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Abstract

We prove two results on Kloosterman sums over finite fields, using Stickelberger’s
theorem and the Gross-Koblitz formula. The first result concerns the minimal polyno-
mial over Q of a Kloosterman sum, and the second result gives a characterisation of
ternary Kloosterman sums modulo 27.

1 Introduction

Let p be an odd prime, n ≥ 1 an integer, q = pn and ζ a primitive pth root of unity. We
let Fq denote the finite field with q elements, and let Tr denote the absolute trace function
Tr : Fq → Fp,

Tr(a) = a+ ap + ap
2

+ · · · + ap
n−1

.

The Kloosterman sum of a ∈ Fq is defined to be

Kq(a) =
∑

x∈Fq

ζTr(x
−1+ax)

where we interpret 0−1 as 0. We remark that some authors do not include 0 in the definition
of Kloosterman sum.

Obviously Kq(a) is an algebraic integer lying in the cyclotomic field Q(ζ). It is well known
that

Gal(Q(ζ)/Q) = {ζ 7→ ζ i | i ∈ (Z/pZ)∗},
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and it is easy to show (see [5]) that the Galois automorphism ζ 7→ ζ i has the effect
Kq(a) 7→ Kq(i

2a), for any integer i. If we let

ca(x) =

p−1

2∏

i=1

(x−Kq(i
2a))

it follows that ca(x) (which has degree (p− 1)/2) is the characteristic polynomial of Kq(a)
over Q. If ma(x) is the minimal polynomial of Kq(a) over Q, then

ca(x) = ma(x)
ea

for some ea dividing p−1
2 . Most of the time, it is true that ea = 1. For example, Wan [11]

showed that ea = 1 if Tr(a) 6= 0.

Moisio [8] considered the reduction of the minimal polynomial ma(x) modulo p. He showed
that all coefficients, apart from the leading coefficient, are divisible by p.

In this paper, our first result concerns the reduction of the minimal polynomial ma(x)
modulo p2. In Section 3, we prove the following result about the constant term.

Theorem 1. Let p be an odd prime, and let
(

·
p

)
be the Legendre symbol. Then

p−1

2∏

i=1

Kq(i
2a) ≡ p

(
Tr(a)

p

)
(mod p2) .

As a consequence, the constant term of the characteristic polynomial, which is

(−1)
p−1

2

p−1

2∏

i=1

(Kq(i
2a)),

is always congruent to either 0 or ±p mod p2.

In the case that p = 3, Theorem 1 becomes the following theorem.
Theorem 2. Let n > 1. For a ∈ F3n ,

K3n(a) ≡





0 (mod 9) if Tr(a) = 0,
3 (mod 9) if Tr(a) = 1,
6 (mod 9) if Tr(a) = 2.

This is precisely the modulo 9 characterisation of the ternary Kloosterman sum which we
previously proved in [2]. The second result of this paper, see Corollary 18 in Section 4, is to
extend this result to a modulo 27 characterisation of the ternary Kloosterman sum.
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2 Background

In this section we present the background information that is used in our proofs.

2.1 Teichmüller characters and Gauss sums

Consider multiplicative characters taking their values in an algebraic extension of Qp. Let
ξ be a primitive (q − 1)th root of unity in a fixed algebraic closure of Qp. The group of

multiplicative characters of Fq (denoted F̂×
q ) is cyclic of order q − 1. The group F̂×

q is
generated by the Teichmüller character ω : Fq → Qp(ξ), which, for a fixed generator t
of F×

q , is defined by ω(tj) = ξj. We set ω(0) to be 0. An equivalent definition is that ω
satisfies

ω(a) ≡ a (mod p)

for all a ∈ Fq.

Let ζ be a fixed primitive p-th root of unity in the fixed algebraic closure of Qp. Let µ be
the canonical additive character of Fq,

µ(x) = ζTr(x) .

The Gauss sum (see [7, 12]) of a character χ ∈ F̂×
q is defined as

τ(χ) = −
∑

x∈Fq

χ(x)µ(x) .

We define
g(j) := τ(ω−j) .

For any positive integer j, let wtp(j) denote the p-weight of j, i.e.,

wtp(j) =
∑

i

ji

where
∑

i jip
i is the p-ary expansion of j.

2.2 Trace and similar objects

Consider again the trace function Tr : Fq → Fp,

Tr(c) = c+ cp + cp
2

+ · · ·+ cp
n−1

.
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We wish to generalise this definition to a larger class of finite field sums, which includes
the usual trace function as a special case.

Definition 3. Let p be a prime, let n ≥ 1 be an integer and let q = pn. For any S ⊆
Z/(q−1)Z satisfying Sp = S where Sp := {sp | s ∈ S}, we define the function τS : Fq → Fp

by

τS(c) :=
∑

s∈S

cs .

Definition 4. Let p be a prime, let n ≥ 1 be an integer and let q = pn. For any S ⊆ Z/(q−
1)Z satisfying Sp = S where Sp := {sp | s ∈ S}, we define the function τ̂S : Fq → Qp(ξ) by

τ̂S(c) :=
∑

s∈S

ωs(c) .

Remark 5. For the set W = {pi | i ∈ {0, . . . , n− 1}}, τW is the usual trace function.
Remark 6. By the definition of the Teichmüller character, for any set S we have τ̂S ≡ τS
(mod p). Thus we may consider τ̂S to be a lift of τS , and this explains the notation. For

the set W defined in the previous remark, we let T̂r denote the function τ̂W . Sometimes
we call T̂r the lifted trace.

Other than the set W , for the case p = 3, we will be particularly concerned with the
following sets:

X := {r ∈ {0, . . . , q − 2}|r = 3i + 3j}, (i, j not necessarily distinct)

Y := {r ∈ {0, . . . , q − 2}|r = 3i + 3j + 3k, i, j, k distinct},

Z := {r ∈ {0, . . . , q − 2}|r = 2 · 3i + 3j , i 6= j}.

2.3 Stickelberger’s theorem and the Gross-Koblitz formula

Let π be the unique (p− 1)th root of −p in Qp(ξ, ζ) satisfying

π ≡ ζ − 1 (mod π2) .

Wan [11] noted that the following improved version of Stickelberger’s theorem is a direct
consequence of the Gross-Koblitz formula (Theorem 8).

Theorem 7. [11] Let 1 ≤ j < q − 1 be an integer and let j = j0 + j1p + · · · + jn−1p
n−1.

Then

g(j) ≡
πwtp(j)

j0! · · · jn−1!
(mod πwtp(j)+p−1) .
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Stickelberger’s theorem, as usually stated, is the same congruence modulo πwtp(j)+1.

We have (see [3, 10]) that (π) is the unique prime ideal of Qp(ζ, ξ) lying above p. Since
Qp(ζ, ξ) is an unramified extension of Qp(ζ), which is a totally ramified (degree p − 1)
extension of Qp, it follows that (π)p−1 = (p) and νp(π) =

1
p−1 . Here νp denotes the p-adic

valuation.

Theorem 7 implies that νπ(g(j)) = wtp(j), and because νp(g(j)) = νπ(g(j)) · νp(π) we
get

νp(g(j)) =
wtp(j)

p− 1
. (1)

A generalisation of Stickelberger’s theorem is the Gross-Koblitz formula.
Theorem 8. (Gross-Koblitz formula) [3].

Let 1 ≤ j < q − 1 be an integer. Then

g(j) = πwtp(j)
n−1∏

i=0

Γp

(〈
pij

q − 1

〉)

where 〈x〉 is the fractional part of x, and Γp is the p-adic gamma function.

Our proof in Section 3 studies the π-adic expansion of the Kloosterman sum, and uses the
Gross-Koblitz formula to get information on the coefficients.

2.4 The p-adic gamma function

The p-adic gamma function Γp, introduced in [9], is defined over N by

Γp(k) = (−1)k
∏

t<k
(t,p)=1

t ,

and extends to Γp : Zp → Zp according to Theorem 10 below.

The following are two classical results (they appear in [1]) which can be rephrased in terms
of the p-adic gamma function. Theorem 10 appears in this form in [9].
Theorem 9 (Wilson’s theorem). Let p be an odd prime. Then

Γp(p− 1) ≡ 1 (mod p).

Theorem 10 (Generalised Wilson’s theorem). Let p be a prime, and suppose x ≡ y
(mod pk) for some integer k. If pk 6= 4, then

Γp(x) ≡ Γp(y) (mod pk).
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2.5 Fourier coefficients

Recall that µ(x) = ζTr(x). The Fourier transform of a function f : Fq → C at a ∈ Fq is
defined to be

f̂(a) =
∑

x∈Fq

f(x)µ(ax) .

The complex number f̂(a) is called the Fourier coefficient of f at a.

Consider monomial functions defined by f(x) = µ(xd). When d = −1 we have f̂(a) =
Kpn(a). By Fourier analysis [4, 6] we have for any d

f̂(a) =
q

q − 1
+

1

q − 1

q−2∑

j=1

τ(ω̄j) τ(ωjd) ω̄jd(a)

and hence

f̂(a) ≡ −

q−2∑

j=1

τ(ω̄j) τ(ωjd) ω̄jd(a) (mod q) .

Putting d = −1 = pn − 2, this congruence becomes

Kq(a) ≡ −

q−2∑

j=1

(g(j))2 ωj(a) (mod q). (2)

We will use this in Section 4.

3 Proof of Theorem 1

Moisio [8] considered the reduction of the minimal polynomial ma(x) modulo p, and proved
the following.
Lemma 11. [8] For a ∈ Fq, let m(x) be the minimal polynomial of Kq(a) over Q and let
t be the degree of m. Then

m(x) ≡ xt (mod p).

Our first result concerns the reduction of the minimal polynomial ma(x) modulo p2.
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Theorem 1. Let p be an odd prime, and let
(

·
p

)
be the Legendre symbol. Then

p−1

2∏

i=1

(Kq(i
2a)) ≡ p

(
Tr(a)

p

)
(mod p2) .

Proof: For j ∈ {1, . . . , q − 2}, Theorem 7 implies that

νπ(g(j)
2) = 2wtp(j), (3)

so taking equation (2) mod π4 gives

Kq(a) ≡ −
∑

wtp(j)=1

g(j)2 ωj(a) (mod π4)

≡ −g(1)2T̂r(a) (mod π4).

Equation (3) implies that νπ(g(1)
2) = 2. Therefore we can write Kq(a) as

Kq(a) = a1π
2 + a2π

4 + · · · ,

where

a1 = −

(
g(1)

π

)2

T̂r(a)

= −

(
n−1∏

i=0

Γp

(〈
pi

q − 1

〉))2

T̂r(a) (by Theorem 8).

Reducing this expression modulo p gives that

a1 ≡ −

(
Γp

(
1

q − 1

))2

Tr(a) (mod p)

≡ − (Γp(p − 1))2Tr(a) (mod p) (by Theorem 10)

≡ −Tr(a) (mod p) (by Theorem 9),

and thus
Kq(a) ≡ −π2 Tr(a) (mod π4).
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So

p−1

2∏

i=1

(Kq(i
2a)) ≡πp−1

p−1

2∏

i=1

(−i2 Tr(a)) (mod πp+1)

≡− pTr(a)
p−1

2

p−1

2∏

i=1

(−i2) (mod πp+1).

But
∏p−1

2

i=1 (Kq(i
2a)) ∈ Z by the remarks in Section 1, so

p−1

2∏

i=1

(Kq(i
2a)) ≡ −pTr(a)

p−1

2

p−1

2∏

i=1

(−i2) (mod p2).

Using Wilson’s Theorem (as usually stated), we have that

p−1

2∏

i=1

(−i2) =

p−1∏

i=1

i ≡ −1 (mod p).

Thus
p−1

2∏

i=1

(Kq(i
2a)) ≡ pTr(a)

p−1

2 = p

(
Tr(a)

p

)
(mod p2).

Corollary 12. The constant term of the characteristic polynomial ca(x) is always congru-
ent to either 0 or ±p mod p2.

The following result is due to Wan.
Theorem 13. [11] Let a ∈ Fq. If Tr(a) 6= 0, the minimal polynomial of Kq(a) has degree
p−1
2 .

Thus if Tr(a) 6= 0, the minimal polynomial m(x) of Kq(a) is precisely the characteristic
polynomial c(x). In this case (and in the case that deg(m(x)) = p−1

2 where Tr(a) = 0)
Theorem 1 gives a statement about the constant term of m(x) mod p2.

If Tr(a) = 0 and deg(m(x)) < p−1
2 , then the result in Theorem 1 is implied by Lemma

11. In this case, our result gives us no extra information about the constant term of the
minimal polynomial.
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4 Ternary Kloosterman sums modulo 27

In this section we use the same techniques to improve the modulo 9 Kloosterman sum
characterisation in [2] to a modulo 27 characterisation. First let us prove a lemma on
evaluations of the p-adic gamma function. This lemma will allow us to evaluate Gauss
sums for higher moduli and find Kloosterman congruences modulo 27.

Lemma 14. Let n ≥ 3 q = 3n and let i be an integer in the range 0, . . . n− 1. Then

Γ3

(〈
3i

q − 1

〉)
≡

{
13 (mod 27) if i = 1,
1 (mod 27) if i > 1.

Proof. For any 3 ≤ j ≤ n, we have 3j ≤ q, and

〈
3i

q − 1

〉
=

3i

q − 1
≡ 3i(3j − 1) (mod 3j),

so

Γ3

(〈
3i

q − 1

〉)
≡ Γ3(26 · 3

i) (mod 27).

If i ≥ 3, then 26 · 3i ≡ 0 (mod 27), and

Γ3

(〈
3i

q − 1

〉)
≡ 1 (mod 27) ,

Now Γ3(26 ·3) ≡ Γ3(24) (mod 27) using Theorem 10. And Γ3(24) ≡ 13 (mod 9). Similarly:

Γ3(26 · 9) ≡ 1 (mod 27).

Lemma 14 allows us to compute Gauss sums modulo 27:

Lemma 15. Let n ≥ 3 and let q = 3n. Then

g(j)2 ≡





6 (mod 27) if wtp(j) = 1,
9 (mod 27) if wtp(j) = 2,
0 (mod 27) if wtp(j) ≥ 3.

Proof. Suppose wt3(j) = 1. By Theorem 8 and Lemma 14,

g(j) ≡ 13π (mod 27).
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Let
g(j) = 27A + 13π

for some A ∈ Z3[ζ, ξ]. Then

g(j)2 = 272A2 + 2 · 27 · 13A+ 169π2

≡ 169π2 (mod 27)

≡ 6 (mod 27)

since π2 = −3. Now suppose wt3(j) = 2. By Theorem 8,

g(j) ≡ −3 (mod 9).

Thus g(j) = 9B − 3 for some B ∈ Z3[ζ, ξ], so

g(j)2 = 81B2 − 54B + 9 ≡ 9 (mod 27).

It is clear from Theorem 8 that if wt3(j) > 2, then

27|π2wt3(j)|g(j)2.

Now we are ready to prove our result on Kloosterman sums modulo 27.

Theorem 16. Let n ≥ 3, q = 3n and let T̂r and τ̂X be as defined in Section 2.2. Then

K3n(a) ≡ 21T̂r(a) + 18τ̂X(a) (mod 27). (4)

Proof. Using (2) and Lemma 15, we get

K(a) ≡ −

q−2∑

j=1

g(j)2 ωj(a) (mod q)

≡ −
∑

wt3(j)=1

g(j)2ωj(a)−
∑

wt3(j)=2

g(j)2ωj(a) (mod 27)

≡ −6
∑

wt3(j)=1

ωj(a)− 9
∑

wt3(j)=2

ωj(a) (mod 27)

≡ 21T̂r(a) + 18τ̂X(a) (mod 27).
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Next we shall express the above result in terms of operations within Fq itself, i.e., using

functions τS directly, and not their lifts. Note that in (4) we only need T̂r(a) modulo 9 and
τ̂X(a) modulo 3. We have

τX(a) ≡ τ̂X(a) (mod 3)

so this takes care of the τ̂X(a) term. For the other term we need to find a condition for

T̂r(a) modulo 9 using functions from Fq to F3. We will do that in the proof of the following
corollary.

Corollary 17. Let n ≥ 3, q = 3n, a ∈ Fq and let τX , τY and τZ be as defined in Section
2.2. Let Tr(a) be the trace of a, but considered as an integer. Then

Kq(a) ≡ 21Tr(a)3 + 18τZ(a) + 9τY (a) + 18τX(a) (mod 27).

Proof. First recall that τ̂X(a) ≡ τX(a) (mod 3).

To determine T̂r(a) mod 9, we compute

T̂r(a)3 =
∑

i,j,k∈{0,...,n−1}

ω(a3
i+3j+3k)

= T̂r(a) + 3τ̂Z(a) + 6τ̂Y (a) ,

and note the elementary fact that if x ≡ y (mod m), then xm ≡ ym (mod m2). This means

that T̂r(a)3 mod 9 is given by T̂r(a) mod 3 = Tr(a), i.e. T̂r(a)3 mod 9 = Tr(a)3.

Since
τ̂Z(a) ≡ τZ(a) (mod 3)

and
τ̂Y (a) ≡ τY (a) (mod 3) ,

we have that

T̂r(a) ≡ Tr(a)3 − 3τZ(a)− 6τY (a) (mod 9),

proving the result.

The next corollary combines Corollary 17 and Theorem 16 and enumerates the possible
values of ternary Kloosterman sums mod 27.
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Corollary 18. Let n ≥ 3, and let q = 3n. Let Tr, τX and τY be as defined in Section 2.2.
Then

Kq(a) ≡





0 (mod 27) if Tr(a) = 0 and τY (a) +2τX(a) = 0
3 (mod 27) if Tr(a) = 1 and τY (a) = 2
6 (mod 27) if Tr(a) = 2 and τY (a) +τX(a) = 2
9 (mod 27) if Tr(a) = 0 and τY (a) +2τX(a) = 1

12 (mod 27) if Tr(a) = 1 and τY (a) = 0
15 (mod 27) if Tr(a) = 2 and τY (a) +τX(a) = 0
18 (mod 27) if Tr(a) = 0 and τY (a) +2τX(a) = 2
21 (mod 27) if Tr(a) = 1 and τY (a) = 1
24 (mod 27) if Tr(a) = 2 and τY (a) +τX(a) = 1.

Proof. Note that
Tr(a)τX(a) = Tr(a) + 2τZ(a) .

Thus Corollary 17 can be rewritten as

Kq(a) ≡ 21Tr(a)3 + 18Tr(a) + 18τX(a) + 9Tr(a)τX(a) + 9τY (a) (mod 27). (5)

The result is an enumeration of the cases in equation (5).

We remark that a characterisation like in Corollary 18 of Kloosterman sums modulo p3

for p > 3 does not seem to be straightforward. The estimates given by the Gross-Koblitz
formula are weaker.
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[2] Faruk Göloğlu, Gary McGuire, and Richard Moloney. Ternary Kloosterman sums
modulo 18 using Stickelberger’s theorem. In Claude Carlet and Alexander Pott, ed-
itors, Sequences and Their Applications – SETA 2010, volume 6338 of Lecture Notes
in Computer Science, pages 196–203. Springer, 2010.

[3] Benedict H. Gross and Neal Koblitz. Gauss sums and the p-adic Γ-function. Ann. of
Math. (2), 109(3):569–581, 1979.

[4] Nicholas M. Katz. Gauss sums, Kloosterman sums, and monodromy groups, volume
116 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ,
1988.

12



[5] K.P. Kononen, M.J. Rinta-aho, and K.O. Väänänen. On integer values of Kloosterman
sums. IEEE Transactions on Information Theory, 56(8):4011–4013, Aug 2010.

[6] Philippe Langevin and Gregor Leander. Monomial bent functions and Stickelberger’s
theorem. Finite Fields and Their Applications, 14:727–742, 2008.

[7] Rudolf Lidl and Harald Niederreiter. Introduction to Finite Fields and Their Appli-
cations. Cambridge University Press, 1986.

[8] M.J. Moisio. On certain values of Kloosterman sums. IEEE Transactions on Infor-
mation Theory, 55(8):3563 –3564, Aug 2009.

[9] Yasuo Morita. A p-adic analogue of the Γ-function. J. Fac. Sci. Univ. Tokyo Sect. IA
Math., 22(2):255–266, 1975.

[10] Alain Robert. The Gross-Koblitz formula revisited. Rendiconti del Seminario Matem-
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