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L>-NORM AND ESTIMATES FROM BELOW
FOR RIESZ TRANSFORMS ON CANTOR SETS

V. EIDERMAN AND A. VOLBERG

ABSTRACT. The aim of this paper is to estimate the L?-norms of vector-valued Riesz trans-
forms R? and the norms of Riesz operators on Cantor sets in R?, as well as to study the
distribution of values of RJ. Namely, we show that this distribution is “uniform” in the fol-
lowing sense. The values of |RS|?* which are comparable with its average value are attended
on a “big” portion of a Cantor set. We apply these results to give examples demonstrating
the sharpness of our previous estimates for the set of points where Riesz transform is large,
and for the corresponding Riesz capacities. The Cantor sets under consideration are differ-
ent from the usual corner Cantor sets. They are constructed by means a certain process of
regularization introduced in the paper.

1. INTRODUCTION

Let oy, ..., 0, be a finite sequence of positive numbers such that
20—j+1§0—j7 ij,,n—l (11)

This sequence determines the corner Cantor set E,, of generation n in R?, such that the j-th
generation consists of 2% cubes of edge length o, each of these cubes contains 27 corner cubes
of the (j + 1)-th generation, and so on. For brevity, we will call E, “a Cantor set” instead
of “a Cantor set of generation n”. There is a number of papers on estimates of various
capacities, norms of integral transforms and operators, etc., on such Cantor sets. These
estimates demonstrate the sharpness of various inequalities where the bounds are attained
on Cantor sets; they are also of independent interest. But besides the necessary condition
, there are certain additional conditions on ¢; in many cases. In the present paper
we associate with given numbers o; satisfying only the condition , the “regularized”
sequence {/;}7_; such that o; =~ {;, j = 1,...,n, and construct the (non-corner) Cantor set
E,, formed by 2% cubes of edge length ¢,,. Since the corner and non-corner Cantor sets have
similar structure, it is unimportant for applications which set to use.

For a nonnegative finite Borel measure v in R, d > 1, and s > 0, € > 0, define the
e-truncated s-Riesz transform of v by

Bn)= [ K-nd)

where

K(z) = ——, xR\ {0}

[+
If the limit
Ry (z) = lim R; ()

e—0+
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2 V. EIDERMAN AND A. VOLBERG

exists, we shall call it the s-Riesz transform of v at x. To consider all finite Borel measures
and all points x € R?, one introduces the quantity that always makes sense, namely the so
called maximal s-Riesz transform
Ry () = sup | Ry ()|
e>0
(note that Ry _(v) and R;(r) are vectors and R; () is a number).
Besides R and R}, we need the e-truncated s-Riesz operator defined by

% f(x) = /| KWnf@d), ePE), e>0
Yy—x|>€e

For every € > 0, the operator 9. is bounded on L*(v). We set

9] = sup [, cllz2w)— 22
g
Later on we denote by ¢,C, ¢, ... (without indices) positive constants which may vary
from line to line.
Let E, be the corner Cantor set generated by a sequence oy, ...,0,, and consisting of

29" cubes E, ;. Let p the probability measure uniformly distributed on each cube E,, j with
w(E, ;) = 27, Mateu and Tolsa [10] proved that if 0 < s < d, (2+6)0j41 < 0, 6 > 0, and
8j+1 S 9]‘ with

then
1/2

n 1/2 n
C[Z 95} < ;|| < C[Z 95} : (1.2)
j=1 j=1

where the constants ¢, C depend only on 9, d and s. In fact, Mateu and Tolsa proved a
stronger assertion than the estimate from below: for sufficiently small ¢,

j=1

This result was refined by Tolsa in [16], where the condition about monotonicity of densities
6; was dropped. A more general class of Cantor sets for s = d — 1 (again under the condition
6,41 < 0;) was considered in [8, Theorem 3.1].

The estimate from above in was also obtained in [7] by another method.

The arguments in [10] and especially in [16] are rather complicated. We give two indepen-
dent proofs of for our “regularized” Cantor set. The first (direct) proof is considerably
simpler than in [10], [16]. The second approach gives the desired inequality as a corollary of
the following more delicate result. We shall prove that the inequality |R}(2)]> > ¢ 7, 67
(and therefore the analogous estimate for |R; _|) holds on a “big” portion of E,. We also
consider the related problem in a more general setting and give certain applications. In par-
ticular, we establish the two-sided estimate of the Riesz capacity associated with R;. This
estimate is a refined version (for non-corner Cantor sets) of the corresponding results in [10].

We conclude this section with the construction of “regularized” non-corner Cantor sets.
Let oy, ..., 0, be a finite sequence of positive numbers satisfying (|1.1)), and let two parameters
a € (0,3) and T € (1,5) be given. (Later on a,T will depend on d and s.) Define the
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set J = {j1,...,Jm}, m < n, of indices inductively in the following way: j, = 1; if j, € J,
1<j,<n,and o, < a2*(”*jp)ajp, then j,1; is the least j > j,, such that o; < a2*(j*jp)0jp;
if j, € J,1<j,<n,and g, > oz2_(”_j")0jp, then j,.1 = n. Thus,
l=j1 <jo<- < jm=n,
a2 U o, <o, <270 g, G <j<ju, p=1,...,m—L
We set
0;=2"U"g, 5, << o1, p=1,...,m— 1
(, = min{o,, a2_(”_jm‘1)ajm_1}.

Clearly (see ([1.1)),

o; </l <al

Uiy <a27Umna=dolg, - p=1... . m—1. (1.4)

0j71§j<n; Oéo—nggngo—n;

pt1
Hence, ao; < {; < aloj, 1 <j<n.
For w = (uy,...,ug) € R? and £ > 0 let Q(w, ) be the cube
Qw, ) ={x=(t,....ta) ER*: |t; —w| < 3¢, i=1,...,d}. (1.5)

Construct the Cantor set £, recursively as follows. For p = 1 we set Ey = Q11 = Q(0,274,).
Take 2¢ closed corner cubes Ej, k = 1,...,2% of edge length ¢; (i.e. distinct cubes lying
inside ()11 with edges parallel to the edges of ); 1, such that each cube E; j contains a vertex

of Ql,l)-

Qp+l,i'

° 4 L I "
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Suppose that the cubes E; ., k=1,..., 24» of edge length ;,, jp < m, are already defined.
Partition each cube Ej, ;. into 240r+1=9»=1) equal subcubes Q(wp1,7, 27 r+1=5»=1¢, ) (In the
figure above d = 2, jp11 — jp — 1 =2.) If jp41 — j, — 1 > 0, we may consider this partition
as jp+1 — Jp — 1 sequential partitions of Ej, , such that on j-th step, j, < 7 < o1 — 1,
we split each cube F;_;; into 2¢ cubes E; ;s of edge length ¢;. Consider the cubes Qpy1 =
Q(wpt1,0, 2T, ). Remark that by (L.4)),

27¢;,,, < 2T« 27(jp+1*jp)£jp < 2*(]’p+1*jp)gjp — %2*(jp+1fjp*1)gjp. (1.6)
Take 2¢ closed corner cubes Ej;, .,k of edge length £;  in each Qpy 1. We get 24ir+1 cubes
E; ..k, and set

24Up+1-1) 2%p+1

Q= U Qus Ep= U Epasn
=1 k=1

For p + 1 = m we obtain the desired set E,,.

2. MAIN RESULTS
Our first theorem shows that under certain assumptions |R?|? is comparable with its
average value on a set of “big” measure, and this property holds not only on Cantor sets. It
means that the distribution of values of Riesz transform is uniform in a certain sense.
Set B(z,r) == {y € RY: |y — x| < r}, and denote by ¥, the class of nonnegative Borel

measures 7 in R? such that

n(B(x,r)) <r® for all z € R and r > 0. (2.1)
Theorem 2.1. Suppose that ) € X, [|n|| < oo, R;(x) exists n-a.e., |R;| <1, and
IR0y = allnll, > 0. (2.2)

Then for every b € (0,a) we have
n{z R (2)" > b} > cla—b)*[nll, ¢ =c(d,s). (2:3)

On the other hand, obviously (2.3) implies (2.2)) with bc(a—0b)? instead of a. The analogous
statements hold for R ..

We deduce Theorem in Section 3 from a deep result by Nazarov, Treil and Volberg
(Theorem 1.1 in [12]). In Section 4 we obtain the following estimates for ||RfLH%2(“) and |9R5].
As before, we denote by p the probability measure uniformly distributed on each cube E,, j
with u(E, ;) = 27

Theorem 2.2. Let an integer d > 1 and s € (0,d) be given. There are constants a € (0, %),

T € (1, i), depending only on d, s, and such that for any positive numbers oy,...,0,,
satisfying (1.1) with 1 < j <n — 1, and for the corresponding Cantor set E,,
n , 1/2 n ) 1/2 9—dj
c[Z 9]-] < Rz < c{z 93} 8= (2.4)
=1 =1 i

/2

n 1/2 n 1
C{Z 9]2.] < ;) < C{Z 93} , (2.5)
=1 =1

where the positive constants ¢, C' depend only on d and s.
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(We use the same notation 6; for values slightly different from the ones in ([1.2)). Clearly,
the corresponding relations in both cases are equivalent.)

Set 1= c[X7_1 05172 1f ¢ = ¢(d, s) > 0 is small enough then 1 € X, and |R| < 1 by
the upper bound in ([2.5)). Moreover, the first inequality in (2.4)) implies (2.2)) with a = a(d, s).
Thus, Theorem immediately yields the inequality

u{x LR (2)]? > CZ@?} > 0y, 0o = bo(d, s) > 0. (2.6)
j=1
The existence of Cantor-type sets satisfying was established in [7, Section 7] using
probabilistic arguments. But a concrete set was not presented. The particular case d = 2,
s =1, 0; =477, was considered in [2]. A more general class of plane corner Cantor sets was
treated in [6].

Clearly, implies the estimates from below in , (in fact, the estimates from
above were obtained in [7] — see Section 4 of the present paper for details). In Section 5
we give a completely different proof of without the use of Theorem 1.1 in [12] and
of Theorem [2.2] This independent approach allows us to consider a more general class of
measures and wider range of s.

In Section 6 we consider the capacity s 4 (F) of a compact set E C R? defined by the
equality

Vs (E) = sup{||v| : v € M (E), [|R}||roomay < 1},
where M, (F) is the class of positive Radon measures supported on E. For d = 2, s = 1,
71+ (E) is the analytic capacity 7., which is comparable with the analytic capacity v by the
remarkable result of Tolsa [15]. For s =d — 1, d > 2, 7 4 is comparable with the Lipschitz
harmonic capacity (see [17] and [7, Section 10] for details and references).

Theorem 2.3. Let d > 1, s € (0,d). For any finite sequence of positive numbers oy, . .., op,
satisfying (1.1) with 1 < j <n—1,

PEN] T s e[ (2] 27

j=1 J j=1 J

where the positive constants ¢, C' and the parameters o, T of the corresponding Cantor set
E,, depend only on d and s.

For corner Cantor sets and d = 2, s = 1 (that is for analytic capacity v, ), the estimates
(2.7) were obtained in [5] under the additional assumption o;11/0; < A < 1/3. A different
proof has been given in [14]. The corresponding inequalities for 7 were proved in [11] (before
the Tolsa’s result [15] about comparability of v and 7). The case of the Lipschitz harmonic
capacity (i. e. d > 2, s = d — 1) was treated in [10] under the assumptions (2 + )01 <
oj, 0 > 0, and 0;;1 < ;. Thus, Theorem is a refined version of these results for
“regularized” Cantor sets. It is noted at the end of [10] that holds under the same
assumptions for the signed Riesz capacity v, as well. In fact, our proof of Theorem
is a modification of the arguments in [10] and [9], and these arguments also work for -,
and for “regularized” Cantor sets under the additional assumption (2 + )01 < o;, but
without monotonicity of 6;. It is known that v, ~ 7,4 for d = 2, s = 1 [15], for d > 2,
0 <s<1][9, Theorem 1.1], and for d > 2, s = d — 1 [17]. As far as we know, the validity of
this relation in other cases is an open problem. The extension to bilipschitz images of corner
Cantor sets from [10] is given in [8].
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In Section 7 we give “the limit case” of Theorem , when the sequence {o;} is infinite.
We use the obtained estimates to demonstrate the sharpness of results in [7]. In particular,
we consider the problem of comparison of the capacity 75+ and Hausdorff content.

3. PROOF OF THEOREM [2.1]

Lemma 3.1. If f is a non-negative function, v is an arbitrary probability measure, and

(/ﬁwzg /jwugAﬁ,L>Q

then for 6 € (0,1) we have

(1-9)°
f > > .
viz: f>dL} > 1A
Proof. Clearly,
/ f@g/kﬁpwgﬁj%,
F>2AL/(1-6) 2AL 2
Assume that )
(1-0)
f> .
v{x: f>0L} < 1A
Then )
(1-9)L / 2AL (1-9) (14 9)
L———< fdv <L+ . = L.

Since the left hand side is equal to the same number U—;F‘S)L, we come to a contradiction. [

Proof of Theorem[2.1. By [12, Theorem 1.1, p. 467-468|, the uniform boundedness of the
cut-off Calderén-Zygmund operators T on L?(n) implies the boundedness of T' and of
the corresponding maximal singular operator on LP(n) for every p € (1,00). Applying this
theorem for f(z) =1, p =4, we get

/ RS ()| d() =] R |y < (A ]

1Ry Mgy < (A") Il
where the constants A’, A” depend only on d and s (the last statement follows from the proof
of Theorem 1.1 in [12]). Lemmawith f(x) =R (x)*, v=mn/lnll, L =a, A= (A")a?,
6L = b, yields (2.3), since (1;2)2 = % = c(a — b)>.
The proof of the corresponding statement for R

S

5.« 18 essentially the same. U

4. PROOF OF THEOREM [2.2]

We need some notation. Let x; x, w,; be the centers of E; ; and @),; correspondingly,
and let E; (x), Q,(z) be the cubes Ej, i, Qp;, containing . Set

Yy—x
fCU)Z/ —du(y), r€Qpn, p=1,...,m—1;
’ Qp(x)\Qp+1(z) ly — x> P

bnl(z) = / YT ), ze B,

(z) ’y - :U’S+1
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Obviously,

m

Ri(x) =) &),

p=1

Lemma 4.1. There exists Ty = To(d,s) > 1, such that for any o € (0,(2T)7") and T €
(Ty, (2a)™) we have

9—djp \ 2 ) 9—djp \ 2
C(Tsf§p> < /En &) du(z) < C'< 0 > ., op=1,...,m, (4.1)
with ¢ and C' depending only on d, s.

Proof. We have

@@%ZA;( T du(y)

@\ (@) [Y — 2

y—x
+f Y duy) = L(2) + (@), p=1,...,m—1;
(@\B;, @) 1Y — 27

y— y—x
Enlr) = / YT uy) + / V7T guy) = L(x) + D).
Bu(a) [y — [T Qu(@\En(z) [Y — 2T

By (L.6)), the cubes @41, in E;, () are separated. Hence, up to a constant, I;(x) is majorized
by the integral over the measure uniformly distributed on E; () with density 2*de€]-_‘1, that
. p

is

o—djp  lip pd—1 —dp
|(z)| < C 7 / dt = C'(d, s) rekE,, p=1,...,m. (4.2)
0

- s 2 3
Jp Jp
Suppose that x € E; ; (i. e. Ej (z) = Ej, ). We claim, that for sufficiently big T,
1
[12(2) = Do (j,,0)] < 5 [T2(,0)]. (4.3)
Indeed,
y—x Y— Tjpk
[Io(x) — Ix(j,1)| < / - L du(y)
’ Qu(@)\Ej, (x) ly — |t |y —xj, k5
|2 — @5, k| 2~
< C(s)/ = du(y) < C'(d, 8) o -
Qp(ir)\Ejp(I) ’y — .’,Ujp7k|s+1 Ts+1€jp
On the other hand, for 7" big enough we have
(A, 8) o < |Dfa)] < C(d5) o € B (4.0
c(d,s)—— < |la(z)] < , S , rEE;. 4.4
(T¢5,)s (T¢;)® !
The lower bound in (4.4]) implies (4.3)).
Obviously, I;(2') = —I;(2") whenever 2’, 2" € E;, ; and 2/, 2" are symmetric with respect

to x;, 1. Hence, for “half” of the points x € Ej , the angle between the vectors I5(x;, x)
and I (x) is less then or equal to /2. For these = we have

&p(2)| = [I1(2) + L(2)| = [Li(2) + La(z, 6)| — [2(z) — Ia(zj,)]
Q*djp
(T',)s

1
> |la(zj, )] — §|I2(%,k)| > d(d, s)
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We get the lower bound in (4.1)). The upper bound follows directly from (4.2]) and (4.4). O
Lemma 4.2. Let 6 = min(3(d — s),1). Then
dlp—al 5—dj —dj
a 9=dip  9~dia
<CT\—= : 4.5

Jp

éexwawmmm

where C' depends only on d and s.

Proof. By symmetry,
fp(l’) dﬂ(l') :O’ p= 17...,m’ 7 = 1"“’2d(jp*1)'
Qp,i
Suppose that p > ¢q. We have

2d(ip—1)

/'@ & dutr) = Y [ &@e L dutr)
Qd;pfl) " (4.6)
= P q — Sq\Wp,i d .
Z;l%gmmg&>fow>1mm
By (3, (D, )
& (2)] < 0268“’ . C=0C(ds), zeE,. (4.7)
Jp
For x € Q,, we get
y—x y— wp,i

du(y)

—a T Ty =l

mww—@mmns/
Qq(x)\Qq+1(x
‘:U Wp, l‘

<C / 1ot (Y)
Qu(@\Qq i1 () [Y — T

-c| oot ) o7l [ ()
QueN\Quir () 1Y = 2170 Jy =2+ 7T 0 o @@ [ — @

Jq+1

As in Lemma we represent the last integral as the sum of the integrals over I () \
Qq+1(z) and Q4 (z) \ E;, (x). The second integral is estimated exactly as in ({.4). The first
integral, as before, is majorized by the integral with uniformly distributed measure. Thus,
the last bound does not exceed

Te;, [27 % [Ya a1 2~ Te;, 2%
C [ / dt + ] <
0

R e (P e I
) 1-6 ) 6 o—dj —dj
:C/T( v ) (Q> 2 < oS 0g-dty—in 2 C'=C'(d,s)
i G,) 6 Iz

(in the last inequality we used the obvious relation £;, < ¢; ., and (1.4)). Since j,—j, > p—q,
we obtain the inequality
2—djq

() — Eg(wpi)] < CTobP~0)9—d(p—q) T
Ja
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This inequality together with (4.6, (4.7), and the obvious relation > ;" " u(Qp;) = 1

imply (4.5 . d

Proof of Theorem[2.2 Set

2 d(jp—1)

0, 2" 48
r g;p ( . )
We start from the lower bound in (2.4)). Obviously,
m 2
Bl = [ |60 dute)
T R
=Y [ a@Pdu@) + 3 [ Gt dnto) = =i+ s
p=1"En pq 7 En
From (4.1)) we have
C = 5
D DIl (4.9)

Enumerate ©, in decreasing order: ©,, > ©,, > --- > 0, . From (4.5) we derive the
estimate

13, < 20T’ {22—5191—1%-912)1 + 22—6\p2—pi|@§2 . 4 2 0lPm—1—Pm| 92
1=2 i=3

Pm—1

(4.10)

<4CTa’ {i 2—‘”} Em: e.
p=1

i=1
We can choose o and T in such a way that the constant ¢772° in ([4.9) is at least twice as
big as the constant before the last sum in (4.10). We have

[EEA P2 >cZ@ c=c(d,s).

To get the lower bound in (2.4)), it remains to note that

Jp+1—1 2—dj 2 Jp+1—1 2—dj 2
> (%) -2 (—)
D

J=Jp J J=Jp

(4.11)

9—djp 2 Jpt1—1
( ) ZQ )= ]P)<C’(ds)@2 p=1,....,m—1.

J]p

Obviously, the estimate from below obtained in implies the lower bound in . To
complete the proof of Theorem , it is enough to get the upper bound in (2.5). But the
proof of this estimate is literally the same as the proof of the corresponding estimate for
corner Cantor sets in [7, Corollary 3.5]. O
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5. ESTIMATES FOR THE SIZE OF THE SET WHERE |R?| IS LARGE.
ANOTHER APPROACH

In this section we develop an independent approach to obtaining the estimate , as
well as its generalizations and related results.

Let a finite sequence oy, ...,0,, 20,41 < 0j, j = 1,...,n — 1, and constants o € (0, %),
T e (1, i), co > 0, be given. For the corresponding Cantor set F,, and for a positive measure
v supported on E,,, set

R (o) = /E ’ I ),

x) ’y - x’S—H
where E,(z) is the cube E, j containing z. Define the sets &, € of cubes by the relations
2=

1/2

J

S:{ﬂmmmwwm>%12¥ﬂ2}. (5.2)

Here as before, x,; is the center of E,, ;; in (5.1]) we assume that the values R} (z,) exist.

Theorem 5.1. For every s € (0,00) and every integer d > 1, there exist constants cgy, To,
depending only on d, s, with the following properties. Fix some T > Ty, o < aoy(d, s,T), and
a sequence oy,...,0p, 20541 < 05, 7 =1,...,n—1. Let v be a measure supported on the
corresponding Cantor set E,, equally (but not necessarily uniformly) distributed on each cube
Enr, k=1,...,2% with v(E, ) = 279, Then the number of cubes E,  in & is comparable
with the number of all cubes in E,, that is,

#E > ¢2, (5.3)
where ¢, is an absolute constant. Moreover, if values RS (x, k) exist, then

#E > 2. (5.4)
The same conclusion holds if we replace x,; in (5.1)), by any fized points x,,, € Eny,
such that ), , — T = x| — Ty, k1 =1,...,20.

This theorem implies a useful corollary which will be given after the proof.
The proofs of ( . and of the statement for points z’ ,, are the same. For definite-
ness, we consider the case

n,k’

Lemma 5.2. For every finite sequence {a,}y", of positive numbers and for given 6 > 0,
there is a subsequence {ay, }i,, such that

27w, < a, foralp<p, l=1,..., K; (5.5)

K m
Zal’; cha;j, 2 >0, (5.6)
=1 p=1

where ¢ depends only on 0 and ».
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Proof. Let the maximal index px be the least integer for which

max 2*‘5(7”*”)% = 2*5(’”*”)%

1<p<m K

(the value of K will be determined by the construction in the sequel).
Suppose that indices px, px_1, - .., i1 are already defined, and px > pr_1 > -+ > pjaq >
1. Then p; is the least integer satisfying the relation

max 275(pl+17p)ap —_ 2*5(Pl+1*pl)apl.
1<p<pi+1

This equality implies that
270y < a,, 1< p< g (5.7)

In particular, we get (5.5). Clearly, p; = 1. Using (5.7)) for p € [p, pry1) with pgyq :=m+1,
we get the following estimate:

m K pi+1—1 K piy1—1 0o K
SRS 90 SRS b SERLCAVES wEt) o
p=1 =1 p=p =1 p=p =0 =1
which yields (5.6]). O

We use Lemma with a, = 0,, § = 1/2, s = 2, in order to extract the future subse-
quence from {©,}7%, (the numbers ©, are defined by (4.8))).
By Lemma [5.2] there exists the set P of indices such that

270599, <@, forall q<p, pcP; (5.8)
derze> ey (5.9)
pEP q=1

where ¢ is an absolute constant. Set K = #P.
Each cube E, 1, k =1,...,2% can be represented in the form

Eop=KuxZT, u=1,...2@¢0" =127

where IC,, is the projection of £, ; onto the hyperplane t; = 0, and Z, is the projection of

B, onto the t;-axis. For u fixed, we associate the vector e") = (egv), o ,e,(f)) with each
cube B, = K, x Z, in the following way. The choice of an interval Z, can be viewed as a
result of n subsequent choices (steps): starting from the interval [—T¢y, TV;], at j-th step,
Jj =1, we choose the left or the right of two equal subintervals of length ¢; in the preceding
interval. We set eg-v) = —1, if we choose the left subinterval at j-th step, and ey)) =1 in the
opposite case. Thus, we get the one-to-one correspondence between the cubes E,, , = K, X Z,

with fixed u, and vectors e(®).

Lemma 5.3. Let T > Ty, o < ap(d,s,T), and let the cubes E, , = K, x Z,,, i = 1,2, be
such that

(v1) _ (v2) _
5, =L e~ =1 forsome peP,
65}11) - 65'1]2)7 J # Jp-

e
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Suppose that a measure v satisfies the conditions of Theorem[5.1. Then

Co 2_djp

TG,

Ry, (Tnpy) = B, (T p,) > (5.10)

where RS, () is the first component of a vector R:(x), and the constants Ty, ¢y depend only
ond,s.

Proof. In order to simplify notation, we set x,, x, = a, Tpr, = b (see the figure in Section 1,
where a possible location of a, b is indicated). As before, we denote by E(x), Q(x) the
corresponding cubes containing x. Obviously,

[ na = [ ). b-a=@r -1,

B, @) [y — al**! B, ) [y — b

Hence,

s s . y—a y— b
Ry (a) — R, (b) = /E (|y — g+t o Y — b|5+1) dv(y)
y—a y—b
) Ty —ap / vy
/Qp(a)\Ejp ly — a5 (y) — Qn(a)\E;, (b) |y — b|st1 ()
y—a y—>b
- d
: Z /Jq 1(@)\Qq(a) (’Z/ — alstt ly — b|5+1) v(y)

y—a y—>b
+ / < — )dV(y):ill—Ig—l—El—l—Eg
Z Qu-1(@\E;,_, (a) |y _ a|s+1 \y _ b‘erl

(for p =1 the last sums are absent). If T"is greater than certain Ty = Ty(d, s) then

2¢o 2~ 2¢9

{the first component of the vector (I; — I5)} > T = FG)p, co =co(d,s). (5.11)
r
We claim that
p 2fdjq_1 . . 1
gjp gs—&—l (]q _Jq—l) < Ca@p7 pE 7)7 0<a< 5; (512)
q=2 Jq—1

where C' is an absolute constant. Indeed, by (/5.8]) the the left hand side of (5.12) does not

exceed
20:5(p—a) .
05,Op Z ) (Jg = Jq—1)-
q=2 Jg—1
The inequality ((1.4) yields the estimate
b, >a —(p=q+1)9jp—is— ;)
1 2

Continuing the estimation, we get -

p
o, Z 205(p=0) op=a+19=Ur=da=1) (j — j. 1) < Ca®,.
q=2
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Since |y — a| < 2|y — b| in the integrals from ¥; and ¥y, we have

y—b b —qf T,
| S O e <2 G

Thus,
54| < CTY Z/ L ), =)

Jq 1(a)\Qq |y B a|s+1

As in the proof of Lemma [4.I we majorize the last integrals by the integrals over the
measures uniformly distributed on Ej,_, (a) with densities 2~ %1/ E?q_l. We get

P 9=dig-1  flisa -1
’21’ < C(d, S)ngp Z Ed—/ dt. (514)

—2 Ja1 2—(]'q—]'q71—1)€jq71 t5+1
We consider three cases.
Case 1. s <d— 1. Then
p dj
2, ED
1| < C(d, )Tl > —— T (g C'(d,s)Ta®, < 2T -0,
q=2 Jq—1
for o < ¢2[2C"(d, s)TS“]_l, Where co is the constant in ([5.11]).
Case 2. s =d — 1. By (5.14)) and (5.12)) we have
2~ da—1 E12)
21| < CT¢y, Z g (Jg = Jg-1— 1) &2 C"Ta®, < %@p, C" = C"(d, s),
q=2 Jg-1
if @ < 207571
Case 3. s > d — 1. Again by -,
2” s ( d+1)(jq_jq71 1) 1
|21| < CTEJP Z 5~ d+1
q= 2 ]q 1 Jq—1
(i) p Q—dJPQd(jp—jqfl)a(s"‘l)(P—Q"" ) S
. (s—d+1)(jg—dq—1—1)
< Cngp z; €;+12(8+1)(jp_jq—1) 2 e Jq
q= P
P Cy Cy
s+1 s—d+1)(jg—7 s+1
< C/TO{ @pZQ( )(a=ip) < 2Ts@p, « < W
q=2
As concerns ¥, we have
2—djg—1 G.12)
15| < CT, Z — 2 e, a<cdds).
q= 2 jq 1) 2T
The estimates for 3, ¥y and (| - yield (5.10)). O

The next lemma is a particular case of Lemma 7.3 in [7].

Lemma 5.4. Let \;, i = 1,..., K, be positive numbers. Let (;, i1 =1,..., K, be independent
random variables satisfying

K K
Gl <N, D Var(G) > e ) A (5.15)
=1

i=1
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Then there ezists § = B(C,c) > 0 such that

P{ :1 : 26<§;A?)1/2} > 8. (5.16)

We need the following Lemma 10.2 in [6].

Lemma 5.5. Let positive numbers X\;, i = 1,...,K, be given. For each vector f") =
(fl(r), . fl(;)), r=1,...,25 with components equal to plus or minus ones we set

K
SE) =3 F0A
i=1
Let A be a set of different vectors £) such that A C {f) : S(f")) < 0}. Then there exists
a set BC {f0 : S(f")) > 0} with the following properties:
1) all the vectors in B are distinct;
2) #A < #B;
3) each vector f' € B can be obtained from some vector £ € A by replacing some negative
components of £ (depending on ') by positive components while keeping all the positive
components of £. (Different vectors f' can be obtained from the same f.)

Proof of Theorem[5.1, Set \; = ©,., pi € P, p1 < pa < --- < pg, 02 = Yoo A2 Fix an
integer u and the components eg.v), j & P of vectors el = (egv), . ,eff)). Let F be the
set of cubes B, = K, x Z, with fixed parameters indicated above Clearly, F consists
of 2% elements depending only on the choice of the components e ) with j € P. We can

consider this sampling as a choice of a vector f"). We introduce the following subsets of F
(or equivalently, the subsets of vectors f(")):

Q1 = {En,k e F: |Riy($n7k)| >

— 00},
6 }7

4T5

Qo ={Enx € F: |R],(zns)| < 4T5
Qs = {Enx € F: S(f") < —po},
Qi ={E,, € F:S(f") > —Bol,

where [ is the constant in Lemma with ¢ = C' =1, and ¢y is the constant in ([5.10)).

We shall consider the choice of a vector £, r = 1,...,2% as a random event with the
same probability 27 for all vectors. This defines a random variable = with values S(f(").
Obviously, we can interpret = as the sum of independent random variables (;, 1 =1,..., K,
taking the values A\; and —\; with probability 1/2.

We now use Lemma In our case, Var(¢;) = A\?, ¢ = C' = 1. Since distribution of Z is
symmetric, yields the inequality

P{

(1]

< —fo} >

MITI:

Hence,

#Qs > 28 (5.17)
Consider now the set A := Q, N Q3. By A we denote also the set of the corresponding
vectors f). If A = &, then #A = 0, and we immediately arrive at the estimates (5.18)
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below. Assume that A # @, and let B be the set of vectors corresponding to the set A by
Lemma [5.5] Consider an arbitrary vector £ € B. It can be obtained from some f € A by
the replacement of some negative components of f by positive ones. Let J be the set of
indices of the replaced components of f. Let £ = ) f/ = £®  and let E, iy Enm be the
cubes associated with f and f® correspondingly. Since S(f®)) > 0, it follows that

Bo < S(EW) = S(ET) =23 "\,
ieJ
On the other hand, applying Lemma #J times (successively for each component in J)
we get

. Co Co
Rly(xn,k> - R1V<.Tn7m) > ﬁ Z )\z - ﬁ/ﬁ(j’
€T
so that Ca
|Riu(xn,m)‘ > ’Rigu(xn,k) - Riu(xn,m” - |Riu(xn,k)’ > AT fo.

Hence B C Q;. Moreover, B C Qy, since S(f() > 0 for f) € B. Bearing in mind that
#A < #B, we obtain

#(Q2N Q) = #A < #B < #(Q1 N Qu).

Thus, for every set F (that is, for each u and for each collection of components ey}), j¢P),
we have

#O1 = #(Q1 N Q3) + #(Q1 N Qy)
: (5.18)
> #(Q1NQ3) +#(Q2N Q3) = #9Qs3 gkt

Since there exist 21" values of u, and 2" collection of components eg-v) with j & P, it
follows that

Co 5 d
E,.:|Rj — =24,
#{ n,k ’Rllj(mn7k)| > 4T3 /80} > 2

It remains to note that
m

.
’=) 0, > cy 0> ) 6
q:l ]:1

q
peEP

Theorem [5.1]is proved. O

Using Theorem we show that for the class of measures v satisfying the assumptions of
this theorem, the Riesz transform R?(x) is large on a “big” portion of E,,.

Corollary 5.6. Let an integer d > 1 and s > 0 be given. There are constants o € (0, %),
T € (1, i), csg > 0, depending only on d, s, and such that for any positive numbers oy, ..., 0,
20541 <05, 1 <j<n—1, and for the corresponding Cantor set E,,

—dj

n 1/2 9
Hd{x € E,: R ()| > e {Zef} } > %Hd(En) - %Wg, b= (5.19)
Jj=1 J

Here H? is d-dimensional Hausdorff measure, and v is a measure satisfying the conditions
of Theorem such that RS (x) exists (in the sense of principal values) H-a. e. on E,,.

Remark. For s < d the condition about existence of R?(x) holds for any Borel measure on
E,,. Generally speaking, it is not correct for s > d.
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Proof. Set T =Ty+ 1, c3 = ¢(2T%) ™!, where ¢q and T are the constants from Theorem .
Choose a sufficiently small o which will be specified later, and consider the corresponding
Cantor set E,. Let vy be the point measure with charges equal to 279" and located at the
centers x, j of the cubes E,, ;. We claim that

) . 1/2
R)(z) — R) (z)] < N 02| , x€E, 5.20
0 s J

if o is small enough. Indeed, let 2/, 2" be any two points lying in the same cube E,, j (that
is, E,(2") = E,(2") = E, ). In the same way as (5.13) we obtain the inequality

ci,
— |y _ .fl?l‘erl ’

Let j € [1,n — 1], and let p € [1,m — 1] be such that j, < j < j,41. By (1.4) we get

y — x! y — 2"
\y — x/’erl B ]y — x//‘erl

C = C(s). (5.21)

< am—pz—(jm—jp)gj — am—pQ—(jm—jp)Qj—jpgj
n = p
= O/ﬂ*pg*(jmfj)gj < ag*(n*j)gj

(we recall that j,, = n). We use (5.21) with € E, ; instead of y, and with 2’ =y € E,;,
" =%, © # k. Then
Tni— T

R® < _
LOEEEDY / T e

dv(y dv(y)
< CY, / <C', / —_—
En\En(z) |3/ - 3’7|$Jrl Z st

Ui<ly—x|<lj_1 ’y - I’

(5.22)

dv(y)

1, (5.23)
9—dj
< 1 < 4 . _n
oS s ()-8
Jj=
5.22 o 0.5 99 < Ca 52 1/2 . " 52 1/2
a1<I§1<§ir€{1 Z < Z — AT 21 ] 7
]:
if @ < o[4C"T*]7Y, C” = C"(d, s). Clearly, a depends only on d and s.
The inequality ((5.21)) and the same arguments as in ([5.23]) yield the estimate
/2
s s 2 /i
|R3(x") — R3( < 17 {29 } , a2’ e By (5.24)

Let £ = £(1) be the set defined by (5.2) for the measure vy. Fix some cube B, € &,
and set

Loa(x) == / I du(z) = Ri(x) — Ri(z), € By
E’ﬂx

Ly — x5t

(we consider only the points x for which R} (z) exists). Let E, g+ be the cube symmetric to
E, . with respect to the center zy of the cube Ey. Choose x € E,,\, and let 2* € E, 1~ be
such that © — 2" =z, — x,k+. Clearly, I, x(z) = I, j+(2*). Moreover,

Rio (ang) = _Ri() ($n7k* )
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by the symmetry of the measure 1y with respect to xo. Hence, for at least one couple of

vectors I, (2), Ry (Tng), or Ik (%), R (Tna-), the angle between these vectors is less or
equal to /2. So, for the sets

8n7k = {l’ € En,k . ’[n,k(x) + R
gan* = {ZB € En,k* : |[n,l~c* (27) +

5o (i) > [R5 ()}
Ry (xn,k’*) > |Ri0(xn,k*)

vo

}

we have
’Hd(c‘fn,k) + ’Hd(é’n,k*) > KZ.
For x € &, we get
R (2)] = [Ln(x) + Ry ()]
= [Ink(2) + B (Tnp) + By (@) — B (Tnp) + R (2) — Ry ()]

n 1/2
DS s S DS DS &
o S )] = V) = By aa)] = 1BE0) = Rl > 5 [5002]
j=1
Analogous estimates hold for z* € &, . Hence,
co n 1/2
d | ps 2 d d d

for every B, € €. Since #€ > ¢,29 (see (5.3)), we get (5.19) with c5 = co[27°] " O

The inequality (2.6)) is a particular case of Corollary . Indeed, note that u = pHg, ,
where p = 279(~4. Multiplying both parts of (5.19)) by p, we get (2.6

6. THE CAPACITY 7, OF CANTOR SETS: PROOF OF THEOREM [2.3]

As we mentioned in Section 2, our arguments are similar to those in [10] (which in turn
use the ideas in [11]). On the other hand, there are certain differences as well. For instance,
in [10] the harmonicity of the Riesz transform (outside the support) was used in an essential
way. Since s is not necessarily equal to d — 1, we cannot use harmonicity, and we cannot
work with the measure supported on the boundaries of certain cubes, our measure will be
supported also on the interior of these cubes. Moreover, and this is more essential, [10]
uses a certain regularity of their Cantor sets. We have another type of Cantor sets, lacking
this regularity (namely, not all our cubes Ej; are separated enough). This creates specific
difficulties. There is a number of other differences (for example, we do not use Cotlar’s
inequality). Also, Mateu and Tolsa [10], while claiming the result for all s € (0,d) (and for
their Cantor sets), give the proof only for s = d — 1. This is why we wish to present a full
proof, even though it follows the idea of [10].

We need the following characterization of 75 4 obtained in [17], Chapter 5:

Yo+ () = sup{|lnl| : n € B, suppn C B, R <1}, 0<s<d (6.1)
(see (2.1]) for definition of 3). Following [10], we introduce the capacity
Ve (By) =sup{r:0<7 <1, |R] | <1}, (6.2)
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where p is the probability measure defined in Section 1. Using (2.5 and - we have
/2 —dj
2~ dp

2
1R, = TR ~ 7 [Z ef} ~ T {Z @i] Oy ="
j=1 p=1 Jp

Hence,
—1/2

~ {Z eg] . [i @g] , (63)

where the constants of comparison depend only on d and s. It is easy to see that the measure
n = C[Z?Zl 9]2-}_1/2;1 with ¢ = ¢(d, s) belongs to X,. Now the relation (6.1)) and the upper
bound in (2.5 imply the estimate

n —-1/2
B> e[ ] = otiB) e=ctas)

j=1
Thus, it is sufficient to prove that
’75,+(En) < CO'YZJr(En)? Co = OO(d7 3)' (64)

Let v be a positive Radon measure supported on a compact set E in RY, for which
|2, (2) || poomay < 1. Tt is shown in [9], p. 217, that the last inequality implies the estimate

v(B(z,r)) < Cr®, zeRY r>0. (6.5)

The arguments in this part of the proof of Lemma 4.1 in [9] are valid not only for 0 < s < 1,
but for 0 < s < d as well (the reference [P], Lemma 11 in [9] should be replaced by [P],
Lemma 3.1). For s = d — 1, this fact is also noted in [17], p. 46. Hence, v(E) < CH*(E).
By the definition of 75, (see Section 2) we have

Yo (B) < CH(E), C = C(d,s), for any compact set £ C R%. (6.6)

(The inequality (6.6) also follows from [13, Lemma 3.2].)
We will prove (6.4) by induction on n. The induction hypothesis is

Vo4 (Eq) < 0075+(Eq)7 1 <q<n, (6.7)
where the constant Cy = Cy(d, s) will be specified later. Let
Spk=07+63+ - +07, 1<k<m.

Suppose that 15, < Si. Then by (6.3) we get 7., (E,) > cf;. This inequality together with
yield the estimate

%,+(E ) < Vs (B1) SO0 <Oy (By), C'=C'(d,s).
In particular, we get (6.4]) for n = 1, if ¢ < Cy. Moreover, we can assume without loss of

generality that %Sm > 51. Hence, there exists K, 1 < K < m, such that

1
SK < §Sm < SK+1. (68)

We consider two cases.
Case 1. For some constant Ay = Ay(d, s) to be determined below,

757+(EJ'K+1*1J€ NnE ) > AO 1= 1)’7 +(E ), k= 1,... ,Zd(jK“*U.
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The set Ej, 1% N E, is constructed exactly in the same way as E,, starting with o;, ., =
0 instead of oy = ¢1, and with ¢ =n — jx41 + 1 instead of n. Hence,

JK+1
. 6.7) .
i (En) < Ag'2toxa s (g E) & astiea o (B A E,)

6.3 . m 9—d(jp—ir+1+1)\ 2 -1/2 m —1/2
o Aolcoczd%ll){ 3 (5—) ] :Aolcoc[ 3 eg]

p=K+1 Jp p=K+1
:A*lcOC[S — Sk]TY? < V2A;1C,CS

A 1000/’)/5 +( n) < 007§+(En)’

if Ay > C' = C’(d, s). We get (6.4)).
Case 2. For the constant Ay determined above,

Vor (Bjerr—1k N Ey) < A2~ Ura=by  (B)), k=1,...,200x0"0, (6.9)

As in [10], we again distinguish two cases, namely 0%, > Sk and 0%, < Sk. If O, >
Sk, then

and we have

- . .
73,+(En) < 78,+(EjK+1) CH ( ]K+1) < C2Y g

JK+1
_C _VIO@N @
Oxt1 S;(/—?-l Sw?

Thus, ) holds if Cy = Cy(d, s) is sufficiently big.
Suppose now that ©%,, < Sk. Then

COVZ—F(En)

1 (6.8)
§Sm Q SK+1 < QSK < 2Sm (610)
We consider the measure
_ Vs, (En) d’ _ Vs, (En) d}
’Hd(EjK) Bk 2djx E;lK Big'

Clearly, ||n]| = s+ (En). We will show that |97 < C(d, s). Assuming this fact for a moment,
we get

(G N .
%+( ) = Il < Ot (B < OS2 P a2 ' one (),

and ((6.4)) follows.

To prove that [93;] is bounded, we will use the local T'(b) theorem of Christ [4]. According
to the Main Theorem 10 in [4], p. 605, it is enough to prove that 7 satisfies the following
conditions:

(i) n(B(z,r)) < Cr®, x € Ej,., 7> 0;
(ii) n(B(x,2r)) < Cn(B(x,r), @ € By, 7> 0
(iii) for each ball B Centered at a point in Ej,, there exists a function bg in L>(n),

supported on B, such that [bp| < C and R} bp| < C n-almost everywhere on Ej, , and
n(B) < C| [bpdnl.
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First we verify condition (i). Let B = B(x,r) be a ball centered at z € Ej,. If r < (.,
we have

77(B) < O(d)757+(En> rd < C«(d>78,+(EjK) rd

v, " = ety
. 6.11)

@) 29K s / (

g C/ JK d __ C Td_sT’S < C/TS.

o=
dik pd d—s
24K 05 05

Suppose that r > ;.. Let j < jg be the least integer for which ¢; < r. Then B may
intersect at most C' = C(d) cubes E;;. Hence,

- C’ys;‘r(En) < C’Ys,-i—(Ej)

n(B) < Cn(Ejx) =

(6-6)
S ! ps !..8
2w S T oug < s <O,

Using the same kind of ideas, it is not difficult to verify condition (ii) as well.
Thus, we only need to check the hypothesis (iii). Again, let a ball B = B(a’,r) centered
at 2’ € I, be given. If r < 2\/8@1(, we set bp = xp. Then

1 Vs +(En) 104
R b < = d
% a(e) < [ o e )

E. 2\/35]' 1
< —72;;{ eéK) / © L g, O s C(d, s).
jx /0

s — d—s IK
" EjK

Suppose that r > 2\/3@-]{. Let jp be the least integer for which there is a cube of
generation jp (i.e. the cube of Ej,) contained in 3 B. Clearly, jp < jx (since B is centered
at «’ € Ej,). We will construct the function bp supported on B. By definition of the capacity
s+, there is the positive Radon measure v supported on E, such that ||R} ()| pe®aey < 1
and v(E,) > 1v, . (E,). Hence, there is the cube Ej, j, for which

S7(Eju ) (612

We need the localization lemma in [9]. Let @ = Q(w, ) be any cube (see for the
notation Q(w,¢)). Let ¢ be an infinitely differentiable function supported on 2@} and such
that [|0%pg || eora) < C(s)07M, 0 < k| < d, 0 < po(y) <1, po(y) = 1on Q. By Lemma 3.1
in [9], p. 207,

. 1 ;
V(Bjp k) > 279 0(Bp) > 527977, 4 (E) =

1Rl Loay < €, C =C(d, s). (6.13)

To simplify notation, set ¢® = pq for Q = Ej, . At first we define by when E;, ;, C 3 B.
In this case, supp p? C 2E;, » C B. We set

B

OV (B i
bola) =bypute) = S LR ) (6.14)
i:EjK,iCQEjB,k 17 JEK

If B r %B, we choose any cube F;, ; C %B, and define bp by translation of b;, i, namely
b () = bjp k(T + Tjpk — Tjp i)
(we recall that z;; is the center of Ej;;). Clearly,
1

[va@yn = (B0 S Sa(Es0) > en()
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(the last inequality follows from the fact that there are at most A = A(d) cubes of jp-th
generation in B).

To prove that bp is bounded, we apply (6.13)) to a cube @ = Qr41; = Q(wk+1,1, 2T, ,)
(see Section 1 for notations). By (1.6]), the cubes Q k1, are separated. Hence, pov = v|Q =

V[(Ejx 1-14 0 Ey), and by (6.13) we have |1} oo @ay < C. Thus,

g 11,10 En

V(Ejp 10N Ey) < C%+( 110 NV En)
< CAR Ve (E,) = CAg2 40ka D ||

Since Ej, ; consists of 24Ux+1=3x=1) cubes E;

ixs1—1,0, We get the estimate

V(Ej i) < CAG2r+1—ix=1) 9=dlk+1=1) |

= 2795 |n|| = C'n(Bypq), i=1,...,29%, (6:15)
Now implies that
0<bg(zx)<C, zcR? C=0C(ds). (6.16)
To complete the proof we only need to check that
R, be(z)| < C n-a. e on Ej. (6.17)
By translation invariance, it is sufficient to consider the case bp(x) = b;, k(). The same

estimates as in (6.11)) yield the inequality n(B(z,t)) < C’Ej;dtd, t > 0. Integrating by parts,
for every a € (0,4v/dl;,. ) we get

Y {-16) Wty
S| = c [ L dnB)
0

‘/a<|m yl<avde;, \55 — ¥
_ C<U(B(513i7/§ZfoZK)) L /OLW]K % dt) = C'(d, ).

Thus, it is enough to prove for ¢ > 4v/dl;,. and r > 2V/dl;, .

Set (&) = g for Q = Q(:z;,g/\/a). Then supp p®) C B(x,¢). As before, let o = o, for
Q = Ej, . Applying to the measure v with pg = ¢, and then to the measure p5v
instead of v and with ¢g = ¢ we obtain

Let
C={UEj;: EjiN2E;, 1 # 9, Ej.i CR\ B(z,e)}.

Suppose that y € (supp p®(1 — p&))\ C. Then y € E,,,; for which E;, ;N (B(x,¢) \
Q(x,e/V/d)) # @. Hence,

—Eng\y—x\§€+\/3€jK<5a

e _ &
4d o 2vVd
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Therefore,
r—Yy B (e)
g A" (L= ))(y)
‘ /(suppw (1—pE)\C |z =yl
C (6-3]
<SP Bl52) D 0t s).
This estimate and (/6.18)) imply the inequality
1R 50— pemcllie®sy = 1R clleme < O, C=C(d, s). (6.19)
In the same way we will show that
r—y
bs(y) dn(y)‘ < C. (6.20)
‘ /|y z|>e}\C ‘Qf - y‘erl

Indeed, ¢ (y) = 0 for |y — x| > ¢, and hence

(supp bp \ B(z,¢)) \ C C (Suppso (1= \C.

The same arguments as above together with ( and the property (i) of n imply (6.20 -
It remains to establish the inequality

/ P b / oy )

Then will follow from (6.19)) and (§ -

For every cube Ej, ; C C we have

/E %bfs(y)dn(y)—/lﬂ ﬁd(%”)(y)‘

JK % JK

D[ OB [ I )

ki 1T T y|8+1 77( jKﬂ') K 5
_ / ( r—y T T ) (QDBIJ)(E]‘KO d??(y)
B NT =yt e =t ) (B )

JK i
r—y T— Ty ) d (©13) (0BV)(Ejy i)

- - epv)(y)| < Ol ———2%.
N (rm e P ( A rE—

TR

Hence, the left-hand side of ([6.21] - ) does not exceed

(QPBV)( Kt 1 o dt
Clie Y Rrer :S+l <C@K/ t+2 < C@K/ 7 <C(ds),
iiEsz €

since £ > {;,.. Theorem [2.3]is proved.

< C for n-a.e. v € R% (6.21)

7. APPLICATIONS

We start with the extension of Theorem [2.3| to infinite sequences {o;}. Let oy, 09,... be
positive numbers such that

20j+1 <o;, j=12,... (7.1)

and let numbers a € (0,3), T € (1, 5-) be given. We deﬁne the set J = {ji1, jo,... } and the
“regularized” sequence {E } in the same way as in Section 1 for j < n. Namely, set j; = 1. If
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jp € J, then j, 1 is the least j > j, for which o; < a270=#)g; . Possibly, o; > a27U=)g;
for all j > j,. In this case the sequence J is finite: J = {j1,...,Jm}, m > 1. Clearly,

J is infinite if and only if lim 270, = 0. (7.2)

j—o0

Furthermore, we set
G =2V, G, < <jp, p=12,...
If J is finite, then p = 1, ..., m with j,,+1 := 0co. The Cantor set E is defined by the relation
E=()E,
in€d
where the sets E; are defined in Section 1. In particular, if J is finite then £ = E .
Theorem 7.1. Let d > 1, s € (0,d), and let a sequence {o;}7° satisfies . Then

(S w2 "3

j=1 j j=1 J

where the positive constants ¢, C' and the parameters o, T of the Cantor set E depend only
on d and s.

Proof. Suppose that J is finite. Then
00 27dj 2 00 2fdj 2 1 Q*djm 2 00 ) o
_ —2(d—s)(j—jm)
S ) <X ) —mr) X |
J=jm+1 J J=jm+1 Jm Jm J=jm+1

Now ([7.3)) follows from (2.7) with n = j,,.

Assume that J is infinite. Since

&7 Jp 9—dj\ 271/2
75,+(E) §78,+(Ejp) < C|:Z( s ) :| , p=L2,..

g;

Jj=1

we get the estimate from above. We also get (7.3) (that is v, (E) = 0) if the series in
(7.3) diverges. Thus, we may assume that this series converges. The definition of v, ; and
Theorem imply the existence of measures v, p=1,2,..., such that

I o-diy 271/
suppvy = B Il [SS(5) | I e <1

j=1 J

We may extract a weakly convergent subsequence {v,,}. Denote by v the weak limit of this
subsequence as ¢ — o0o. Clearly,

oo 9—dj 29-1/2
supprv = I, [lv] ~ [Z( r ) ] :

j=1 J

For any = € R? \ supp v,, we have |R; (z)| <1 (otherwise ||} ||Loc(®ay > 1 by continuity of
R (x) on R?\ supp v,). Hence,

|[R)(2)] = lim R ()] <1, = €R"\suppr.
p—00

By (7.2), HY(E) = 0. Hence, ||R}||f~ras) < 1, and Theorem [7.1]is proved. O
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In [7] we obtained estimates for the Hausdorff content of the set where the Riesz transform
R (x) is large. We also obtained certain relations between Hausdorff content and the capacity
Vs,+- We are going to show that these estimates are attained on the Cantor sets defined above.
The possibility of considering arbitrary sequences {o;} satisfying enables us to prove
the corresponding assertions for any gauge function h (with the natural assumption that %
is nonincreasing — see the explanation below) without any additional conditions.

By a gauge (or measure) function, we shall understand any continuous strictly increasing
function h : [0, +00) — [0, +00) such that A(0) = 0 and lim,_, ;o h(r) = +oc.

The Hausdorff content My, (G) of a set G C R? is defined by

My (G) = ianh(rj),

where the infimum is taken over all (at most countable) coverings of G by balls of radii ;.
Later on we assume that % is nonincreasing. This condition, which may seem to be a
regularity condition at the first glance, is actually not a restriction at all. It was proved
in [1], p. 133, Proposition 5.18, that for any measure function h either M,(G) = 0 for all
G C RY, or there is another measure function h* such that hr—(dr) is nonincreasing and for
which Hausdorff contents M) and M« coincide up to a constant factor depending only on
the dimension d.

For P > 0, set

Z(v, P) = {z € R?: R¥(x) exists and |R:(x)| > P},
Z*(v,P) ={z € R*: R} (z) > P}.

Clearly, Z(v, P) C Z*(v, P). Let h be a measure function, N > 2, and let h~! be inverse to
h. For a measure v consisting of N point charges, we have obtained the inequality

/hl(M) (h(t)>2dt 1/2

h-10.1M/N) \ T° t 7

where M = M,(Z*(v, P)). This implicit estimate can be written in a simpler form using a
certain auxiliary function (see [7] for details).

MSC(S,d)@

Proposition 7.2. For every n > 0 and N > Ny(d, s), one can find a measure v which is a

linear combination of N Dirac point masses, and such that ||v|| =n, and
5 /2
oD\ 2]
M > od, s) 120 / RO e oot > 1, (7.4)

for any M > M,(Z(v, P)).

In [7, Section 7] a certain family of random sets and measures was introduced. It was
proved that this family contains (random) measures v with the properties indicated in Propo-
sition Thus, the existence of a measure with the desired properties was established, but
the concrete measure was not presented. Below we give a non-probabilistic construction of
such a measure.
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Proof of Proposition[7.3. Without loss of generality we may assume that N = 2. Tt is
sufficient to prove our assertion for n = 1. For given N, P, we introduce the function

RN ) ) T
h()

Clearly, »(c) — 0 as 0 — oo (we recall that h(co) = oo, and a, — 00). Since =z is
nonincreasing,
h(t t2\
( 2) < (—2> , 0<ty <ts. (75)

h(tl) - tl

In particular, (¢/a,)? > N. Hence, »(c) — oo as 0 — 0. Thus, there exists oy > 0 such
that

o ()] e i [ () 4] <cnommn o

where the constant Cy > 1, depending only on d and s, will be specified later.
Define o; by the equalities

h(o;) =2 %h(og), j=1,...,n. (7.7)

By (7.5), 2041 <0, j=0,...,n—1. Let E,, be the Cantor set from Corollary , and let
v be the probability measure consisting of N = 2"¢ equal point masses 27"¢ located at the
centers of the cubes E, x, k=1,...,2". We will prove that (5.19)) implies (7.4). Indeed,

2(7) Crrn () ~mrn [ (W) 1

=1 (7.8)
1 /"0 h(t)\*dt @8 P?
— _— > — ,
h(00)2 . ts t C%
if Cy is big enough; here c3 is the constant from ((5.19)), and a,, = op.
Define the measure 1, by the equality
h(oo) 4
Fix a ball B(x,t) C R% Suppose that t < £,. Then
h(o D h(l, h(t
Un(B(z,t)) < C(d) Qan;d) < %t‘i < t_d)td = C'h(t).

Let t > ¢, and let j be such that ¢; <t < ¢;_; (if t > ¢;, the upper bound is absent). Then
B(z,t) intersects at most A(d) cubes Ej; of j-th generation, that is at most A(d)24"=9)
cubes E,, ;. Therefore

h(O'()) (7.7

Un(B(z,t)) < A(d) HAE,) 24 =) pd — A(d)h(00)2~% < Ch(t). (7.10)
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Hence, M, (G) > c(d, s)1,(G) for every set G in R?. We have
Mn(Z(v, P)) = cbn(Z(v, P))
19)

n 1/2
CQ,Dn{x € E,:|R(x)] >cs {Z@?} } 52 ch(oy).
j=1

Thus, for any M > M,,(Z(v, P)) we have M > ch(ag). If M > h(op), then o := A1 (M) >
00, and (7.6)) implies ([7.4) with C' € [1, N). If ch(og) < M < h(op), then

>c
>

1/2
. % h(t)\ dt
MZch(ao) ¢ / ( ()>—
CaP | Jnrionymy \ 8/ 1
o 1/2
L c /" (M) (h(t))th /
- C4P h_l(c_lM/N) tS t ’
and we get (7.4) with C' = ¢! and Ny > C. O

Remark. One can see that the relation plays a crucial role in the proof of Proposition
[7.2] (as well as in the proof of the assertions below). Thus, additional assumptions on {o;}
imply certain conditions on h. For instance, the assumption 6;,; < 6; gives the unnatural
restriction h(cj41)/h(c;) < (0j41/0;). For h(t) = t°, this means that 8 > s.

Moreover, if we assume that (2 + d)oj1 < o5, & > 0, then h(cj41)/h(o;) = 27¢ >
(0j11/0)%¢, € > 0. Our assumption that h(¢)t~¢ is nonincreasing, does not provide us
with this property. Thus, we need additional conditions on h (for instance, the stronger
assumption that h(¢)t*~? is nonincreasing).

Our next results concern the problem on the comparison of the capacity v+ and Hausdorff
measure. It was proved in [7] (see Theorem 10.1) that for each compact set £ C RY,

Vs+(E) > cMy(E) [/Otz (h(t)>2ﬁ} _1/2, 0<s<d,

ts t
where ¢ depends only on d, s, and ¢, is defined by the equality h(t2) = M, (E). This relation
is sharp in the following sense.

Proposition 7.3. For any s,d with 0 < s < d, and for any measure function h, there is a
constant C, depending only on d, s, and a compact set E, such that M,(E) > 0, and

v (E) < CMh(E)[ /0 ” (@)2%] P here i) = My(E).  (7.11)

Proof. Fix some 0 > 0, and define the infinite sequence {;}32; by the equalities (7.7). Let
E be the Cantor set from Theorem [7.1l We claim that

ch(oo) < My(E) < Ch(ay). (7.12)

The upper bound is obvious. The lower bound for a finite set J was proved above. If J is
infinite, we consider the weak limit 1) of some weakly convergent subsequence of the sequence
{1;,} of the measures defined in (7.9)). Clearly, 1(B(z,t)) < Ch(t) for any ball B(z,t) (see
). Hence, M, (E) > cp(E) = ch(oy).
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Using the same estimates as in ((7.8)), we get

i(Qé) ~ h(;o)z / (ht(:)) % h<t12>2 / (ht(:)> %

J:
This relation together with ((7.3) imply (7.11]). O
For h(t) = t* we get the following assertion.

Corollary 7.4. Let 0 < s < d, h(t) =t?, 3> s. There is a compact set E C R? such that
Yot (B) < C (B =)' P[Mu(E)P,  C=C(d,s).
This statement is a supplement to Corollary 10.2 in [7]: for each compact set E C R?,
Ys+(E) > c(B — S2ML(E)*/?, where 0<s<d, h(t)=t° f>s,

and ¢ depends only on d and s.
We conclude with one more direct consequence of Proposition [7.3]

Corollary 7.5. Suppose that fo (
My(E) > 0, but v,4+(E) = 0.

5 ) 4t — 0. Then there exists a compact set E such that

This statement demonstrates the sharpness of the following implication (Corollary 10.2
in [7]): if M,(E) > 0 for a measure function h with |, ( )2‘” < 00, then v, +(E) > 0.

tS

t))th

e < oo with the corresponding

Remark. It is interesting to Compare the condition fo (

t
condition fo s ) dtt

measure and the classical Riesz capacity Cs(E). The latter is generated by potentials with
the positive kernel |z|~* (see [3], [6], Sections 1,2 and the references therein, and [1], p. 147

for a more general setting). Clearly, C(E) < v, 4(E). The exponent 2 in [, (h(t ) 2 reflects

tS
the difference between potentials with the signed kernel z|z|=*7!, and potentials with the
positive kernel |z|~*

The results obtained generalize and refine the corresponding statements in [6], where the
case d = 2, s = 1 was considered.
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