q
Q
QQ

@
@
@
@
@
@
@@

1 2 3 4
5
6

7
8

Figure 2. An arrangement realizing (93)2

The graded betti numbers for C((93)2) are:

total 1 11 75 156 145 66 12

0 1 – – – – – –
1 – 9 – – – – –
2 – 2 75 156 145 66 12

Example 4.2. The (93)1 matroid of Hilbert and Cohn-Vossen is realized below by
A = V (xyz(x− y)(y − z)(x− y − z)(2x+ y + z)(2x+ y − z)(2x− 5y + z)). It has
nine triple points and nine double points, so P ((93)1, t) = P ((93)2, t).
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QQ
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Figure 3. An arrangement realizing (93)1

However, the graded betti numbers for C((93)1) are:

total 1 13 77 156 145 66 12

0 1 – – – – – –
1 – 9 2 – – – –
2 – 4 75 156 145 66 12

The arrangement (93)1 possesses a pair of linear first syzygies, while (93)2 has no
linear first syzygies. An easy check shows that (93)1 admits a neighborly partition
|169|258|347| and has a corresponding non-local component (see below) in R1(A),
whereas (93)2 does not. To better understand the connection between R1(A) and
syzygies, we now review two constructions.
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4.1. Nets and multinets. It is easy to see that any p ∈ L2(A) with µ(p) ≥ 2
yields a component Pµ(p)−1 ⊆ R1(A). Such components are called local components.
Components which are not of this type are called essential. In [42], Yuzvinsky used
nets to analyze the essential components of R1(A).
Definition 4.3. Let 3 ≤ k ∈ Z. A k-net in P2 is a pair (A, Z) where A is a finite

set of distinct lines partitioned into k subsets A =
⋃k
i=1 Ai and Z is a finite set of

points, such that:

(1) for every i 6= j and every L ∈ Ai, L
′ ∈ Aj, L ∩ L′ ∈ Z.

(2) for every p ∈ Z and every i ∈ {1, . . . , k}, ∃ a unique L ∈ Ai containing Z.

Thus, for a k-net, |Ai| = |L ∩ Z| for any block Ai and line L ∈ A; denote this
number by m. Following Yuzvinsky, we call m the order of the net, and refer to a
k-net of order m as a (k,m)-net; note that |Z| = m2. Yuzvinsky shows in [42] that
a net must have k ∈ {3, 4, 5}, and improves this in [43] to k ∈ {3, 4}.

In [12], Falk and Yuzvinsky extend the notion of a net to a multinet; in a multinet
lines may occur with multiplicity. Write Aw for a multiarrangement, where w ∈ Nd,
and w(L) denotes the multiplicity of a line.
Definition 4.4. A weak (k,m)-multinet on a multi-arrangement Aw is a pair

(Π, Z) where Π is a partition of Aw into k ≥ 3 classes A1, . . . , Ak, and Z is a set

of multiple points, such that

(1)
∑

L∈Ai
w(L) = m, independent of i.

(2) For every L ∈ Ai and L
′ ∈ Aj , with i 6= j, L ∩ L′ ∈ Z.

(3) For each p ∈ Z,
∑

L∈Ai,p∈Lw(L) is a constant np, independent of i.

A multinet is a weak multinet satisfying the additional property

(4) For i ∈ {1, . . . , k} and L,L′ ∈ Ai, ∃ a sequence L = L0, L1, . . . , Lr = L′

such that Lj−1 ∩ Lj 6∈ Z for 1 ≤ j ≤ r.

Example 4.5. The reflection arrangement of type B3 is depicted below (there is
also a line at infinity). Falk and Yuzvinsky show that this arrangement supports a
multinet which is not a net: assign weight two to lines (3, 6, 8) and weight one to
the remaining lines.
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�
�
�
�
�

@
@

@
@

@

@
@

@
@

@

1 2

3

45678

Figure 4. The B3-arrangement

The following lemma of [12] will be useful:

Lemma 4.6. Suppose (Aw , Z) is a weak (k,m)-multinet. Then

(1)
∑

L∈Aw
w(L) = km.

(2)
∑

p∈Z n
2
p = m2

(3) For each L ∈ Aw,
∑
p∈Z∩L np = m.
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4.2. Determinantal syzygies and factoring divisors. One simple way in which
linear syzygies can arise comes from a factorization of divisors. First, a definition

Definition 4.7. A matrix of linear forms is 1 − generic if it has no zero entry,

and cannot be transformed by row and column operations to have a zero entry.

For Y ⊆ Pn irreducible and linearly normal, if there exist line bundles L1 and L2

such that OY (1) = L1⊗L2 with h
0(Li) = ai, then the a1×a2 matrix γ representing

the multiplication table

H0(L1)⊗H0(L2) −→ H0(OY (1))

is 1–generic. More explicitly (see [8]), if

H0(L1) = SpanC{e1, . . . , ea1} and H0(L2) = SpanC{f1, . . . , fa2},

then γ has (i, j) entry ei ⊗ fj , corresponding to a linear form on Pn, and elements
of the ideal I2(γ) of 2 × 2 minors of γ vanish on Y . The most familiar example
occurs when a1 = 2 and a2 = k. In this case, the minimal free resolution of I2(γ)
is an Eagon-Northcott complex. This relates to geometry via scrolls: let Ψ be the
locus of points where a 1–generic matrix

γ =

[
l1 · · · lk
m1 · · · mk

]

has rank one. If

L[λ:ν] = {p ∈ Pn | λl1(p) + µm1(p) = · · · = λlk(p) + µmk(p) = 0},

then (see 9.10 of [16])

Ψ =
⋃

[λ:ν]∈P1

L[λ:ν],

where L[λ:ν] ≃ Pn−k, so Ψ is a union of linear spaces. Geometrically, the zero locus
of the 2× 2 minors of γ is a scroll which contains V (IY ).

4.3. Connecting nets and determinantal syzygies. The computation in the
proof of Theorem 3.3 and the fact that h1(D) ≥ 0 shows that if DA = A+B with
A = mE0 −

∑
aiEi, then

h0(A) ≥

(
m+ 2

2

)
−

∑

p∈L2(A)

(
ai + 1

2

)
, h0(B) ≥

(
d+ 1−m

2

)
−

∑

p∈L2(A)

(
µ(p)− ai + 1

2

)
.

For an arrangement A, if there exists a choice of parameters m and ai such that
h0(A) = a ≥ 2 and h0(B) = b ≥ 3, then the results of the previous section show
that there will exist linear first syzygies on I.

Example 4.8. We revisit Example 4.2. Let A = 3E0 −
∑

{p|µ(p)=2} Ep. Clearly

A2 = AK = 0, so we can only guarantee that h0(A) ≥ 1. In fact, h0(A) = 2, hence
h1(A) = 1. To see this, note that a direct computation shows that the space of
cubics passing through the nine multiple points of A is two dimensional. Since

SpanC

(
L1L6L9, L3L4L7, L2L5L8

)
⊆ H0(A),

and any two of these are independent, we see that the sections are given by the net.
Next, consider the residual divisor B = DA − A. Since B2 = 16 − 18 = −2 and
−BK = 15− 9 = 6, we have that h0(B) ≥ 3. In fact, equality holds, so I contains
the 2× 2 minors of a 2× 3 matrix of linear forms, explaining the linear syzygies.
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Lemma 4.9. A (k,m) multinet gives a divisor A on X such that h0(A) = 2.

Proof. Let

A = mE0 −
∑

p∈Z
npEp.

Condition (1) of Definition 4.4 implies that for each block Ai of the multinet,∏
L∈Ai

Lw(L) is homogeneous of degree m, and Condition (3) shows that it vanishes

to order exactly np on Ep. In particular, this shows that
∏
L∈Ai

Lw(L) ∈ H0(A).
If all the blocks of the partition were independent, then this would imply that
h0(A) ≥ k, but it turns out that the sections are all fibers of a pencil of plane
curves, which follows from Theorem 3.11 of [12]. �

In [12], Falk and Yuzvinsky show that the following are equivalent:

(1) R1(A) contains a nonlocal component ≃ Pk−2.
(2) A supports a (k,m) multinet.
(3) ∃ a pencil of plane curves with connected fibers, with at least three fibers

(loci of) products of linear forms, and A is the union of all such fibers.

In general, determining the dimension of h1(D) for D ∈ Pic(X) is not easy. How-
ever, in the special case of a net, there is enough information to give a lower bound
for the dimension of the sections of the residual divisor which is often exact.

Theorem 4.10. If A is a (k,m) net, then DA = A+B, with

h0(A) = 2 and h0(B) ≥ km−

(
m+ 1

2

)
.

Proof. For a (k,m) net, all lines occur with multiplicity one. Let

A = mE0 −
∑

p∈Z
Ep.

By Lemma 4.9, h0(A) = 2. Since B = DA −mE0 +
∑
p∈Z

Ep,
B2−BK

2 + 1

= (d−m−1)(d−m−1+3)+2
2 + (

∑
p∈L2(A)

µ(p)Ep +
∑
p∈Z

Ep)(
∑

p∈L2(A)

(µ(p)− 1)Ep +
∑
p∈Z

Ep)

=
(
d+1−m

2

)
−
(
d
2

)
+

∑
p∈Z

µ(p)

=
(
m
2

)
− d(m− 1) +

∑
p∈Z

µ(p).

We now compute that
∑
p∈Z

µ(p) + |Z| =
∑
p∈Z

(µ(p) + 1)

= k
∑
p∈Z

np

= km2.

The second line follows since np lines from each block Ai pass through p, and there
are k blocks. The third line follows from Lemma 4.6 and the fact that np = 1 for
a net, hence n2

p = np. Since for a (k,m)–net |Z| = m2,
∑

p∈Z
µ(p) = (k − 1)m2 = dm−m2.
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Combining this with the previous calculation shows that for a (k,m)–net

h0(B) = h1(B) +

(
m

2

)
− d(m− 1) + dm−m2 ≥ d−

(
m+ 1

2

)
.

Recalling that km = d concludes the proof. �

Corollary 4.11. If A is a (k,m) net with k ≥ m, then I contains the 2×2 minors

of a 1-generic 2 ×
(
km −

(
m+1
2

))
matrix. Thus the resolution of I contains an

Eagon-Northcott complex as a subcomplex.

Proof. Since k ∈ {3, 4}, if (k,m) = (3, 2) or (3, 3) then by Theorem 4.10 h0(B) ≥ 3,
and if (k,m) = (4, 3) or (4, 4) then h0(B) ≥ 6. Note that the only known example
of a 4-net is the (4, 3) net corresponding to the Hessian configuration. �

Example 4.12. For the arrangement A3 appearing in Example 2.1, Z is the col-
lection of multiple points, and

A = 2E0 −
∑

{p|µ(p)=2}
Ep

and

B = 3E0 −
∑

p∈L2(A)

Ep.

So d−
(
m+1
2

)
= 6− 3 = 3 and I contains the 2× 2 minors of a 2× 3 matrix.

5. Connection to Derivations

In this section, we show that the generators of the Jacobian ideal of A ⊆ P2

are contained in H0(DA), and that the associated projection map X → P2 has
degree

∑
p∈L2(A) µ(p)− |A|+ 1. This relates X to one of the fundamental objects

in arrangement theory: the module D(A) of derivations tangent to A.

Definition 5.1. D(A) = {θ | θ(αi) ∈ 〈αi〉 for all αi such that V (αi) ∈ A}.

The module D(A) is a graded S = C[x0, . . . , xn] module, and over a field of
characteristic zero, D(A) ≃ E⊕D0(A), where E is the Euler derivation and D0(A)
corresponds to the module of syzygies on the Jacobian ideal Jα of the defining

polynomial α =
∏d
i=1 αi of A. An arrangement A is free if D(A) ≃ ⊕S(−ai); the

ai are called the exponents of A. Terao’s theorem [37] is that if D(A) ≃ ⊕S(−ai),
then P (M, t) =

∏
(1 + ait). Supersolvable arrangements are free, so Example 2.1

is of this type, and

P (A3, t) = (1 + t)(1 + 2t)(1 + 3t)

On the other hand, the arrangement A of Example 2.5 is not free, and P (A, t) does
not factor. However, it is shown in [30] that for A ⊆ P2 the Poincare polynomial is
(1 + t) · ct(D

∨
0 ), where ct is the Chern polynomial and D∨

0 is the dual of the rank
two vector bundle associated to D0. An easy localization argument [31] shows that
in this case, the Jacobian ideal is a local complete intersection with

deg(Jα) =
∑

p∈L2(A)

µ(p)2.

For A ⊆ Pn with n ≥ 3, some generalizations are possible, see [22].
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Proposition 5.2. For an arrangement A ⊆ P2,

Jα ⊆ L = 〈l1, . . . , ld〉 = 〈
α

α1
, . . . ,

α

αd
〉.

Proof. By Lemma 3.2,

L =
⋂

p∈L2(A)

Iµ(p)p ⊆ C[x, y, z].

The ideal Jα is generated in degree d−1. The result of [31] mentioned above implies
that at any point p ∈ L2(A), the localization (Jα)p is a local complete intersection:
changing coordinates so that p = (0 : 0 : 1), and writing A = V (L0L1) with L0 the
product of the defining linear forms which vanish at p and L1 the product of the
remaining forms, we have

(Jα)p = 〈∂(L0)/∂x, ∂(L0)/∂y〉.

In particular, both generators are of degree µ(p), so in the primary decomposition

of Jα, the primary component associated to I(p) is contained in I
µ(p)
p . Now,

Sing(A) =
⋃

I(p)∈Ass(
√
Jα)

V (I(p)).

If Qp is the I(p)-primary component of Jα, then
⋂

I(p)∈S
Qp ⊆ L.

Since the saturation of Jα with respect to 〈x, y, z〉 is the left hand side, and Jα is
generated in degree d− 1, the result follows. �

The inclusion W = Jα ⊆ H0(DA) corresponds to an induced map

P2 \ V (α)
φA

//

ψ

''N

N

N

N

N

N

N

N

N

N

N

P(H0(DA))

π

��

P(W )

Proposition 5.3. The degree of π is
∑

p∈L2(A)

µ(p)− |A|+ 1.

Proof. In [7], Dimca and Papadima show that on a projective hyperplane comple-
ment Pn \ V (α), the degree of the gradient map ψ

Pn \ V (α)

[

∂(α)/∂x0 : · · · : ∂(α)/∂xn
]

−−−−−−−−−−−−−−−−−−−−−−−−−−→ Pn

is equal to bn(P
n \ V (α)); for a configuration of A ⊆ P2 this means the degree of

the gradient map is ∑

p∈L2(A)

µ(p)− |A|+ 1.

By Theorem 3.4, φA is an isomorphism on P2 \ V (α), and the result follows. �

Concluding Remarks and Questions
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(1) To study TorRi (C(A),C)i+1, it suffices to restrict to the case of line ar-
rangements. This follows since the quadratic generators of C(A) depend
only on L2(A), hence taking the intersection of A with a generic P2 leaves
these generators (and relations among them) unchanged. The graded betti
numbers for I2 are not combinatorial invariants; it would be interesting to
understand how the geometry of A governs bij , even for j = i+ 1.

(2) Can freeness of D(A) be related to the surface X and divisor DA? It seems
possible that there is a connection between DA and multiarrangements,
studied recently in [1], [39], [40].

(3) For n ≥ 3, is C(A) the homogeneous coordinate ring of a blowup of Pn along
a locus related to the arrangement A? Since C(A) is Cohen-Macaulay, if
this is true, then combining Riemann-Roch with Terao’s result would yield
a formula for the global sections of DA.

Acknowledgements Computations were performed using Macaulay2, by Grayson
and Stillman, and available at: http://www.math.uiuc.edu/Macaulay2/. Many
of the examples in this paper appear in Suciu’s survey [36]; that paper is also an
excellent reference for the many questions on resonance varieties not treated here.
This work began during a visit to the Fields institute for a conference in honour of
Peter Orlik.
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