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Abstract

When M is a finitely generated graded module over a standard graded
algebra S and I is an ideal of S, it is known from work of Cutkosky, Her-
zog, Kodiyalam, Römer, Trung and Wang that the Castelnuovo-Mumford
regularity of ImM has the form dm + e when m � 0. We give an ex-
plicit bound on the m for which this is true, under the hypotheses that
I is generated in a single degree and M/IM has finite length, and we
explore the phenomena that occur when these hypotheses are not satis-
fied. Finally, we prove a regularity bound for a reduced, equidimensional
projective scheme of codimension 2 that is similar to the bound in the
Eisenbud-Goto conjecture [1984], under the additional hypotheses that
the scheme lies on a quadric and has nice singularities.

Introduction

Let S be a standard graded algebra over a field k—that is, an algebra generated
by finitely many forms of degree one—and let M be a finitely generated graded
S-module. If H is an artinian S-module we set regH = max{d | Hd 6= 0} and
we write regM for the Castelnuovo Mumford regularity

regM = regS+
M := max{regHi

S+
+ i}.

Combining results of Cutkosky-Herzog-Trung [1999], Kodiyalam [2000], Römer
[2001] and Trung-Wang [2005], we have:

Theorem 0.1. There exist integers m0 = m0(I,M), d = d(I,M) and e =
e(I,M) such that for all m ≥ m0,

reg ImM = dm+ e .

Furthermore, d is the asymptotic generator degree of I on M , i.e., the minimal
number such that if J ⊂ I is the ideal generated by the elements of I of degree
≤ d, then I + annM is integral over J + annM .

∗AMS Subject Classifications: 13D02, 13C99, 13P20, 14N05
†The authors are grateful for the support of the National Science Foundation during the

preparation of this work.
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This beautiful result begs for an answer to several questions: What is the
significance of the number e? What is a reasonable bound m0? What is the
nature of the function m 7→ reg ImM for m < m0 . . . ? In general very little is
known. But the result of the first section of this paper gives a value for m0 in
case

(∗) I is generated in a single degree and M/IM has finite length.

Here is a summary of our knowledge in this case. Under the hypothesis (∗) one
has:

• The number d in Theorem 0.1 is equal to the common degree of the gen-
erators of I.

• The differences em := reg Im − dm form a weakly decreasing sequence of
non-negative integers.

• The asymptotic value e of the em can be identified with the regularity of
the restriction of the sheaf associated to M to the fibers of the morphism
defined by I.

• The numbers em are equal to the assymptotic value e for all m ≥ m0,
where m0 is the (0, 1)-regularity (defined below) of the Rees algebra R(I).

The first item in this list is immediate from the definitions. The next two are
proved in Eisenbud-Harris [2008]. The last is the subject of the first section
of this paper, where we also derive a sharper but more technical bound that
is often optimal. We note that a different (somewhat larger) value for m0 was
proposed in Cutkosky-Herzog-Trung [1999], but the proof given was incomplete,
as the authors of that paper have pointed out. Marc Chardin has informed us
that, after seeing our work, he was able to extend our bound on the power
m0. He uses a spectral sequence argument to treat the case of an ideal I such
that M/IM has finite length, without assuming that I is generated in a single
degree.

In connection with the second item of the list, we observed in many cases
that the sequence of first differences of the em− em+1 is also weakly decreasing.
Is this always the case, under the assumption of (∗) ?

A key definition in this development is the (0, 1) (Castelnuovo-Mumford)
regularity of the Rees module R(I.M). To define it, we recall that the Rees
ring of I is

R(I) := ⊕n≥0I
n ∼= ⊕n≥0I

ntn = S[It] ⊂ S[t] .

This ring is an epimorphic image of the polynomial ring T := S[y0, . . . , yr]
via the map of S-algebras sending the yi to t times the homogeneous mini-
mal generators of I. In fact, this becomes a map of bigraded k-algebras if we
set deg xi = (1, 0) and deg yi = (0, 1) (note that this is only possible because
the generator degrees of I are assumed to be equal). Next, if M is a finitely
generated graded S-module, we define

R(I,M) = S[It]M ⊂M ⊗S S[t] ,
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which is a finitely generated bigraded module over R(I) and hence over T . Thus
we consider a bigraded minimal free resolution

· · · F1 −→ F0 −→ R(I,M)→ 0

of R(I,M) as T -module, and we define reg(0,1)R(I,M) to be the maximum
integer j such that Fi has a free summand of the form T (−a,−i− j) for some
i and a. As with the usual Castelnuovo-Mumford regularity, there is also a
definition in terms of local cohomology, which we will use freely; see Römer
[2001] for a detailed treatment.

In the second section of this paper, we turn to the question of what happens
if we weaken the hypothesis (∗) to allow ideals that are not necessarily generated
in a single degree. We found it surprisingly hard to give formulas for the numbers
em(I,M) := reg ImM−d(I,M)m, even in very special cases; but we are able to
provide such a formula when M = S and I = J+(x0, . . . xn)D for some D, with
J generated in a single degree, in terms of the numbers em(J,M). In particular,
we find that in this situation the numbers em(I,M)− em+1(I,M) need not be
weakly decreasing.

Section 3 of the paper uses some of the same ideas to prove a result close
in spirit to the Eisenbud-Goto conjecture. Let I be a reduced, equidimen-
sional homogeneous ideal in S, and suppose that k is algebraically closed. The
Eisenbud-Goto conjecture then asserts the following: if the projective variety X
associated to I is connected in codimension 1, then reg I ≤ degX−codimX+1.
This conjecture is wide open, even for smooth varieties X, when the dimension
of X is large.

In the conjecture the hypothesis “connected in codimension 1” is necessary,
as an example of Giaimo (included in Section 3) shows— without the hypothesis,
one must expect exponentially large regularity in general. But we are able to
prove a bound that is only slightly weaker than that of the Eisenbud-Goto
conjecture without any connectedness hypothesis, assuming instead that X lies
on a quadric (and has only isolated “bad” singularities).

1 m-Primary Ideals Generated in One Degree

In this section, S denotes a standard graded algebra over a field k. We write
m for the homogeneous maximal ideal of S. Let I ⊂ S be a homogeneous ideal
generated in a single degree d.

We consider the Rees ring R(I) = S[It] of I, a standard bigraded k-algebra
as described above. Let A be the ring

A := k[Idt] = ⊕jR(I)(0,j) ⊂ R(I).

It is a bigraded subalgebra of R(I), generated in degree (0, 1), which is a direct
summand as an A-module. We regard A as a standard graded algebra, generated
in degree 1 over k. We write n for the homogeneous maximal ideal of A. Since
I is generated in one degree, A is isomorphic to the special fiber ring F(I) =
R(I)⊗S k.
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For M a finitely generated graded S-module we consider the Rees module
R(I,M) = S[It]M , which is a finitely generated bigraded R(I)-module. We
define

Ni(I,M) := k[Idt]Mi ⊂ R(I,M).

With the (0, 1)-grading, Ni(I,M) is generated in degree 0, and has degrees
determined by the powers of t. As an A-module, R(I,M) is isomorphic to the
direct sum of the Ni(I,M). In particular

reg(y0,...,yr)R(I,M),

the (0, 1)-regularity of R(I,M), is the maximum of the regularities of the
Ni(I,M) (as A-modules). We shall see later how to restrict the range of i
required.

Theorem 1.1. Suppose that I ⊂ S is an ideal generated by forms of a single
degree d, and M is a finitely generated graded S-module, generated in a single
degree, such that M/IM has finite length. Let e be the number such that

reg ImM = md+ e

for m� 0. Let Ne = Ne(I,M).

1. The equality reg ImM = md+ e holds if

m ≥ max{regH1
n(Ne) + 1,

regM − e+ 1

d
}.

2. In case regH1
n(Ne) ≥ (regM − e+ 1)/d, and m ≥ 1, the equality reg ImM =

md+ e holds if and only if

m ≥ regH1
n(Ne) + 1.

Corollary 1.2. Let I, S,M, d, e be as in Theorem 1.1. The equality reg ImM =
md+ e holds for all m ≥ max{regyR(I,M), regM+1

d }.

Proof of the Corollary. Since Ne is an A-direct summand of R(I,M),

regH1
n(Ne) + 1 ≤ regNe ≤ reg(y0,...,yr)R(I,M).

Proof of the Theorem. Consider first part 1, and assume that

m ≥ max{regH1
n(Ne) + 1,

regM − e+ 1

d
}.

By Eisenbud-Harris [2008] Proposition 1.1, {en} is a non-increasing sequence.
Thus it suffices to show that reg ImM ≤ md+ e. Our assumption on m implies
that regM ≤ md+ e− 1. Because of the exact sequence

0→ ImM →M →M/ImM → 0 (1)
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we only need to show that regM/ImM ≤ md+ e− 1. Since M/ImM has finite
length, this is equivalent to the statement that

(ImM)md+e = Mmd+e.

The definition of e implies, by the same argument, that this equality at least
holds for sufficiently large m.

Let N ′e = Ne(m
d,M) = ⊕j∈ZMjd+et

j . Note that N ′e is naturally a graded
A-module (with j-th graded piece Mjd+et

j) and that Ne is a submodule. Let

E = N ′e/Ne =
⊕jMjd+et

j

⊕j(Ij)jdMetj
.

By the preceding remark, the module E has finite length.
We wish to show that Em = 0. Since m ≥ regH1

n(Ne) + 1 we see from the
exact sequence

· · · → H0
n(N ′e)→ E → H1

n(Ne)→ H1
n(N ′e)→ · · · (2)

that it suffices to prove H0
n(N ′e)m = 0.

We may identify the A-module N ′e with the k[Id]-module ⊕Mdj+e, which is
a k[Id]-direct summand of M . Note that this identification sends the degree j
part of N ′e to the degree dj + e part of M . Moreover, since IdS = I contains a
power of m, the module H0

n(N ′e) is a summand of H0
m(M) (with the same degree

shift). On the other hand, H0
m(M)dj+e = 0 when dj + e ≥ 1 + regM . Thus

H0
n(N ′e)j = 0 when j ≥ (regM − e+ 1)/d, concluding the proof of part 1.

We now consider part 2. Given part 1 and Proposition 1.5, it suffices to
show that if m = regH1

n(Ne) then reg ImM ≥ md + e + 1. It follows from the
hypothesis of part 2 that regM ≤ md + e − 1. Because of the exact sequence
(1) we only need to show that reg(M/ImM) ≥ md+ e. Let N ′e and E be as in
part 1. We want to show that Em 6= 0.

Using exact sequence (2) and the fact that H1
n(Ne)m 6= 0, we see that it

suffices to show H1
n(N ′e)m = 0. Since N ′e is a summand of M (with a shift of

degree) it suffices to show H1
m(M)md+e = 0. This holds because, by hypothesis,

regM ≤ md+ e− 1.

Conjecture 1.3. If I, S,M are as in Theorem 1.1, then the regularity of Ni is
non-increasing from i = 0. In particular, the (0, 1)-regularity of R(I) is equal
to the regularity of k[Id].

We can prove the conjecture in the case where I is a power of the maximal
ideal.

Proposition 1.4. Let M be a finitely generated graded S-module, generated in
degree 0.

1. If i ≥ 0, then

regNi(m
d,M) ≤ max

{
0,

regM − i+ (d− 1) dimM

d

}
.

In particular regNi(m
d,M) = 0 for i ≥ regM + (d− 1)(dimM − 1).
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2. If H0
m(M) = 0, then the inequality of part 1) is an equality. In particular,

the sequence of numbers {regNi(m
d,M) | i ≥ 0} is weakly decreasing.

Proof. In the previous proof we have seen that there is a homogeneous isomor-
phism of k[Sd]-modules

Ni
∼= MiK[Sd](i) = ⊕j≥0Mdj+i = (M(i)≥0)(d),

where we consider Ni as a k[Sd]-module via the identification k[Sdt] ∼= k[Sd];
here −(d) denotes the Veronese functor.

The exact sequence

0→M(i)≥0 →M(i)→M(i)/M(i)≥0 → 0

gives rise to an exact sequence

0→H0
m(M(i)≥0)→ H0

m(M(i))→M(i)/M(i)≥0

→ H1
m(M(i)≥0)→ H1

m(M(i))→ 0

and isomorphisms H`
m(M(i)≥0) ∼= H`

m(M(i)) for 2 ≤ `.
Since the d-th Veronese functor commutes with taking local cohomology it

follows that

reg(M(i)≥0)(d)

≤ max{1 + reg(M(i)/M(i)≥0)(d),max{reg(H`
m(M(i)))(d) + ` | 0 ≤ ` ≤ dimM}

= max

{
0,max

{⌊
regH`(M)− i

d

⌋
+ ` | 0 ≤ ` ≤ dimM

}}
≤ max

{
0,max

{⌊
regM − i− `

d

⌋
+ ` | 0 ≤ ` ≤ dimM

}}
≤ max

{
0,

⌊
regM − i+ (d− 1) dimM

d

⌋}
(3)

which gives the desired formula. If H0
m(M) = 0 then the first inequality is an

equality, which implies part 2.

We can also prove Conjecture 1.3 for i ≥ e, at least when H0
m(M) = 0.

Proposition 1.5. Suppose that I ⊂ S is an ideal generated by forms of a single
degree d, and M is a finitely generated graded S-module, generated in a single
degree, such that M/IM has finite length and H0

m(M) = 0. For each m, let em
be the number such that reg ImM = md + em, and let e = em for m � 0. Let
Nj be the module defined above.

1. em ≥ em+1 ≥ em − d.

2. If i ≥ e then regNi+1 ≤ regNi.
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Proof. The inequality em ≥ em+1 of part 1 is proven in Eisenbud-Harris [2008],
Proposition 1.1.

For the second inequality it suffices to prove that reg ImM ≤ reg Im+1M ,
for then dm+ em ≤ d(m+ 1) + em+1, that is, em ≤ d+ em+1.

Recall that M/Im+1M has finite length and H0
m(M) = 0. The exact se-

quence

0→ Im+1M →M →M/Im+1M → 0

shows that regH1
m(Im+1M) = max{regM/Im+1M, regH1

m(M)} and moreover
H`

m(Im+1M) = regH`
m(M) for ` ≥ 2. The same equalities hold for ImM in place

of Im+1M . The epimorphism of finite length modules M/Im+1M � M/ImM
implies that regM/Im+1M ≥ regM/ImM , and the desired inequality follows.

For part 2, we note that for i ≥ e we can embed Ni into N ′i := Ni(m
d,M)

with finite length cokernel. From H0
m(M) = 0 we deduce H0

m(N ′i) = 0 and thus
H0

m(Ni) = 0. Therefore regNi = max{regN ′i , reg(N ′i/Ni) + 1}.
Since H0

m(M) = 0, part 2 of Proposition 1.4 shows that the numbers regN ′i
are weakly decreasing. On the other hand, the generators of m provide an
epimorphism⊕N ′i → N ′i+1 that induces an epimorphism⊕N ′i/Ni → N ′i+1/N

′
i+1.

Thus the (0, 1) regularity of the finite length module (N ′i/Ni+1) is also weakly
decreasing when i ≥ e.

Corollary 1.6. Let S = k[x1, . . . , xn] and let I, d, e be as in Theorem 1.1. If
e = 0 and m ≥ reg k[Id], then reg Im = md+ e.

Proof. One uses Theorem 1.1.1 and Proposition 1.5.2.

Example 1.7. The regularity of R(I) is often much larger than the regularity
of the module Ne. For the ideal I = (x20, x3y17, x12y8, y20) ⊂ k[x, y] we have
reg Im ≥ 20m+ 7, with equality if and only if m ≥ 2. Here the (0, 1) regularity
of the Rees algebra, and also the regularity of k[Id], are equal to 7. By Theorem
1.1, regH1

n(Ne) ≤ 1 (and in fact equality holds).
For the ideal I = (x20, x3y17, x25y5, y20) ⊂ k[x, y] we have reg Im ≥ 20m+4,

with equality if and only if m ≥ 4. Here again the (0, 1) regularity of the
Rees algebra, and also the regularity of k[Id], are equal to 7. By Theorem 1.1,
regH1

n(Ne) ≤ 3 (and again, in fact, equality holds).

2 Ideals With Generators in More Than One
Degree

As a first example, we have:

Proposition 2.1. Let I ⊂ S = k[x1, . . . , xn] be a homogeneous ideal, and M
a finitely generated graded S-module. If I ⊂ S is generated by an M -regular
sequence of degrees d = d1 ≥ · · · ≥ dt and m ≥ 1 then reg ImM = dm+ e where
e = regM +

∑t
i=2(di − 1).
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Proof. Since I is generated by a regular sequence on M , we may tensor M with
the Eagon-Northcott resolution of Im and get a resolution of Im ⊗M = ImM
by shifted copies of M . Analyzing the shifts, we see that reg ImM = dm+e.

Corollary 2.2. Let I ⊂ S = k[x1, . . . , xn] be a homogeneous ideal, and M a
finitely generated graded S-module. Let d be the asymptotic generator degree of
I on M , and write reg ImM = dm + em. If I contains an M -regular sequence
of degrees d = d1 ≥ · · · ≥ dt with t = dimM , then em ≤ regM +

∑n
i=2(di − 1).

for every m ≥ 1.

In general, we can analyze only special cases.

Theorem 2.3. Let J ⊂ S = k[x1, . . . , xn] be an m-primary ideal generated
by forms of a single degree d. Write I = J + md+k for some k ≥ 0. Let
fm(p) = (d+ k)m− kp, and

pm = min{p ≥ 1 | reg Jp ≥ fm(p)}.

For m ≥ 1 we have

reg Im = min{reg Jpm , fm(pm − 1)}.

Proof. Define ep by the formula reg Jp = dp + ep. Note that pm is finite, and
in fact pm ≤ m since reg Jm ≥ dm.

We have

Im =

m∑
p=0

Jp(md+k)m−p.

Thus, reg Im ≤ min{reg Jp(md+k)m−p | 0 ≤ p ≤ m}.Moreover, Jp(md+k)m−p =
(Jp)≥dp+(d+k)(m−p) = (Jp)≥fm(p), so

reg Jp(md+k)m−p = max{reg Jp, fm(p)}.

We claim that the minimum value of reg Jp(md+k)m−p is taken on either for
p = pm or p = pm − 1, and that in either case it is

min
0≤p≤m

{reg Jp(md+k)m−p} = min{reg Jpm , fm(pm − 1)}.

This follows because, as p increases, the function reg Jp is weakly increasing
while fm(p) is decreasing, and for p = m the first is at least as large as the
second, and pm ≥ 1—see Figure 1. Note that the minimum value is the value
claimed in the Theorem for reg Im.



9

Figure 1: Where the graphs of fm(p) and reg Jp cross

Thus it is enough to show that

reg Im ≥ min{reg Jpm , fm(pm − 1)}.

Write a = min{reg Jpm , fm(pm − 1)}. Note that Im ⊂ Jpm + mfm(pm−1). Thus
it suffices to prove that

ma−1 6⊂ Jpm + mfm(pm−1).

Since a − 1 < fm(pm − 1), this is equivalent to ma−1 6⊂ Jpm . But the latter
holds because a− 1 < reg Jpm .

Example 2.4. If I is not generated in a single degree then in the formula
reg Im = md+ em the em may not be weakly decreasing. It can even go up and
then down. For example, using Theorem 2.3 one can easily compute that if

I = (x41, . . . , x
4
4)(x1, . . . , x4) + (x1, . . . , x4)6 ⊂ S = k[x1, . . . , x4]

then reg Im = 5m+ em, where the successive values of em for m = 1, 2, . . . are
1, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, . . . .

Proposition 2.5. Let I ⊂ S = k[x1, . . . , xn] be a homogeneous ideal, and M a
finitely generated graded S-module, concentrated in non-negative degrees, such
that M/IM has finite length. Let d be the asymptotic generator degree of I on
M , and write reg ImM = dm+ em.

1. If I is generated in degrees ≤ d, then the sequence of integers {em | m ≥
(regM + 1)/d} is weakly decreasing.

2. If the associated graded module grI(M) has positive depth, then the se-
quence {em | m ≥ regM/d} is weakly increasing.

Proof. We first prove part 1. If I is generated by homogeneous elements of
degrees di then multiplication by these elements gives a surjection

⊕i

(
Im−1M

ImM
(−di)

)
→ ImM

Im+1M
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of modules of finite length. Thus

reg ImM/Im+1M ≤ reg Im−1M/ImM + d ≤ regM/ImM + d.

Now the exact sequence

0→ ImM/Im+1M →M/Im+1M →M/ImM → 0

shows that regM/Im+1M ≤ regM/ImM + d.

Since reg(Im)pM = (dm)p+emp for p� 0, we conclude that the asymptotic
generator degree of Im on M is dm. Thus the generator degree of ImM is at
least dm because M is concentrated in non-negative degrees. It follows that
reg ImM ≥ dm. Thus, ifm ≥ (regM+1)/d then regM ≤ dm−1 ≤ reg ImM−1.
Now the inequality regM/Im+1M ≤ regM/ImM+d implies that reg Im+1M ≤
reg ImM + d.

For part 2 we may assume that k is infinite. The definition of d shows that
for some integer p we have

(I/I2)pgrI(M) ⊂ ((I≤d + I2)/I2)grI(M).

It follows that there exists an element a ∈ Id whose leading form a + I2 ∈
grI(S) is a non-zerodivisor on grI(M). Hence Im+1M :M a = ImM . Thus
multiplication by a induces an embedding

M

ImM
(−d) ↪→ M

Im+1M
.

On the other hand, a(ImM :M m) ⊂ Im+1M :M m. Therefore

ImM :M m

ImM
(−d) ↪→ Im+1M :M m

Im+1M
.

This implies regM/Im+1M ≥ regM/ImM+d, and hence reg Im+1M ≥ reg ImM+
d whenever m ≥ regM/d.

Corollary 2.6. Let I ⊂ S = k[x1, . . . , xn] be a homogeneous m-primary ideal
with asymptotic generator degree d. If I is generated in degrees ≤ d and grI(S)
has positive depth, then reg Im = dm+ e for some e and every m ≥ 1.

Example 2.7. One cannot drop the assumption of generation in degree ≤ d
from Corollary 2.6. If

I = (x4, y4, z4) + (x, y, z)5 ⊂ S = k[x, y, z],

then reg Im = 4m + em, where the successive values of em for m = 1, 2, . . .
are 1, 2, 2, 2, 2, . . . . Computation with Macaulay2 shows that the depth of the
associated graded ring of I is at least 1.
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3 A Case of the (Almost) Eisenbud-Goto Con-
jecture

Eisenbud and Goto [1984] conjecture that the regularity of a nondegenerate,
geometrically reduced irreducible subscheme X ⊂ Pn has regularity at most
degX − codimX + 1. They further conjecture that the hypothesis can be
weakened to say that the nondegenerate scheme is geometrically reduced and
connected in codimension 1, and this has been proved by Giaimo [2006] for
curves. The bound can fail for disconnected schemes. For example, if X is the
union of two skew lines in P3 then the degree of X is 2 but the regularity (that
is, the regularity of the ideal of X) is 2 rather than 1. Derksen and Sidman
[2002] have shown that in general a union of linear subspaces of projective space
has regularity at most the number of subspaces.

One might guess from this that the regularity of a reduced equidimensional
scheme would be bounded by the degree of the scheme, but this is not the case.

Example 3.1. Here is a reduced equidimensional union of two irreducible com-
plete intersections whose regularity is much larger than its degree:

By Mayr-Meyer [1982] there is a homogeneous ideal I ⊂ S = C[x1, . . . , xn]
generated by 10n forms of degrees two and three, having regularity of the order of
22

n

. In the ring R = S[z1, . . . ] we build an ideal I ′ whose generators correspond
to those of I by replacing the monomials in the generators of I with products
of new variables zj in such a way each zj occurs only linearly, and no zj occurs
twice. Clearly the generators of this new ideal are a regular sequence. If any
of the generators are monomials, we add further new variables wj and make
each a binomial that will be a prime. Since the variables are all distinct, the
resulting complete intersection will also be prime, and modulo an ideal of the
form L = ({zj − xp(j)}+ ({wj}) the ideal I ′ becomes equal to the ideal I. The
codimension of L is clearly at least as big as the codimension of the complete
intersection. We add further linear forms to the complete intersection I ′ to
make the codimensions the same.

The ideal I ′ ∩ L now defines the union of two reduced, irreducible complete
intersections, while the ideal I ′ + L defines the original Mayr-Meyer example.
From the short exact sequence

0→ I ′ ∩ L→ I ′ ⊕ L→ I ′ + L→ 0

we see that the regularity of I ′ ∩ L is of the order of 22
n

. On the other hand,
the degree of the subscheme defined by I ′ ∩ L is at most of the order of 310n.

We state our result in terms of the regularity of the homogeneous coordinate
ring S of X, which is one less than regX, to emphasize the parallel between the
two parts of the Theorem. Recall that a local algebra essentially of finite type
over a field characteristic zero is said to have a rational singularity if it is normal
and Cohen-Macaulay and, if π : X̃ → SpecR is a resolution of singularities, then
π∗(ωX̃) = ωSpecR.
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Theorem 3.2. Let X be a reduced equidimensional subscheme of codimension
2 in Pn

k where k is a field of characteristic zero and the locus of non-rational
singularities of X has dimension zero. Let SX be the homogeneous coordinate
ring of X. If X lies on a quadric hypersurface, then

1. regSX ≤ degX.

2. If x1, . . . , xn are general linear forms in SX , and I is the ideal they gen-
erate, then regyR(I, SX) ≤ degX − codimX + 1.

Note that the Eisenbud-Goto conjecture would say, under the additional hy-
pothesis thatX is connected in codimension 1, that regSX ≤ degX−codimX =
degX − 2.

Proof. We make use of the notation introduced in part 2 of the Theorem, and
we write m for the homogeneous maximal ideal of SX . Let F = k[I1] ⊂ SX and
note that F is isomorphic to the fiber ring F ∼= R(I, SX)/mR(I, SX). Let x be
a linear form such that m = (I, x). Because the x1, . . . , xn are general and the
ideal defining X contains a quadric, SX = F + Fx. Thus SX/F ∼= (F/(F :F
SX))(−1). The extension F ⊂ SX is birational. Hence F is the ring of a
hypersurface whose degree is degSX in Pn−1. It follows that regF = degSX−1.

As ωF = F(−n + degSX) we have F :F SX = HomF (SX ,F) = ωSX
(n −

degSX). The hypothesis that the characteristic is zero and that the equidimen-
sional scheme X has at most isolated non-rational singularities implies that the
regularity of ωSX

is at most dimSX = n − 1 (see Chardin-Ulrich [2002] Theo-
rem 1.3, which is based on results of Ohsawa [1984] and Kollár [1986], Theorem
2.1(iii)). It follows that reg(F :F SX) ≤ n − 1 − (n − degSX) = degSX − 1.
Thus regSX/F ≤ degSX , and therefore regSX ≤ degSX , proving the first
statement.

For the second statement, let G = grISX be the associated graded ring of
SX with respect to I, which is an SX -module via the map SX → SX/I = G0.
By Johnson and Ulrich [1996] Proposition 4.1 one has regyR(I, SX) = regy G,
so it suffices to bound the latter.

Note that F = G/mG = G/xG. Because the ideal defining X contains a
quadric we have x2 ∈ I. It follows that x2G = 0. Of course xG ∼= G/(0 :G x).
We will show that G/(0 :G x) ∼= F/(F :F SX). Indeed, the inclusion F ⊂
R(I, SX) induces an inclusion F ⊂ G, and hence a map F → G/(0 :G x) which
is surjective because xG ⊂ 0 :G x. To compute the kernel, let f ∈ F be a form
of degree i. We have fx = 0 in G if and only if, as elements of SX , we have
fx ∈ Ii+1. But the degree (in SX) of fx is i+ 1, so this happens if and only if
fx ∈ Fi+1. This in turn means that f ∈ F :F x = F :F SX .

From the computation of the regularity of F :F SX above, we get regG ≤
max{regF/(F :F SX), regF} = degSX − 1.
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