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SUBORDINATION BY ORTHOGONAL MARTINGALES IN

Lp AND ZEROS OF LAGUERRE POLYNOMIALS

ALEXANDER BORICHEV, PRABHU JANAKIRAMAN,
AND ALEXANDER VOLBERG

1. Introduction

In this paper we address the question of finding the best Lp-norm constant
for martingale transforms with one-sided orthogonality. Let O = (Ω,B, P )
be a probability space with filtration B generated by a two-dimensional

Brownian motion Bt. Let Xt =
∫ t
0 Hs · dBs and Yt =

∫ t
0 Ks · dBs be two

complex-valued martingales on this probability space, such that the qua-
dratic variation of Y runs slower than the quadratic variation of X, i.e.
d 〈Y 〉s ≤ d 〈X〉s, or equivalently

|Ks| =
√

|K1
s |2 + |K2

s |2 ≤
√

|H1
s |2 + |H2

s |2 = |Hs| ∀ s.

Y is said to be a martingale transform of X that is differentially subordinate
to X. If for 1 < p < ∞, we have E|Xt|p < ∞, then the Burkholder-Davis-
Gundy and Doob inequalities (see [RoWi]) imply that E|Yt|p < ∞ and
there exists a universal constant Cp such that ‖Yt‖p ≤ Cp‖X‖p. An evident
problem then is to find the best constant Cp.

D.L. Burkholder solves this problem entirely in a series of papers in the
1980’s, see in particular [Bu1] and [Bu3]. He shows that

Cp = p∗ − 1, p∗ = max{p, p

p− 1
}. (1.1)

His approach (followed in the present paper) is as follows (see [Bu1] section
5 for more general viewpoint). Consider the function V (x, y) = |y|p−Cp

p |x|p;
we wish to find Cp so that for martingales X and Y as above, we always have
EV (X,Y ) ≤ 0. Now find (if it exists) a majorant-function U(x, y) ≥ V (x, y)
such that U(0, 0) = 0 and U(X,Y ) is a supermartingale; such a function
must exist for the optimal Cp, see Section 2. This then implies

EV (X,Y ) ≤ EU(X,Y ) ≤ 0.

Burkholder shows that when Cp = p∗ − 1 such a majorant exists and equals

U(x, y) = p

(

1− 1

p∗

)p−1

(|y| − (p∗ − 1)|x|)(|x| + |y|)p−1, (1.2)

and he finds extremals to show that p∗ − 1 is in fact the best (least) pos-
sible constant. To show U(X,Y ) is a supermartingale requires that U is a
supersolution for a family of PDEs; in this case, it reduces to showing U is
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a certain biconcave function. Thus Burkholder translates the martingale Lp

problem to the calculus-of-variations setting and solves the corresponding
obstacle problem. In other work [Bu8], he also shows that this martingale
question and its answers are related to the special nature of the range space
of the martingales, and obtains specific geometric characterization of all
Banach spaces that have finite martingale-transform constant.

2. Burkholder, Bellman and Beurling-Ahlfors

One of the primary applications for Burkholder’s theorem has come in
Fourier analysis in estimating the Lp norm of the Beurling-Ahlfors transform
B, see [BaWa1], [NV1]. This self-adjoint singular-integral operator arises
naturally in quasi-conformal mapping theory and PDE, and the knowledge
of its Lp-norm, 1 < p < ∞, would imply important results in these areas. It
is a conjecture by Iwaniec [Iw] that the norm constant is ‖B‖p = p∗− 1, the
same constant as in Burkholder’s theorem for martingales. The first major
breakthrough in finding the connection between martingale estimates and
the Ahlfors–Beurling operator came in [BaWa1] where Bañuelos and Wang
show that if a function f ∈ Lp(R2) is extended harmonically as Uf (x, t) to
the upper half-space R3

+, then there exists martingale Xt = Uf (Bt) with
martingale transform Yt satisfying (essentially)

Xτ ≈ f(x), E[Yτ |Bτ = x] = Bf(x), 〈Y 〉 ≤ 16 〈X〉 .

Here Bt is 3-dimensional Brownian motion, τ its exit time from R3
+, and the

conditional expectation E[Yτ |Bτ = x] is the average value of Yτ over paths
that exit at x. This then implies (essentially)

‖Bf‖p = ‖E[Yτ |Bτ = x]‖p ≤ ‖Yτ‖p ≤ 4(p∗ − 1)‖Xτ ‖p ≤ 4(p∗ − 1)‖f‖p.

The first inequality is from Jensen and the second from Burkholder’s theo-
rem. Thus we have ‖B‖p ≤ 4(p∗ − 1).

In a series of papers starting in the late 1990’s, Nazarov, Treil, Volberg and
others ([NT], [NV1], [NTV8], [DV1], ...) show that the martingale/obstacle
problem dealt with by Burkholder fits within a general framework derived
from Stochastic control theory, which also works with other questions in har-
monic analysis. Here again, a special function B called the Bellman function
is found in relation to the problem, and it usually satisfies certain concavity
and boundedness conditions. Burkholder’s function is therefore an example
of a Bellman function. In fact, the Bellman-function theory establishes that
such a function B necessarily exists for the corresponding optimization prob-
lem, and the extremals fully require its concavity and boundedness proper-
ties. Using the Bellman-function approach, Nazarov and Volberg [NV1]
obtain the better estimate ‖B‖p ≤ 2(p∗ − 1). We describe how this is done.

Given f ∈ Lp and g ∈ Lp′ , and denoting their heat-extensions to the upper
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half-space by f and g again, we can show

∣

∣

∣

∣

∫

C

Bf · g
∣

∣

∣

∣

=

∣

∣

∣

∣

∣

2

∫

IR3
+

(∂x + ∂y)f(∂x + ∂y)gdxdydt

∣

∣

∣

∣

∣

≤ 2

∫

IR3
+

(|∂xf ||∂xg|+ |∂yf ||∂yg|+ |∂xf ||∂yg|+ |∂yf ||∂xg|)dxdydt

We wish to bound this integral above by c(p∗ − 1)‖f‖p‖g‖p′ . However we
don’t understand how to integrate terms like |∂xf ||∂xg|, so the idea to find
another function above it which can be integrated and whose integral has
the required upper bound. Now construct (let p > 2) the Bellman function
B defined on the domain

Dp = {0 < (ξ, η,X, Y ) ⊂ IR2 × IR2 × IR× IR: X > ‖ξ‖p, Y > ‖η‖q},

that satisfies (essentially)

(1) 0 ≤ B ≤ (p− 1)X1/pY 1/q

(2) −
〈

d2B · dξ, dη
〉

≥ 2|dξ||dη|
The actual construction (or proof of existence) of B involves taking supre-
mum of appropriate functions over certain families of martingales, similar
to how Burkholder formulates his function in [Bu1]. For more details on
Bellman-function construction, refer to [NTV8], [VaVo], [VaVo2].

Define b : IR2 × IR+ → IR+ by b(x, t) = B(f, g, |f |p, |g|p) where all input
functions are the heat extensions. Let v = (f, g, |f |p, |g|p). The boundedness
condition on B implies

4πR2b(0, R2) ≤ (p− 1)

(
∫

|f |pe
−|x|2

4R2

)1/p(∫

|g|pe
−|x|2

4R2

)1/q

→ (p− 1)‖f‖p‖g‖q.

Some clever analysis shows that 4πR2b(0, R2) is asymptotically (as R → ∞)
bounded below by

∫

(〈

−d2B∂xv, ∂xv
〉

+
〈

−d2B∂yv, ∂yv
〉)

.

This by the concavity condition on B is bounded below by
∫

IR3
+

(|∂xf ||∂xg|+ |∂yf ||∂yg|+ |∂xf ||∂yg|+ |∂yf ||∂xg|)dxdydt.

Thus we conclude for p ≥ 2,
∣

∣

∫

Bf · g
∣

∣ ≤ 2(p − 1)‖f‖p‖g‖q . The full result
follows for 1 < p < 2 by duality.

Following [NV1], Bañuelos and Méndez [BaMH] redo the work done in
[BaWa1] but this time with heat extensions and space-time Brownian motion
and also obtain ‖B‖p ≤ 2(p∗ − 1).
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3. Orthogonal martingales and the Beurling-Ahlfors

transform

A complex-valued martingale Y = Y1 + iY2 is said to be orthogonal if
the quadratic variations of the coordinate martingales are equal and their
mutual covariation is 0:

〈Y1〉 = 〈Y2〉 , 〈Y1, Y2〉 = 0.

In [BaJ1], Bañuelos and Janakiraman make the observation that the martin-
gale associated with the Beurling-Ahlfors transform is in fact an orthogonal
martingale. They show that Burkholder’s proof in [Bu3] naturally accom-
modates for this property and leads to an improvement in the estimate of
‖B‖p.
Theorem 3.1. (One-sided orthogonality as allowed in Burkholder’s proof)

(1) (Left-side orthogonality) Suppose 2 ≤ p < ∞. If Y is an orthogonal
martingale and X is any martingale such that 〈Y 〉 ≤ 〈X〉, then

‖Y ‖p ≤
√

p2 − p

2
‖X‖p. (3.1)

(2) (Right-side orthogonality) Suppose 1 < p < 2. If X is an orthogonal
martingale and Y is any martingale such that 〈Y 〉 ≤ 〈X〉, then

‖Y ‖p ≤
√

2

p2 − p
‖X‖p. (3.2)

It is not known whether these estimates are the best possible.

The result for right-side orthogonality is stated in [BJV] and not in [BaJ1].
It follows the same lines of proof as for left-side orthogonality. IfX and Y are
the martingales associated with f and Bf respectively, then Y is orthogonal,
〈Y 〉 ≤ 4 〈X〉 and hence by (1), we obtain

‖Bf‖p ≤
√

2(p2 − p)‖f‖p for p ≥ 2. (3.3)

By interpolating this estimate
√

2(p2 − p) with the known ‖B‖2 = 1, Bañuelos
and Janakiraman establish the present best estimate in publication:

‖B‖p ≤ 1.575(p∗ − 1). (3.4)

4. New Questions and Main Results

Since B is associated with left-side orthogonality and since we know
‖B‖p = ‖B‖p′ , two important questions are

(1) If 2 ≤ p < ∞, what is the best constant Cp in the left-side or-
thogonality problem: ‖Y ‖p ≤ Cp‖X‖p, where Y is orthogonal and
〈Y 〉 ≤ 〈X〉?

(2) Similarly, if 1 < p′ < 2, what is the best constant Cp′ in the left-side
orthogonality problem?
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We have separated the two questions since Burkholder’s proof (and his func-
tion) already gives a good answer when p ≥ 2. It may be (although we have
now some doubts about that) the best possible as well. However no esti-
mate (better than p−1) follows from analyzing Burkholder’s function when

1 < p′ < 2. Perhaps, we may hope, Cp′ <
√

p2−p
2 when 1 < p′ = p

p−1 < 2,

which would then imply a better estimate for ‖B‖p. This paper ’answers’
this hope in the negative by finding Cp′ ; see Theorem 4.1. We also ask and
answer the analogous question of right-side orthogonality when 2 < p < ∞.
In the spirit of Burkholder [Bu8], we believe these questions are of indepen-
dent interest in martingale theory and may have deeper connections with
other areas of mathematics.

Theorem 4.1. Let Y = (Y1, Y2) be an orthogonal martingale and X =
(X1,X2) be an arbitrary martingale.

(1) Let 1 < p′ ≤ 2. Suppose 〈Y 〉 ≤ 〈X〉. Then the least constant that
always works in the inequality ‖Y ‖p′ ≤ Cp′‖X‖p′ is

Cp′ =
1√
2

zp′

1− zp′
(4.1)

where zp′ is the least positive root in (0, 1) of the bounded Laguerre
function Lp′.

(2) Let 2 ≤ p < ∞. Suppose 〈X〉 ≤ 〈Y 〉. Then the least constant that
always works in the inequality ‖X‖p ≤ Cp‖Y ‖p is

Cp =
√
2
1− zp
zp

(4.2)

where zp is the least positive root in (0, 1) of the bounded Laguerre
function Lp.

The Laguerre function Lp solves the ODE

sL′′
p(s) + (1− s)L′

p(s) + pLp(s) = 0.

These functions are discussed further and their properties deduced in section
(6.2); see also [BJV], [C], [CL].

As mentioned earlier, (based however on numerical evidence) we believe

in general
√

p2−p
2 < Cp′ < p − 1 and that these theorems cannot imply

better estimates for ‖B‖p. However based again on numerical evidence, the
following conjecture is made.

Conjecture 1. For 1 < p′ = p
p−1 < 2, Cp′ = Cp, or equivalently,

1√
2

zp′

1− zp′
=

√
2
1− zp
zp

.

It is conjecture relating the roots of the Laguerre functions. Notice that
such a statement is not true with the constants from Theorem 3.1, and
√

2
p′2−p′

<
√

p2−p
2 for all p > 2. So this conjecture (if true) suggests some
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distinct implications for the two settings. Note on the other hand, that the
form of the two sets of constants are very analogous.

Before we embark on the proof of Theorem 4.1, let us mention that there
is also the question of both-side orthogonality: what is the best constant
when both X and Y are orthogonal martingales? This problem is solved by

the authors for 2 < p < ∞ in [BJV], and the answer is Cp =
1+sp
1−sp

<
√

p2−p
2

where sp is the largest root in [−1, 1] of the Legendre function F solving
(1− s2)F ′′ − 2sF ′ + pF = 0.

5. Proof of Theorem 4.1: Right-side Orthogonality, 2 < p < ∞
Let us begin with 2 < p < ∞ (and right-side orthogonality). X =

(X1,X2) will denote an arbitrary martingale and Y = (Y1, Y2) will denote
an orthogonal martingale: 〈Y1〉 = 〈Y2〉 and 〈Y1, Y2〉 = 0. In order to make
the formulas simpler and the computations easier, we will work initially with
the case

〈X〉 ≤ 〈Y1〉 =
1

2
〈Y 〉 (5.1)

With this condition, the constant corresponding to (4.2) is

1− zp
zp

.

Let Ṽ (x, y) = |x|p − cp|y|p. The objective is to find the best constant c for

which there exists a minimal majorant Ũ(x, y) ≥ Ṽ (x, y), Ũ(0, 0) ≤ 0, so

that for X and Y as above, the process Ũ(X,Y ) is a supermartingale. It

follows then that E[Ṽ (x, y)] ≤ E[Ũ (X,Y )] ≤ 0. This condition is equivalent

(by appealing to Itô’s formula) to requiring that Ũ has a negative quadratic
form, i.e.

2
∑

i,j=1

Ũxixj
d 〈Xi,Xj〉+∆yŨd 〈Y1〉+

2
∑

i,j=1

2Ũxiyjd 〈Xi, Yj〉 ≤ 0 (5.2)

As in the Legendre case [BJV], the function only depends on |x| and |y|,
hence

Ũ(x1, x2, y1, y2) = U

(

√

x21 + x22,
√

y21 + y22

)

= U(|x|, |y|). (5.3)

Let us introduce new vectors:

h1 :=
x1
|x|H1 +

x2
|x|H2 , h2 :=

x2
|x|H1 −

x1
|x|H2 (5.4)

k :=
y1
|y|K1 +

y2
|y|K2 . (5.5)

It is an easy but important remark that because of orthogonality of K1,K2

and the fact that ‖K1‖ = ‖K2‖ we have

‖k‖ = ‖K1‖ . (5.6)
6



Using direct calculations and the remark (5.6) the condition (5.2) on the
quadratic form of U becomes (for x, y > 0)

Uxx‖h1‖2 +
Ux

x
‖h2‖2 + 2Uxyh1 · k + (Uyy +

Uy

y
)‖k‖2 ≤ 0 (5.7)

for all vectors h1, h2 and k satisfying

‖h1‖2 + ‖h2‖2 ≤ ‖k‖2. (5.8)

We consider three cases:

Case 1): Uxx − Ux

x < 0 and β0 :=
|Uxy|

∣

∣

∣

∣

Uxx−
Ux
x

∣

∣

∣

∣

≤ 1. Let

β2 =
‖h1‖2 + ‖h2‖2

‖k‖2 . (5.9)

Then we write our expression (5.7) (for ‖k‖ > 0, which is the only inter-
esting case) as

‖k‖2(Uxx −
Ux

x
)

[(‖h1‖
‖k‖ − β0

)2

−
U2
xy + (β2 Ux

x + (Uyy +
Uy

y ))(Ux

x − Uxx)
(

Uxx − Ux

x

)2

]

.

We want the maximum of this expression, that is the minimum of the ex-
pression in brackets. For

β ∈ [β0, 1]

we can always satisfy β2 = ‖h1‖2+‖h2‖2

‖k‖2
, ‖h1‖

‖k‖ = β0 simultaneously. Putting
‖h1‖
‖k‖ = β0 we attain the minimum in the brackets. For

β ∈ (0, β0)

we should make ‖h1‖
‖k‖ as close to β0 as possible under the restriction β2 =

‖h1‖2+‖h2‖2

‖k‖2
. The best we can do is to put h2 = 0 to it, or equivalently to

(5.7).
Conclusion: in case 1) the negativity of the expression in (5.7) under the

cone condition (5.8) is equivalent to

U2
xy + (β2Ux

x
+ (Uyy +

Uy

y
))(

Ux

x
− Uxx) ≤ 0 , ∀β ∈ [

|Uxy|
∣

∣

∣

∣

Uxx − Ux

x

∣

∣

∣

∣

, 1] . (5.10)

and

Uxxβ
2 + 2|Uxy|β + (Uyy +

Uy

y
) ≤ 0 , ∀β ∈ (0,

|Uxy|
∣

∣

∣

∣

Uxx − Ux

x

∣

∣

∣

∣

) . (5.11)
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Case 2): Uxx − Ux

x < 0 and β0 :=
|Uxy|

∣

∣

∣

∣

Uxx−
Ux
x

∣

∣

∣

∣

> 1. We still need the minimum

for the expression on brackets above. This means that we should make ‖h1‖
‖k‖

as close to β0 as possible under the restriction β2 = ‖h1‖2+‖h2‖2

‖k‖2 . The best

we can do is to put h2 = 0 to it, or equivalently to (5.7).
Conclusion: in case 2) the negativity of the expression in (5.7) under the

cone condition (5.8) is equivalent to

Uxxβ
2 + 2|Uxy|β + (Uyy +

Uy

y
) ≤ 0 , ∀β ∈ [0, 1] . (5.12)

Case 3): Uxx − Ux

x ≥ 0. Our expression becomes

‖k‖2(Uxx −
Ux

x
)

[(‖h1‖
‖k‖ + β0

)2

−
U2
xy + (β2 Ux

x + (Uyy +
Uy

y ))(Ux

x − Uxx)
(

Uxx − Ux

x

)2

]

.

Now we search to attain the maximum of the expression in brackets under

the restriction β2 = ‖h1‖2+‖h2‖2

‖k‖2 . The best we can do is to put h2 = 0 to it,

or equivalently to (5.7).
Conclusion: in case 3) the negativity of the expression in (5.7) under the

cone condition (5.8) is equivalent to

Uxxβ
2 + 2|Uxy|β + (Uyy +

Uy

y
) ≤ 0 , ∀β ∈ [0, 1] . (5.13)

Now we see that condition (5.7) can be split into the following two.
Let 0 < β < 1. If Uxx − Ux

x < 0 and |Uxy| ≤ β|Uxx − Ux

x |, then

U2
xy + (β2Ux

x
+ (Uyy +

Uy

y
))(

Ux

x
− Uxx) ≤ 0 (5.14)

and in all other cases,

Uxxβ
2 + 2|Uxy|β + (Uyy +

Uy

y
) ≤ 0. (5.15)

Both these conditions are equivalent when |Uxy| = β|Uxx − Ux

x |. Let us look
at (5.14) first. If Ux < 0, then the maximum value is attained for smallest

possible β which is
|Uxy|

|Uxx−
Ux
x

|
, hence (5.14) is contained in (5.15) in this case.

When Ux ≥ 0, the maximum value is attained for the largest possible β
which is 1. In conclusion, (5.14) can be replaced by

{

0 ≤ |Uxy| ≤ Ux

x − Uxx

and Ux > 0
⇒

U2
xy

Ux

x − Uxx

+
Ux

x
+ (Uyy +

Uy

y
) ≤ 0 (5.16)

8



The left side of inequality (5.15) is the quadratic function

h(β) = Uxxβ
2 + 2|Uxy|β + (Uyy +

Uy

y
).

where |Uxy| ≥ 0 and 0 ≤ β ≤ 1. If Uxx ≥ 0, the maximum occurs at β = 1.

Suppose Uxx < 0. Then the maximum in [0,∞) is at β =
−|Uxy|
Uxx

≥ 0. If
−|Uxy|
Uxx

> 1, then again the maximum of h in [0, 1] is at β = 1. If
−|Uxy|
Uxx

≤ 1,

then the maximum is at β =
−|Uxy|
Uxx

. Thus inequality (5.15) is equivalent to
the following conditions:

{

Uxx ≥ 0; or

−|Uxy| ≤ Uxx ≤ 0
⇒

{

Uxx + 2Uxy + (Uyy +
Uy

y ) ≤ 0

Uxx − 2Uxy + (Uyy +
Uy

y ) ≤ 0
(5.17)

Uxx ≤ −|Uxy| ≤ 0 ⇒ U2
xy − Uxx(Uyy +

Uy

y
) ≤ 0 (5.18)

6. A simplified setting: ~x = x1 ∈ IR, β = 1

In the previous section, we worked with the case when both ~x, ~y ∈ IR2 and
β ∈ (0, 1]. If we instead take ~x to be real (hence X a real martingale), then
we need only deal with condition (5.15) and hence with (5.17) and (5.18).
If we also assume that β = 1 then 〈X〉 = 〈Y1〉 by (5.9), (5.6), and |h1| = |k|
as h2 = 0 by (5.4) and by our assumptions that x2 = 0,H2 = 0. Hence U
only needs to satisfy

Uxx + 2Uxy + (Uyy +
Uy

y
) ≤ 0 (6.1)

Uxx − 2Uxy + (Uyy +
Uy

y
) ≤ 0 (6.2)

In prior works such as [Bu3], [BaJ1] and [BJV], the best majorant in the
simplified setting is also the best in the general case. Hence we may predict
the same in our problem and look first for the function U satisfying (6.1)
and (6.2). We will proceed as follows.

(1) Use the homogeneity of U(x, y) to reduce the partial differential
inequalities to ordinary differential inequalities of a function g(r).

(2) Predict that the optimal U (and g) will solve (with equality) one of
the two differential equations, wherever it is above the boundary V .
Then solve the easier looking equation, which will be the one with
−Uxy.

(3) We will find the least constant c so that such a majorant based on
(6.2) is possible. It will turn out that Uxy ≤ 0 for this solution, hence
the +Uxy case also is accomplished.
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6.1. Homogeneity and reduction in variables. The function U satisfies
the same homogeneity condition as V : for all t ∈ IR,

U(tx, ty) = tpU(x, y).

To see this, suppose U is a suitable majorant of V . Then Ut(x, y) =
1
tpU(tx, ty) ≥ 1

tpV (tx, ty) = V (x, y) is also a majorant and as easily checked,
satisfies (6.1) and (6.2). Therefore Ut is also a suitable majorant for each
t > 0. Now take the infimum over all t to get a suitable majorant satisfying
the homogeneity condition.

Define
g(r) = U(1− r, r), 0 < r < 1. (6.3)

Then

U(x, y) = (x+ y)pU

(

1− y

x+ y
,

y

x+ y

)

= (x+ y)pg

(

y

x+ y

)

.

Substituting this formulation into (6.1) and (6.2) gives the following equiv-
alent conditions on g:

Dg(r) = (1−2r)2rg′′(r)+(4(p−1)(1−2r)r+1−r)g′(r)+(4p(p−1)r+p)g(r) ≤ 0
(6.4)

Lpg(r) = rg′′(r) + (1− r)g′(r) + pg(r) ≤ 0 (6.5)

The operator Lp is the Laguerre operator, the equation Lpf = 0 is the
Laguerre equation and its solutions are the Laguerre functions. Function g
also should be above its obstacle v.

g(r) ≥ v(r) = (1− r)p − cprp (6.6)

Finally note that

Uxy

(x+ y)p−2
= −r(1− r)g′′(r) + (p− 1)(1 − 2r)g′(r) + p(p− 1)g(r) (6.7)

Since v(0) = 1 for all c, g must have g(0) ≥ 1. As g is the minimal function
possible, it is likely that it solves either Dg = 0 or Lpg = 0 wherever g > v.
We consider first the simpler operator Lp and attempt to construct g from
its solutions.

6.2. The Laguerre functions. Just as for the Legendre case in [BJV], the
Laguerre equation

xy′′ + (1− x)y′ + py = 0 (6.8)

has solutions that are linear combinations of two independent solutions Lp

and L̃p.

Lp(x) = 1− px+ p(p−1)
4 x2 + · · · + (−1)n p(p−1)···(p−n+1)

n!2 xn + . . . (6.9)

L̃p(x) = Lp(x) log
1
|x| +H(x) (6.10)

H is analytic in a neighborhood of 0. Evidently, Lp(x) is a bounded analytic

function in [0, 1] and L̃p is unbounded near 0. Let zp denote the smallest
zero of Lp in the interval [0, 1].
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Lemma 6.1. Among all the solutions of Laguerre equation (6.8), the max-
imum of their smallest zero in [0, 1] is zp.

Proof. Notice that L̃p(0) = +∞. Consider WronskianW (x) = L̃′
p(x)Lp(x)−

L′
p(x)L̃p(x). Substituting (6.10) gives

W (x) =
−L2

p

x
+H ′Lp − L′

pH,

which is < 0 for x close to 0. Since W ′(x) = −1−x
x W (x), W preserves sign in

[0, 1] and is negative. At zp, since Lp changes sign from positive to negative,
we have L′

p(zp) < 0 and

W (zp) = −L′
p(zp)L̃p(zp) = |L′

p(zp)|L̃p(zp)

Since W < 0, it follows that L̃p(zp) < 0. Now consider f3 = c1Lp + c2L̃p for
c2 > 0. Then f3(zp) < 0 and f3(x) > 0 for x close to 0. Therefore f3 has a
zero in (0, zp). The same arguments work for c2 < 0. �

Lemma 6.2. Function Lp is strictly convex in (0, zp] for 1 < p < ∞. Lp is
strictly concave in (0, zp] for 0 < p < 1.

Proof. From Laguerre’s equation and from differentiating it, we get

xL′′
p + (1− x)L′

p + pLp = 0, (6.11)

xL′′′
p + (2− x)L′′

p + (p − 1)L′
p = 0. (6.12)

Let x1 > 0 be the first point > 0 where L′′
p(x1) = 0. Suppose x1 < zp. Then

Lp(x1) > 0 and from (6.11), it follows that L′
p(x1) < 0. Then (6.12) implies

L′′′
p (x1) > 0 and so L′′

p is strictly increasing (from − to +) at x1. But this is

not possible, since L′′
p(0) =

p(p−1)
2 > 0. Therefore x1 > zp and Lp is strictly

convex in (0, zp]. The same proof shows that Lp is strictly concave in (0, zp]
for 0 < p < 1. �

Let us make the following important conclusion from Lemma (6.1).

Lemma 6.3. Let c2 6= 0 and c =
1−zp
zp

. The obstacle function vc(s) cannot

be below any f = c1Lp + c2L̃p in the interval (0, zp].

Proof. This follows from the following facts: vc(zp) = 0, vc > 0 in (0, zp),
lims→0+ |f(s)| = ∞, and by Lemma (6.1), f(x) = 0 for some x ∈ (0, zp]. �

Remark 6.1. It will be shown that c =
1−zp
zp

is a valid choice with a Laguerre

majorant in [0, zp] of the form aLp. It will also be clear due to Lemma (6.3)
that no other Laguerre functions can be used in our method to obtain better
constant. Henceforth we will no longer mention L̃p.

Recall Lp(0) = 1 = vc(0). For c very large and a > 1, we will have

aLp(r) > vc(r) ∀r ∈ [0, 1]
11



Next lower the value of c and thereby raise the function vc. When the
boundary vc(r) first meets the Laguerre function aLp(r), they will have the
same tangent lines. Suppose they first meet at point r = s. We would like to
have g = v on one side of s (where Lpvc ≤ 0) and g = Lp on the other side.
This patched together function would then become the candidate majorant;
finally adjust constants a and c so that it yields the best possible constant.

Computing with vc shows that Lpvc ≤ 0 when s is greater than

mp =
(p− 1)

1

p−2

(p− 1)
1

p−2 + (pcp)
1

p−2

(6.13)

Thus the meeting point must be greater than this value and also satisfy:
{

(1− s)p − cpsp = aLp(s)

−p(1− s)p−1 − pcpsp−1 = aL′
p(s)

(6.14)

Alternatively, this can be transformed as:
{

−pcpsp−1 = apLp + a(1− s)L′
p

−p(1− s)p−1 = −apLp + asL′
p

Dividing the two equations gives

cpsp−1

(1− s)p−1
=

pLp + (1− s)L′
p

−pLp + sL′
p

which implies

cp =
(1− s)L′

p + pLp

sL′
p − pLp

(1− s)p−1

sp−1

=
(1− s)pL′

p + p(1− s)p−1Lp

spL′
p − psp−1Lp

:= F (s). (6.15)

As a remark (when p is an integer), note that the denominator term sL′
p−pLp

is up to a constant equal to Lp−1; similarly the numerator term can be

corresponded with the associated Laguerre function L
(1)
p−1.

So for each possible s, there is a corresponding cp value such that the two
functions will meet at that s. We wish to find the s value that will minimize
this cp. To do this, we will differentiate the function and find its critical

points. However, let us observe first that the function
(1−s)L′

p+pLp

sL′
p−pLp

will have

a singularity in (0, 1) if sL′
p(s) − pLp(s) = 0 for some s. Since this term is

c̃Lp−1, we know that this does happen for integral values of p and expect in
general case as well.

Differentiating:

0 =
d

ds

[

(1− s)pL′
p + p(1− s)p−1Lp

spL′
p − psp−1Lp

]

12



We must therefore set

(spL′
p−psp−1Lp)((1−s)pL′

p+p(1−s)p−1Lp)
′−((1−s)pL′

p+p(1−s)p−1Lp)(s
pL′

p−psp−1Lp)
′ = 0

Some calculations:

((1 − s)pL′
p + p(1− s)p−1Lp)

′

= −p(1− s)pL′
p + (1− s)pL′′

p − p(p− 1)(1 − s)p−2Lp + p(1− s)p−1L′
p

= (1− s)pL′′
p − p(p− 1)(1 − s)p−2Lp.

A = (spL′
p − psp−1Lp)((1 − s)pL′

p + p(1− s)p−1Lp)
′

= sp(1− s)pL′′
pL

′
p − psp−1(1− s)pL′′

pLp

−p(p− 1)sp(1− s)p−2L′
pLp + p2(p− 1)sp−1(1− s)p−2L2

p

(spL′
p − psp−1Lp)

′ = psp−1L′
p + spL′′

p − p(p− 1)sp−2Lp − psp−1L′
p

= spL′′
p − p(p− 1)sp−1Lp

B = ((1 − s)pL′
p + p(1− s)p−1Lp)(s

pL′
p − psp−1Lp)

′

= sp(1− s)pL′′
pL

′
p + psp(1− s)p−1L′′

pLp

−p(p− 1)sp−2(1− s)pL′
pLp − p2(p− 1)sp−2(1− s)p−1L2

p

A−B = psp−2(1− s)p−2Lp[s(s− 1)L′′
p + (p− 1)(1 − 2s)L′

p + p(p− 1)Lp]

= psp−2(1− s)p−2Lp(s)HLp(s)

Therefore

F ′(s) =
psp−2(1− s)p−2Lp(s)HLp(s)

(spL′
p − psp−1Lp)2

=
p(1− s)p−2

sp
Lp(s)HLp(s)

(sL′
p − pLp)2

(6.16)

Applying Laguerre’s equation will show below that HLp = −s[(p − s)L′′
p +

(p− 1)L′
p] and so

F ′(s) = −p(1− s)p−2

sp−1

Lp(s)[(p − s)L′′
p + (p − 1)L′

p]

(sL′
p − pLp)2

(6.17)

So the critical points of the function F (s) in (6.15) are included among s = 1,
the zero-points of Lp and the positive zero-points of HLp. Moreover F has
singularities at s = 0 and at the zero-points of the function spL′

p− psp−1Lp.

6.3. The case s = 1. Since F (1) = 0 and we know that c > 0, it is clear
that the critical point 1 cannot be the first touching point. In fact, since

13



Lp(1) 6= 0 and v0(1) = (1− 1)p = 0, the only way that such a meeting could
happen is if a = 0. So this case is eliminated.

So we look to the other cases for the correct critical point.

6.4. The function HLp(s). The function HLp(s) is known to us. See (6.7).
If we set

U(x, y) = (x+ y)pU( x

x+ y
,

y

x+ y
)

= (x+ y)pLp(
y

x+ y
),

then
HLp(s) = Uxy(1− s, s). (6.18)

(We could also have defined in terms of x as opposed to y, and the conclusion
would be essentially same.)

Lemma 6.4. HLp(s) = s(sL′
p)

′′′

Proof.

(sL′
p)

′ = sL′′
p + L′

p = sL′
p − pLp

(sL′
p)

′′ = (sL′
p − pLp)

′ = sL′′
p − (p− 1)L′

p = −[(p− s)L′
p + pLp]

(sL′
p)

′′′ = −[(p− s)L′′
p + (p− 1)L′

p] (6.19)

Now consider HLp(s) = s(s − 1)L′′
p + (p − 1)(1 − 2s)L′

p + p(p − 1)Lp. Sub-
tracting 0 = (p− 1)[sL′′

p + (1− s)L′
p + pLp] from this gives

HLp(s) = −s[(p− s)L′′
p + (p− 1)L′

p] (6.20)

Comparing (6.20) and (6.19) proves the lemma. �

Lemma 6.5. (sL′
p)

′ = −pLp−1

Proof. Differentiating the Laguerre equation

(sL′
p)

′ − sL′
p + pLp = 0 (6.21)

gives
(sL′

p)
′′ − (sL′

p)
′ + pL′

p = 0. (6.22)

Multiply this by s and differentiate again to get

s(sL′
p)

′′′ + (1− s)(sL′
p)

′′ + (p− 1)(sL′
p)

′ = 0.

This shows that (sL′
p)

′ solves the Laguerre equation with constant p−1 and
hence is equal to γLp−1. Since (sL′

p)
′(0) = −p, γ = −p. �

Theorem 6.1. For 2 < p < ∞, HLp < 0 in (0, zp−1]. For 1 < p < 2,
HLp > 0 in (0, zp−1].

Proof. By Lemma (6.2), Lp−1 is strictly convex in [0, zp−1]. Therefore by
Lemma (6.5), (sL′

p)
′ is strictly concave in [0, zp−1], and by Lemma (6.4),

HLp < 0 in (0, zp−1]. Similarly, the 1 < p < 2 case follows from the fact
that Lp−1 is strictly concave in [0, zp−1]. �
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Lemma 6.6. (Ordering of the roots) zp < zp−1

Proof. Since zp−1 is the root of Lp−1, by Lemma (6.5), (sL′
p)

′(zp−1) = 0.
Then by (6.21), −zp−1L

′
p(zp−1) + pLp(zp−1) = 0. Since L′

p < 0 and Lp > 0
in (0, zp], it follows that zp−1 > zp. �

Note that since HLp corresponds with Uxy, this implies that the Laguerre
function satisfies both (6.4) and (6.5) in [0, zp], and the majorant U derived
from Lp in the corresponding regions will satisfy (6.1) and (6.2). Some more
facts on Laguerre functions are recorded next.

Lemma 6.7. Lp < Lp−1 on (0, zp−1]. Also Lp has exactly one root (at zp)
in [0, zp−1].

Proof. Suppose Lp(x) = Lp−1(x) for some x ∈ (0, zp−1). Since Lp−1(s) =
−1

p(sL
′
p)

′ by Lemma (6.5), it follows from the Laguerre equation (6.21) that

−pLp−1(x)− xL′
p(x) + pLp(x) = 0

and hence
xL′

p(x) = −pLp−1(x) + pLp(x) = 0.

In fact, Lp(x) = Lp−1(x) if and only if L′
p(x) = 0. But L′

p < 0 in (0, zp].
Therefore x > zp. Now Lp−1 > 0 in (zp, zp−1) and Lp < 0 in some interval
(zp, zp+ǫ); so their meeting point must be where L′

p = 0 and Lp−1 = Lp < 0,
in particular after zp−1. This implies that Lp remains negative till after zp−1

and hence its only root in (0, zp−1] is at zp �

Corollary 6.1. Lp is convex in (0, zp−1).

Proof. Lemma (6.2) shows this in (0, zp). If L′′
p(x) = 0 for some x < zp−1,

then since Lp(x) < 0, the Laguerre equation implies L′
p(x) > 0 which means

(as L′
p(0) < 0) there must be a point y ∈ (zp, x) such that L′

p(y) = 0. This
cannot be as shown in previous lemma. �

Lemma 6.8. (Location of root) For 1 < p < ∞, 0 < zp < 1 and Lp(1) < 0.

Proof. By Lemma 6.6, it suffices to show for 1 < p ≤ 2. For p = 2 z2 =
2−

√
2 < 1, so assume 1 < p < 2. Assume also without the loss of generality

that Lp(1) 6= 0, for otherwise 0 = LpLp(1) = L′′
p(1) > 0, a contradiction.

Since L1(s) = 1−s, LpL1 = sL′′
1+(1−s)L′

1+pL1 = (p−1)L1 ≥ 0. Consider
f = L1 − Lp which is also a subsolution for Lp. Then f(0+) > 0. If zp > 1,
then f(1) < 0, and hence there must be some point x ∈ (0, 1) where f(x) = 0
and f ′(x) ≤ 0. But then Lpf(x) = −xL′′

p(x)+ (1−x)f ′(x) < 0 since L′′
p > 0

in (0, zp), a contradiction. Therefore 0 < zp < 1.
Now consider the situation that 0 < zp < 1 but Lp(1) > 0. Then Lp

must have two roots in (0, 1) and there is a point x ∈ (0, 1) such that
Lp(x) < 0 and L′

p(x) = 0. But this means (see Lemma 6.7) Lp−1(x) =
Lp(x) < 0. Since 0 < γ = p − 1 < 1 and Lγ(0+) > L1(0+), there is a
point y ∈ (0, 1) such that g(y) = L1(y) − Lγ(y) = 0 and g′(y) ≥ 0 (in fact,
g(0+) < 0, g(x) > 0 as we just saw). We know L′′

γ(y) < 0 from Lemma
15



6.2, therefore Lγg(y) = −yL′′
γ(y) + (1 − y)g′(y) > 0. However, a direct

application shows Lγg = LγL1 = (γ − 1)L1 < 0. Contradiction; therefore
Lp(1) < 0. �

Remark 6.2. A stronger result than Lemma 6.7 should be true: we expect
f = d

dpLp < 0 in (0, zp−1). In fact, this function satisfies Lpf = −Lp and

hence is a supersolution of the Laguerre equation, with f(0) = 0, f ′(0) =

−1 and f ′′(0) = 2p−1
2 . Moreover −Lp[∂

k
p f ] = ∂k−1

p f and hence −Lp plays

approximately the role of
∫

dp on these functions.

6.5. Consequences of the lemmas/theorem. From the results in the
previous subsection and considering (6.16), we can draw the following con-
clusions on F (s) from (6.15).

(1) F (s) has exactly one critical point in [0, zp−1] and it is at zp. The

minimum value of F in [0, zp−1] is F (zp) =
(1−zp)p

zpp
.

(2) lims→0+ F (s) = lims→zp−1− F (s) = +∞.
(3) Although not proved here, it is expected that F < 0 in (zp−1, 1) and

zp is the unique root of Lp in (0, 1).

Since F (s) = cp, for each value of c > cmin, there are exactly two points x1
and x2 in [0, zp−1] (x1 < zp < x2) and value(s) a1 = a(x1) and a2 = a(x2)
such that aiLp and vc touch at s = xi. Let a0 = a(zp). Then a1 < a0 < a2.
This follows from the following lemma.

Lemma 6.9. The function a(s) is increasing in (0, zp−1).

Proof. Since a(s)Lp(s) = vc(s)(s),

a′(s)Lp(s) + a(s)L′
p(s) =

d

ds
(vc(s))(s) = v′c(s)− sp

d

ds
(c(s)p).

Next since v′c(s) = a(s)L′
p(s), it follows that

a′(s)Lp(s) = −sp
d

ds
(c(s)p).

By (6.16), Lemma (6.7) and Theorem 6.1,

d

ds
(c(s)p) = F ′(s) =

p(1− s)p−2

sp
Lp(s)HLp(s)

(sL′
p − pLp)2

(6.23)

is negative in (0, zp) and positive in (zp, zp−1), and in particular has the
opposite sign of Lp. Therefore it follows that

a′(s) =
−p(1− s)p−2HLp(s)

(sL′
p − pLp)2

> 0 (6.24)

in (0, zp−1). �

(1) So for each s ∈ (0, zp), there exists unique values of c and a such
that touching happens. Call (a, c, s) a touching-triple.
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(2) For each c > c(zp), there exists exactly two points in (0, zp−1): s1 <
zp < s2, and two values a1 < a(zp) < a2, such that (a1, c, s1) and
(a2, c, s2) are touching triples.

(3) For each a ∈ (1, a(zp)], there exists a unique c ≥ c(zp) and unique s ∈
(0, zp] such that (a, c, s) is a touching triple. For each a ∈ (a(zp),∞],
there exists a unique c ≥ c(zp) and unique s ∈ (zp, zp−1) such that
(a, c, s) is a touching triple.

Recall a0 = a(zp). If we start with large c so that vc < a0Lp and slowly

decrease c, the function vc can meet a0Lp at zp only when c =
1−zp
zp

, in

which case it would be a touching point. If for a larger c′, in the course of

changing c from very large values to c =
1−zp
zp

, vc′ happened to meet a0Lp

at some x ∈ (0, zp), then that x also must be a touching point. But we have
shown that a(x) < a(zp) = a0. So this cannot happen and we have

Theorem 6.2. For c =
1−zp
zp

, the function vc touches a0Lp at zp and vc <

a0Lp in (0, zp). �

Define

g(s) =

{

a0Lp(s), 0 < s ≤ zp

vc(s), zp < s ≤ 1.
(6.25)

It can be easily checked that g is a supersolution of the Laguerre equation
Lpg ≤ 0, hence satisfies (6.5). Function g also satisfies (6.4) since by

Dpg =

{

LpLp + 4sHLp = −4ps2L′′
p−1 < 0, 0 < s < zp

Lpvc < 0, zp ≤ s < 1.
(6.26)

The second line follows immediately from (6.18). Thus we have a constant

c =
1− zp
zp

for which there exists a valid majorant g of the obstacle vc(s) = (1−s)p−cpsp

satisfying (6.4) and (6.5). The majorant U(x, y) = (x+ y)pg( y
x+y ) will then

satisfy (6.1) and (6.2).

6.6. Sharpness of the constant. It remains to prove that for any c <
1−zp
zp

, there is no majorant of vc that will satisfy (6.4) and (6.5). Since

the Bellman function (which has the best constant) must satisfy the cor-
responding quadratic form inequalities, it will follow that our constant is

sharp. Note that for c <
1−zp
zp

, vc(zp) > 0. So any possible supersolution f

of the Laguerre equation, satisfying f ≥ vc must have f(zp) > 0.
Suppose there is a supersolution f ≥ g with Lpf ≤ 0 and f(zp) > 0.

Then the root of f occurs at some sp > zp. Let a < 1 be the first value
for which af and g meet at some point x in [0, zp). (If there was a meeting
point to begin with, just start the argument from here on.) If x ∈ (0, zp)
then the meeting point is a touching point; note importantly that x < zp
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since af(zp) > 0 for all a > 0. Since af > g away from x, it follows that
af ′′(x) ≥ g′′(x) and hence

xaf ′′(x) + (1− x)af ′(x) + paf(x) ≥ xg′′(x) + (1− x)g′(x) + pg(x) = 0.

Since f is a Laguerre supersolution, the only possibility is if Lpf(x) = 0 and
af ′′(x) = g′′(x) . Now consider h = af − g in a small interval (x− ǫ, x+ ǫ).
Since af is supersolution and g a solution of the Laguerre equation, it follows
that h is also a supersolution. Assume without the loss of generality that
Lph(x+) < 0, for otherwise h is locally a solution with its value and of its
first two derivatives zero at a point. This implies (by differentiating the
Laguerre equation repeatedly) that all its derivatives are zero at that point,
hence the function is identically 0. Therefore to avoid this, we must have
Lph(x+) < 0. But then, observe h(x) = h′(x) = h′′(x) = 0 and h(x+) > 0.
Since h(x+) > 0, we must have h′(x+) > 0, and since h′(x+) > 0, we have
h′′(x+) > 0. In particular, Lph(x+) > 0; contradiction. Therefore, there is
no such meeting point x ∈ (0, sp).

As for the case when the first meeting point is x = 0, if it is a touching
point, then the above proof works to show this cannot happen. If it is not
a touching point, then af ′(0) > g′(0). But then,

0 · af ′′(0) + (1− 0)af ′(0) + paf(0) = af ′(0) + paf(0) =

af ′(0) + pg(0) > g′(0) + pg(0) = 0,

which means Lpf(0) > 0. This contradicts the assumption that f is a
supersolution. So we have proved there is no supersolution f ≥ g with
f(zp) > g(zp). Therefore all supersolutions ≥ g must be 0 at zp; it follows
that g is the best majorant.

7. The general case, 2 ≤ p < ∞
Let c0 =

1−zp
zp

. In section (6), it is shown that if Y = (Y1, Y2) is an

orthogonal martingale and X any real martingale satisfying 〈X〉 = 〈Yi〉,
then

‖X‖p ≤
(

1− zp
zp

)

‖Y ‖p, (7.1)

where zp is the closest-to-zero root of the bounded-in-(0, 1) Laguerre func-
tion Lp of index p. To show this, we started with V (|x|, |y|) = |x|p − cp|y|p
and found the best-constant majorant U(|x|, |y|) satisfying the required
quadratic-form inequalities (6.1) and (6.2). Now we turn to the general
cases where X is a complex valued martingale and 〈X〉 ≤ 〈Yi〉. U will have
to satisfy (5.16) and (5.18) respectively, in addition to (6.1) and (6.2) (or
more precisely, in addition to (5.17)). We will show that the function U
obtained from the simple setting also works in the general case. Henceforth,
U will denote this function, and g will be its corresponding one-dimensional
version in (6.25).
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Recall the conditions (5.16) and (5.18):
{

0 ≤ |Uxy| ≤ Ux

x − Uxx

and Ux > 0
⇒ U2

xy + (
Ux

x
+ (Uyy +

Uy

y
))

(

Ux

x
− Uxx

)

≤ 0

(7.2)

Uxx ≤ −|Uxy| ≤ 0 ⇒ U2
xy − Uxx(Uyy +

Uy

y
) ≤ 0. (7.3)

We will show in the following lemma that both these requirements are sat-
isfied trivially.

Lemma 7.1. For x > 0, Ux > 0 and −Uxx < Ux

x − Uxx < |Uxy|.

Observe that this lemma implies that the ’if’ parts of (7.2) and (7.3) do
not happen for x > 0. The special case when x = 0 is also simple. Since
x corresponds with 1 − r, x = 0 corresponds with r = 1, where g = vc and
hence U = V . Both Vxx and Vx

x are 0 when x = 0, from which (7.2) and
(7.3) follow. Now for the proof the lemma:

Proof. When U = V , we have Vx = pxp−1 > 0 and

−Vxx = −p(p− 1)xp−2 < −p(p− 2)xp−2 =
Vx

x
− Vxx < 0 = |Vxy|

as stated. So assume U > V where U corresponds with the Laguerre
function a0Lp on [0, zp). A simple computation shows that Ux(1 − s, s) =
[pg(s) − sg′(s)] > 0 since g and −g′ are positive in (0, zp). Therefore the

first inequality −Uxx < Ux

x − Uxx is true. It remains to show

Ux

x
− Uxx < |Uxy|. (7.4)

By (6.18), Uxy ∼ HLp < 0 in (0, zp), so |Uxy| = −Uxy where U > V .
Therefore (7.4) is equivalent to

Ux

x
− Uxx + Uxy < 0 where U > V. (7.5)

Evaluating at (1− s, s), we have

Ux

x
=

[

pg(s)

1− s
− s

1− s
g′(s)

]

; (7.6)

Uxx = s2g′′ − 2(p− 1)sg′ + p(p− 1)g

= s2g′′ − (p− 1)sg′ − (p − 1)sg′′ − (p− 1)g′

= −s(p− 1− s)g′′ − (p− 1)(1 + s)g′ (7.7)

Uxy = Hg = −s(p− s)g′′ − s(p− 1)g′ (7.8)

Using (7.6), (7.7) and (7.8), condition (7.5) can be restated as

pg − sg′

1− s
− sg′′ + (p− 1)g′ < 0 (7.9)
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Substituting −sg′′ = pg + (1− s)g′ and multiplying through by 1− s gets

pg − sg′ + p(1− s)g + (1− s)2g′ + (p− 1)(1 − s)g′

= p(2− s)g + (s2 − (p+ 2)s + p)g′

= −(2− s)sg′′ − (2− s)(1− s)g′ + (s2 − (p+ 2)s + p)g′

= −s(2− s)g′′ + [(p− 1)s + (p− 2)]g′.

Since g′′ and g are > 0 in (0, zp), we have (1− s)g′ < −sg′′. This means

− s(2− s)g′′ + [(p − 1)s+ (p − 2)]g′ =
−s(2− s)(1− s)g′′ + [(p− 1)s + (p− 2)](1 − s)g′

1− s

≤ (−sg′′)
s2 + (p− 4)s+ p

1− s
. (7.10)

Since s2 +(p− 4)s+ p ≥ s2− 2s+ p ≥ s2 − 2s+2 > 0, it follows that (7.10)
is < 0 and hence (7.9) holds. �

8. Left-side Orthogonality, 1 < p < 2

In this section, we show that the same methods extend to the case of
left-side orthogonality when 1 < p < 2. Again for the sake of simplicity, we
work with the case

〈Yi〉 =
1

2
〈Y 〉 ≤ 〈X〉 (8.1)

With this condition, the constant corresponding to (4.1) is

zp
1− zp

.

Let us begin with the special case when 〈X〉 = 〈Yi〉. The obstacle functions
are

V (x, y) = yp − cpxp, vc(s) = sp − cp(1− s)p (8.2)

and the majorants

U(x, y) = (x+ y)pg

(

y

x+ y

)

, g(s) = U(1− s, s)

will have to satisfy the quadratic form inequalities (6.1) and (6.2), and (6.4)
and (6.5). The function vc starts with value −cp at s = 0 and increases to
1 at s = 1. It is convex in the beginning and concave in the end. Moreover
Dpvc = Lpvc(s) is ≤ 0 for s ≥ 1

1+C , for some positive C. So we may expect

that the majorant g equals some βLp in [0, α] and equals vc in (α, 1], where
α is a touching point. Since Lp(0) = 1 and Lp(1) < 0, we must have β = −a
for some a > 0. We come to a corresponding version of (6.14):

{

sp − cp(1− s)p = −aLp(s)

psp−1 + pcp(1− s)p−1 = −aL′
p(s)

(8.3)
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Letting c̃ = 1
c and ã = a

cp , this is transformed to
{

(1− s)p − c̃psp = ãLp(s)

−p(1− s)p−1 − pc̃psp−1 = ãL′
p(s)

(8.4)

Note that (8.4) has the same form as (6.14), hence we have

c̃p = F (s) =
(1− s)pL′

p + p(1− s)p−1Lp

spL′
p − psp−1Lp

, cp = G(s) =
1

F (s)
. (8.5)

Since G′(s) = −F ′(s)
F (s)2

, by (6.16), we have

G′(s) =
p(1− s)p−2

sp
Lp(s)(−HLp(s))

F (s)2(sL′
p − pLp)2

(8.6)

By Theorem 6.1, HLp > 0 in [0, zp−1], hence the function G(s) for 1 < p < 2
exhibits the same behavior in the interval (0, zp−1) as F did for p > 2. It
decreases in (0, zp), reaches its minimum at zp and increases back to ∞ at
zp−1. And this implies that as in Lemma (6.9), we have

− a′(s) > 0 in (0, zp−1). (8.7)

Thus the analysis for 1 < p < 2 continues exactly the same as before; the
obstacle vc and the Laguerre function −a0Lp (a0 = a(zp)) touch at their
common zero, when the best constant

c =
zp

1− zp
. (8.8)

The best majorant satisfying the required quadratic form inequalities is

g(s) =

{

−a0Lp(s), 0 < s ≤ zp

vc(s), zp < s ≤ 1.
(8.9)

8.1. Sharpness of the constant. The method used to prove sharpness for
2 < p < ∞ does not apply directly for 1 < p < 2. We will instead follow the
Wronskian-technique from [BJV]. It is proved in greater generality in that
paper, but here we will focus on the Laguerre case alone. If for c <

zp
1−zp

there exists a bounded supersolution h ≥ vc of Lp, then h(zp) > 0. The
following lemma proves that such a supersolution cannot exist. As stated in
Section 2, the Bellman function theory requires the existence of the Bellman
function, so its non-existence implies that the hypothesis EVc(X,Y ) ≤ 0 for
all appropriate X, Y , is not true for this constant c. Thus it follows that
zp

1−zp
is the best constant.

Lemma 8.1. Let h be a supersolution on [0, zp], that is sh
′′(s)+(1−s)h′(s)+

ph(s) ≤ 0, such that h(zp) > 0. Then h(0) = −∞. In particular, h is not a
majorant of vc for any c.
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Proof. Recall that the Laguerre equation sf ′′ + (1 − s)f ′ + pf = 0 has
two independent solutions: a function f1 that is bounded in [0, 1] (and has
f1(zp) = 0) and an unbounded f2(x) = −f1(x) log |x| + H(x) where H is
analytic. Assume f1(0) = −1, then f2(0) = −∞. Consider the Wronskians:

W (x) = f ′
2(x)f1(x)− f ′

1(x)f2(x)

W̃ (x) = h′(x)f1(x)− f ′
1(x)h(x).

Since h is a supersolution and f1, f2 are solutions, we can write in (0, 1)

W̃ ′ ≤ s− 1

s
W̃ ,

W ′ =
s− 1

s
W.

Combining we get

W̃ ′ ≤ W ′

W
W̃. (8.10)

Now observe that W ≈ −∞ when x ≈ 0 since f1(0) = −1, f ′
2 ≈ 1

x −
f ′
1(0) log x ∼ 1

x and f2 ≈ log x. Since Wronskian preserves sign, W (x) < 0
in (0, zp]. Therefore (8.10) can be rewritten (after division by W < 0) as

(W̃/W )′ ≥ 0, on (0, zp]. (8.11)

Notice W̃ (zp) = −h(zp)f
′
1(zp) < 0 and W (zp) = −f2(zp)f

′
1(zp) < 0; these

follow from h(zp) > 0, f ′
1(zp) > 0 and f2(zp) > 0. (To see why f2(zp) > 0,

observe that by Lemma (6.1) the first root a of f2 is < zp, so if f2(zp) < 0
then it has a second root b in (a, zp) where f1(b) < 0 and f ′

2(b) < 0. This

means W (b) > 0, a contradiction.) Denote κ =
h(zp)
f2(zp)

> 0. Inequality (8.11)

shows that
W̃ (x)

W (x)
≤ κ

on [0, zp]. Using the negativity of W we get

W̃ ≥ κW, on (0, zp]. (8.12)

Notice that
(

h
f1

)′
= W̃

f2
1

,
(

f2
f1

)′
= W

f2
1

. Then (8.12) means

(

h

f1

)′

≥ κ

(

f2
f1

)′

, on (0, zp].

Hence,
h

f1
≥ κ

f2
f1

+ const, on(0, zp].

Since f2 → −∞ as x → 0 and f1(0) = −1, it follows that h
f1

→ +∞.

Again, since f1(0) = −1, this means h(x) → −∞ when x → 0. Lemma is
proved. �
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8.2. The general case. For 1 < p < 2, the general quadratic form require-
ment is

Uxx‖h1‖2 +
Ux

x
‖h2‖2 + 2Uxyh1 · k + (Uyy +

Uy

y
)‖k‖2 ≤ 0 (8.13)

where
‖k‖2 ≤ ‖h1‖2 + ‖h2‖2. (8.14)

Setting ‖k‖ = 1 a = ‖h1‖ and β = (‖h1‖2 + ‖h2‖2)1/2, we require for all

β ≥ 1 and a ≤ β

−
(

Ux

x
− Uxx

)

a2 + 2|Uxy|a+
Ux

x
β2 +

(

Uyy +
Uy

y

)

≤ 0. (8.15)

8.2.1. The case X is real-valued and 〈Yi〉 ≤ 〈X〉. In this case, h2 = 0, hence
(5.16) becomes for β ≥ 1,

Uxxβ
2 + 2|Uxy|β + (Uyy +

Uy

y
) ≤ 0. (8.16)

When U = V , Uxx = −p(p−1)xp−2 < 0, therefore the maximum value occurs
for minimal β = 1. It is shown in the previous section that U satisfies this
special case.

Where U > V , we have for U(x, y) = (x+ y)pg( y
x+y ) = (x+ y)pg(r),

Ux = (x+ y)p−1[pg − rg′], (8.17)

Uxx = (x+ y)p−2[r2g′′ − 2(p − 1)rg′ + p(p− 1)g], (8.18)

Uxy = (x+ y)p−2[−r(1− r)g′′ + (p− 1)(1 − 2r)g′ + p(p− 1)g],(8.19)

Uy = (x+ y)p−1[pg + (1− r)g′], (8.20)

Uyy = (x+ y)p−2[(1− r)2g′′ + 2(p− 1)(1 − r)g′ + p(p− 1)g]. (8.21)

Observe that since g < 0, g′ > 0 and g′′ < 0 in (0, zp), it follows that Uxx < 0
where U > V . Therefore the maximum in (8.16) occurs when

β =
−|Uxy|
Uxx

,

provided this value exceeds 1; otherwise we take β = 1. The β = 1 case
is the special case of the previous section, so (8.16) is satisfied in this case.

What if
−|Uxy|
Uxx

> 1? Then the maximum value becomes

Uxx

(−Uxy

Uxx

)2

+ 2|Uxy|
−|Uxy|
Uxx

+ (Uyy +
Uy

y
)

=
|Uxy|2
−Uxx

+ (Uyy +
Uy

y
) ≤ 0.

U solves Uxx − 2Uxy + Uyy +
Uy

y = 0, so the above inequality becomes

U2
xy + (2Uxy − Uxx)(−Uxx) = U2

xy − 2UxyUxx + U2
xx

= (Uxy − Uxx)
2 ≤ 0.
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Clearly, this is not true in general. Therefore we must ensure that

−|Uxy|
Uxx

≤ 1? (8.22)

Since Uxy ∼ −HLp ≤ 0, this is equivalent to showing
Uxy

Uxx
≤ 1 or

Uxx − Uxy ≤ 0. (8.23)

This is equivalent to showing

rg′′ − (p − 1)g′ ≤ 0.

This is true because g′′ < 0 and g′ > 0 in (0, zp). In conclusion, we see that
U always satisfies (8.16). This completes the case when X is real-valued
and 〈Yi〉 ≤ 〈X〉.

8.2.2. The case when X is complex-valued and 〈Yi〉 ≤ 〈X〉. Now we wish
to deal with (8.15) in full generality. If Ux

x − Uxx ≤ 0, then the maximum
value occurs when a = β, and we return to the case of (8.16), which is
true. So now suppose Ux

x − Uxx > 0. This can happen only if U > V since
Vx

x −Vxx = −p(2− p)xp−2 < 0. So suppose U > V . The maximum in [0,∞)
occurs for

a∗ =
Uxy

Ux

x − Uxx

.

If β ≤ a∗, then the maximum in [0, β] occurs at β and we return to (8.16).
If a∗ < β, then the maximum is at a = a∗, and we have

|Uxy| < β

(

Ux

x
− Uxx

)

⇒ U2
xy +

(

Ux

x
β2 + Uyy +

Uy

y

)(

Ux

x
− Uxx

)

≤ 0.

(8.24)
We know that Ux ∼ pg − rg′ < 0, so the maximum occurs for the minimal
possible β. If 1 ≤ a∗, then β = a∗ = a and we return to (8.16). If a∗ < 1,
then β = 1, and (8.24) is equivalent to

|Uxy| <
(

Ux

x
− Uxx

)

⇒ U2
xy+

(

Ux

x
+ Uyy +

Uy

y

)(

Ux

x
− Uxx

)

≤ 0. (8.25)

However since Uyy +
Uy

y = −Uxx + 2Uxy, the right-side value is equal to
(

Ux

x − Uxx + Uxy

)2
which is ≥ 0. So the only way that (8.25) can be true is

if

|Uxy| ≥
Ux

x
− Uxx, or

Ux

x
− Uxx + Uxy ≤ 0?

Lemma 8.2. Where U > V , Ux

x − Uxx + Uxy ≤ 0.
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Proof. Using (8.17), (8.18) and (8.19), we can write this condition in terms
of g as

pg − rg′

1− r
+

(

−p(p− 1)g + 2(p− 1)rg′ − r2g′′
)

+
(

−r(1− r)g′′ + (p− 1)(1 − 2r)g′ + p(p− 1)g
)

≤ 0

⇒ pg − rg′ − r(1− r)g′′ + (p − 1)(1− r)g′ ≤ 0. (8.26)

Since

Uxy ∼ −r(1− r)g′′ + (p− 1)(1 − 2r)g′ + p(p− 1)g ≤ 0,

we have −r(1− r)g′′ ≤ −(p− 1)(1 − 2r)g′ − p(p− 1)g and so (8.26) is

≤ pg − rg′ +
(

−(p− 1)(1 − 2r)g′ − p(p− 1)g
)

+ (p− 1)(1 − r)g′

= pg − rg′ + (p− 1)rg′ − p(p− 1)g = (2− p)[pg − rg′].

Since g ≤ 0 and g′ > 0 in [0, zp], the lemma is proved (and the generalization
to the case X complex is complete). �
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Alexander Borichev, Université de Provence, Marseille, borichev@cmi.univ-mrs.fr

Prabhu Janakiraman, Department of Mathematics, Michigan State Univer-

sity, pjanakir1978@gmail.com

Alexander Volberg, Department of Mathematics, Michigan State Univer-

sity volberg@math.msu.edu

27

http://arxiv.org/abs/0709.4332
http://arxiv.org/abs/0803.2247

	1. Introduction
	2. Burkholder, Bellman and Beurling-Ahlfors
	3. Orthogonal martingales and the Beurling-Ahlfors transform
	4. New Questions and Main Results
	5. Proof of Theorem ??: Right-side Orthogonality, 2<p<
	6. A simplified setting: =x1I R, =1
	6.1. Homogeneity and reduction in variables
	6.2. The Laguerre functions
	6.3. The case s=1
	6.4. The function HLp(s)
	6.5. Consequences of the lemmas/theorem
	6.6. Sharpness of the constant

	7. The general case, 2p<
	8. Left-side Orthogonality, 1< p< 2
	8.1. Sharpness of the constant
	8.2. The general case

	References

