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LOG DEL PEZZO SURFACES OF RANK 2 AND CARTIER INDEX 3

WITH A UNIQUE SINGULARITY

FEI WANG

Abstract. Log del Pezzo surfaces play the role of the opposite of surfaces of general

type. We will completely classify all the log del Pezzo surfaces of rank 2 and Cartier

index 3 with a unique singularity.

The open log del Pezzo surfaces of rank one are discussed by Miyanishi and Tsunoda

in [10], [11], [12]; and the (complete) log del Pezzo surfaces of rank one are studied by

Kojima [6], [7], Zhang [15], [16]. Alexeev and Nikulin give the classification of the log

del Pezzo surfaces of index ≤ 2 in [1], and Nakayama gives a geometrical classification

without using the theory of K3 lattices in [13].

Definition 1 ([16, Definition 1]). Let X̄ be a normal projective surface with only

quotient singularities. Then X̄ is called a logarithmic (abbr. log) del Pezzo surface if

its anti-canonical divisor −KX̄ is an ample Q-Cartier divisor.

The smallest positive integer I such that IKX̄ is a Cartier divisor is called the Cartier

index of X̄ , and the Picard number ρ(X̄) is called the rank of X̄ . For notations and

terminologies, we refer to Section 1. In the present article, we will give the complete

classification of the log del Pezzo surfaces of rank 2 and Cartier index 3 with a unique

singularity by proving the following.

Main Theorem. Let X̄ be a log del Pezzo surface with a unique singularity x0, and

(X,D) the minimal resolution. Suppose that X̄ has rank 2 and Cartier index 3. Then

the following assertions hold:

1) There is a contraction π : X̄ → Ȳ of an irreducible curve C̄ on X̄ to a log del

Pezzo surface Ȳ of rank 1. Let C be the proper transform of C̄ on X. Then C is a

(−1)-curve.
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2) The weighted dual graph of C +D is of one of the 29 configurations in Figure 6.

Moreover, they are all realizable.

1. Preliminaries

We work on an algebraically closed field of characteristic zero.

Definition 2 ([5, Definition 0.2.10]). Let X̄ be a normal variety. Then X̄ is said to

have log terminal singularities if

1) the canonical divisor KX̄ is a Q-Cartier divisor, i.e., mKX̄ is a Cartier divisor for

some m ∈ Z+, and

2) there exists a resolution of singularities f : X → X̄ with irreducible exceptional

divisors {Dj}
n
j=1 such that D :=

∑n

j=1Dj is a simple normal crossing divisor, and that

KX = f ∗(KX̄) +
n
∑

j=1

αjDj

for some αj ∈ Q with αj > −1.

Lemma 1 ([4, Theorem 9.6], [10, §4.1]). Suppose X̄ is a normal surface. Then X̄ has

only log terminal singularities if and only if X̄ has only quotient singularities. Moreover,

if this is the case, let X → X̄ be the minimal resolution, then each irreducible exceptional

curve is a nonsingular rational curve.

Recall that a del Pezzo surface is a normal surface with ample anti-canonical di-

visor. It follows from Definition 2 and Lemma 1 that, the log del Pezzo surface as in

Definition 1 is equivalent to “the del Pezzo surface with only log terminal singularities”.

Remark 1. Let X̄ be a log del Pezzo surface. Since dim X̄ = 2, in Definition 2 we can

take f : X → X̄ to be the minimal solution. Then αj ≤ 0 for all j. It follows that

D# := −
∑n

j=1
αjDj is an effective Q-Cartier divisor, and f ∗(KX̄) = KX + D#. If

αk = 0 for some k, then αj = 0 for all Dj in the connected component of D containing

Dk ([9, Proposition 4-6-2]). If D# = 0, then f ∗(KX̄) = KX and X̄ is a Gorenstein log

del Pezzo surface, which is completely classified in [14]. The case when X̄ has index 2

is classified in [1] and [13].
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Lemma 2 (cf. [16, Lemma 1.1]). Let X̄ be a log del Pezzo surface. With the notations

in Remark 1, we have the following assertions:

1) −(KX +D#) ·C ≥ 0 for every irreducible curve C on X, and the equality holds if

and only if C ⊆ Supp(D).

2) If C * Supp(D) is an irreducible curve on X with negative self-intersection num-

ber, then C is a (−1)-curve.

3) ρ(X) = n+ ρ(X̄).

Proof. 1) Note that f is birational. Since −KX̄ is ample,

−(KX +D#) · C = −f ∗(KX̄) · C = −KX̄ · f∗(C) ≥ 0.

The equality holds if and only if f∗(C) is a point, i.e., C ⊆ Supp(D).

2) Suppose C * Supp(D). Then by (1) and the adjunction formula,

0 < −(KX +D#) · C ≤ −KX · C = 2 + C2 − 2pa(C) ≤ 2 + C2 ≤ 1.

It follows that C2 = −1 and pa(C) = 0. So C is a (−1)-curve.

3) NSQ(X) := NS(X)⊗Z Q is generated by f ∗(NSQ(X̄)) and {Dj}
n
j=1. �

In [6], (X,D) is assumed to be almost minimal, and we will show in the following

that the minimal resolution of every log del Pezzo surface of rank 1 is almost minimal.

Hence, we can use the classification in the paper for our discussion in Sections 2–4.

Definition 3 ([10, §3.11]). Let X̄ be a surface and (X,D) → X̄ the minimal resolution.

With the notations in Remark 1, let Bk(D) = D −D#. Then (X,D) is called almost

minimal if for every irreducible curve C on X either

1) (KX +D#) · C ≥ 0; or

2) the intersection matrix of C + Bk(D) is not negative definite.

Lemma 3. Let X̄ be a log del Pezzo surface of rank 1. Then its minimal resolution

(X,D) is almost minimal.

Proof. Suppose there exists an irreducible curve E on X such that E · (KX +D#) < 0

and the intersection matrix of E + Bk(D), i.e., of E +D, is negative definite.

Let Ē = f∗(E). Since 0 > E · f ∗(KX̄) = Ē · KX̄ , Ē is a curve on X̄ . Recall that

ρ(X̄) = 1. We can write Ē ≡ rKX̄ for some r ∈ Q. Then (Ē)2 = r2(KX̄)
2 ≥ 0.
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On the other hand,

f ∗(Ē) = E +

n
∑

j=1

βjDj

for some βj ∈ Q. Let H =
∑n

j=1 βjDj. Then

(Ē)2 = (f ∗(Ē))2 = (E +H)2 < 0,

because the intersection matrix of E + D is negative definite. This leads to a contra-

diction. �

2. The Types of Weighted Dual Graphs of D

In this section, we assume that X̄ is a log del Pezzo surface of Cartier index 3 with

a unique singularity x0, and use the notations in Section 1. Note that the dual graph

of the exceptional divisor D is of A-D-E Dynkin’s type. We are going to determine all

the possible types of the weighted dual graphs of D.

Let aj = −αj . Then f ∗(KX̄) = KX +
∑n

j=1 ajDj for some 0 < aj < 1. It is given

that 3KX̄ is a Cartier divisor, so is
∑n

j=1 ajDj. Therefore, aj ∈ {1/3, 2/3} for all j.

Note that for each i = 1, . . . , n,

0 = f ∗(KX̄) ·Di =

(

KX +

n
∑

j=1

ajDj

)

·Di = −2 − (Di)
2 +

n
∑

j=1

aj(Di ·Dj).

That is,
n
∑

j=1

aj(Di ·Dj) = 2 + (Di)
2, i = 1, . . . , n.

Using these results, we can show that

Proposition 1. Let X̄ be a log del Pezzo surface of Cartier index 3 with a unique

singularity, and (X,D) its minimal resolution. Then

1) the weighted dual graph of D is of one of the nine cases listed in the second column

of Figure 1, and

2) the possible sizes of D are given in the third column of Figure 1.

We will leave the proof of (2) in Section 3.

Proof of Proposition 1 (1). Consider the two cases:
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No. Weighted Dual graph of D Size

I

bc

−3 n = 1

II

bc

−6 n = 1

III −2 −5 n = 2

IV −2 −4 −2 n = 3

V −4 −2 −2 −4 2 ≤ n ≤ 10

VI −2 −3 −2 −2 −4 3 ≤ n ≤ 9

VII −2 −3 −2 −2 −3 −2 4 ≤ n ≤ 9

VIII −4 −2 −2 −2

−2

4 ≤ n ≤ 9

IX −2 −3 −2 −2 −2

−2

4 ≤ n ≤ 8

Figure 1. Weighted Dual graph of D

Type A. Suppose that D is a linear chain D1 −D2 − · · · −Dn.

If n = 1, then a1(D1)
2 = 2 + (D1)

2. When a1 = 1/3, (D1)
2 = −3, and D is given by

I of Figure 1; when a1 = 2/3, (D1)
2 = −6, and D is given by II.

Suppose n ≥ 2. Then for all i = 2, . . . , n, ai−1 + ai(Di)
2 + ai+1 = 2 + (Di)

2. This

implies 2− ai−1 − ai+1 = (Di)
2(ai − 1) ≥ −2(ai − 1), i.e.,

ai ≥
1

2
(ai−1 + ai+1).

Moreover, the equality holds if and only if (Di)
2 = −2.

If ai = 1/3 for some i = 2, . . . , n − 1, then ai−1 + ai+1 ≤ 2/3 and thus ai−1 =

ai+1 = 1/3; consequently aj = 1/3 for all j = 1, . . . , n. In particular, 1/3 (D1)
2 +1/3 =

2 + (D1)
2. However, this would imply that (D1)

2 = −5/2 /∈ Z, a contradiction. So

ai = 2/3 for some i = 2, . . . , n−1. If i ≤ n−2, then ai+1 ≥
1

2
(ai+ai+2) ≥

1

2
(2
3
+ 1

3
) = 1/2,
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and then ai+1 = 2/3. It follows by induction that aj = 2/3 for all j = i, . . . , n− 1; and

similarly aj = 2/3 for all j = 2, . . . , i. We consider three cases:

(i) aj = 2/3 for all j = 1, . . . , n. Then (D1)
2 = (Dn)

2 = −4 and (Dj)
2 = −2 for

j = 2, . . . , n− 1. This is given by V of Figure 1.

(ii) a1 = 1/3 and aj = 2/3 for all j = 2, . . . , n. For this case, if n = 2, then

(D1)
2 = −2 and (D2)

2 = −5, which is given by III; if n ≥ 3, then (D2)
2 = −3,

(Dn)
2 = −4 and (Dj)

2 = −2 for all other j, which is given by VI of Figure 1.

(iii) a1 = an = 1/3 and aj = 2/3 for all j = 2, . . . , n− 1. It is impossible if n = 2. If

n = 3, then (D1)
2 = (D3)

2 = −2 and (D2)
2 = −4, which is given by IV; if n ≥ 4, then

(D2)
2 = (Dn−1)

2 = −3 and (Dj)
2 = −2 for all other j, which is given by VII.

Type D and E. Suppose thatD is a fork. LetD3 be the center of the fork. It intersects

with three components, say D1, D2 and D4. Then a1 + a3 + a4 + a2(D2)
2 = 2 + (D2)

2.

There are two cases:

(i) If (D3)
2 ≤ −3, then 1 ≥ 2 − a1 − a2 − a4 = (D3)

2(a3 − 1) ≥ (−3)(1/3) = 1. We

have a1 = a2 = a4 = 1/3, a3 = 2/3 and (D3)
2 = −3. If D4 intersects with, say, D5, then

2/3+ a5 + 1/3 (D4)
2 = 2+ (D4)

2 implies (D4)
2 = (3/2)a5 − 2 ≥ −3/2, a contradiction.

So D4 is the end of a twig, and the same is true for D1 and D2. Therefore, for this case

n = 4 and (D1)
2 = (D2)

2 = (D4)
2 = −2. The weighted dual graph is by IX (n = 4).

(ii) If (D3)
2 = −2, then a1+a2+a4 = 2a3. It follows that a3 = 2/3 and a1+a2+a4 =

4/3. After the relabeling if necessary, we have a1 = a2 = 1/3 and a4 = 2/3. Using the

same argument as above, D1 and D2 are twigs of D consisting of a single (−2)-curve.

We are left to determine the last twig of D:
D1

D2

>D3 −D4 − · · · −Dn. Using the same

argument as in the case of linear chain, it follows by induction that aj = 2/3 for all

j = 4, . . . , n− 1. There are two cases:

(ii.a) a1 = a2 = 1/3 and aj = 2/3 for all j = 3, 4, . . . , n. Then (Dn)
2 = −4 and

(Dj)
2 = −2 for all j = 1, . . . , n− 1. This is given by VIII of Figure 1.

(ii.b) a1 = a2 = an = 1/3 and aj = 2/3 for all j = 3, 4, . . . , n − 1. Then n ≥ 5,

(Dn−1)
2 = −3 and (Dj)

2 = −2 for all j 6= n− 1. This is given by IX (n ≥ 5). �

3. Contraction

From now on, we assume that X̄ is a log del Pezzo surface of rank 2 and Cartier index

3 with a unique singularity x0. Since KX̄ is not numerically effective, by cone theorem,
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there is a KX̄-negative extremal ray R ⊆ NE(X̄). Let π : X̄ → Ȳ be the contraction

of R. Then Ȳ is a normal projective variety of dim Ȳ ≤ 2 and π has connected fibers.

We will consider the three possibilities according to the dimension of Ȳ .

Case 1 : dim Ȳ = 0. It follows that N1(X̄) is generated by some [C̄] ∈ R, and thus

ρ(X̄) = 1. But we assumed that ρ(X̄) = 2, a contradiction.

Case 2 : dim Ȳ = 1. Then Ȳ is a nonsingular curve. By [3, Lemma 1.3], every log

del Pezzo surface is a rational surface. Then it follows from Lüroth’s theorem that the

base Ȳ is rational. Therefore, Y ∼= P1. We claim that

Lemma 4. With the notations above, every fiber of the contraction π : X̄ → Ȳ is

irreducible.

Proof. Since Ȳ is nonsingular, the contraction π : X̄ → Ȳ is flat, and thus every fiber

has pure dimension 1. For any point y ∈ Ȳ , let F̄ = π−1(y). Suppose F̄ is reducible.

Since F̄ is connected, we may choose irreducible components F̄1 and F̄2 of F̄ such that

F̄1 · F̄2 ≥ 1. On the other hand, F̄1 ≡ aF̄2 ∈ R for some a > 0. Then by Zariski’s

lemma [2, Lemma 8.2], F̄1 · F̄2 = a(F̄2)
2 < 0, a contradiction. �

We continue the discussion of dim Ȳ = 1. Let y0 = π(x0) and C̄ = π−1(y0). Then

x0 ∈ C̄, and by Zariski’s lemma, (C̄)2 = 0. Take f : (X,D) → X̄ to be the minimal

resolution, and C the proper transform of C̄ with respect to f . Then C + D = (π ◦

f)−1(y0). By Zariski’s lemma again, C2 < 0, and thus C is a (−1)-curve by Lemma 2.

Let y ∈ Ȳ \{y0}, F̄ := π−1(y) and F the proper transform of F̄ with respect to f .

Then F = (π ◦ f)−1(y). So F 2 = 0 and F ·D# = 0. We have

0 > F̄ ·KX̄ = F · (KX +D#) = F ·KX .

Then by adjunction formula, 2pa(F ) − 2 = F · (F + KX) = F · KX < 0, and thus

pa(F ) = 0. By Lemma 4, F is irreducible; so F ∼= P1.

Let F0 be the singular fiber of the the P1-fibration π ◦ f : X → Ȳ over y0. Then

Supp(F0) = C+D. After contracting C and consecutively (−1)-curves in C+D, C+D

becomes P1. In particular, note that D is connected and C +D is a connected simple

normal crossing divisor, we have C ·D = 1. Moreover,

(1) 2 + n = ρ(X) = 10− (KX)
2.
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Case 3 : dim Ȳ = 2. Then π : X̄ → Ȳ is birational and the exceptional curve is

irreducible [8, Proposition 2.5], denoted by C̄. Let C be the proper transform of C̄

with respect to the minimal resolution f : (X,D) → X̄ .

Note that π ◦ f : X → Ȳ contracts C into a point. By negative definiteness theorem,

C2 < 0. So by Lemma 2, C is a (−1)-curve. By [5, Proposition 5-1-6], Ȳ is Q-factorial,

and it is either smooth or it has a unique log terminal singularity y0 = π(x0). By

taking H = −KX̄ in Lemma 5 below, −KȲ is ample. Therefore, Ȳ is either a smooth

del Pezzo surface or a log del Pezzo surface with a unique singularity y0. Recall that

ρ(Ȳ ) = 1. If Ȳ is smooth, then Ȳ ∼= P2, the projective plane.

Lemma 5. With the notations as above, for any ample divisor H on X̄, π∗(H) is

ample.

Proof. Let H̄ = π∗(H). Then by projection formula H = π∗(H̄) + aC̄ for some a ∈ R.

Suppose x0 ∈ C̄. Since f−1(C̄) = Supp(C + D) and that the intersection matrix of

C +D is negative definite, (C̄)2 = (f ∗(C̄))2 < 0. If x0 /∈ C̄, then (C̄)2 = C2 = −1. For

either case,

0 < H2 = (π∗(H̄) + aC̄)2 = (π∗(H̄))2 + a2(C̄)2 ≤ (π∗(H̄))2 = (H̄)2.

Let Ē be an irreducible curve on Ȳ and Ē ′ the proper transform of Ē with respect to

π. Then π∗(Ē) = Ē ′ + bC̄ for some b ∈ R. We can compute that

0 = C̄ · π∗(Ē) = C̄ · Ē ′ + b(C̄)2 ≥ b(C̄)2.

So b ≥ 0. Then

H̄ · Ē = H · π∗(Ē) = H · (Ē ′ + bC̄) = H · Ē ′ + b(H · C̄) ≥ H · Ē ′ > 0.

By Nakai-Moishezon criterion, H̄ is an ample divisor on Ȳ . �

We continue the discussion of dim Ȳ = 2. Let g : Y → Ȳ be the minimal resolution.

Then π ◦f factors through Y ; that is, there is a proper birational morphism µ : X → Y

such that g ◦ µ = π ◦ f as illustrated in Figure 2. We see that µ : X → Y is the

composite of blow-downs of (−1)-curves. More precisely, it is the contraction of C and

consecutive (−1)-curves in C +D.

Let y0 = f(x0). If Ȳ ∼= P2, then Y = Ȳ and µ(C +D) = y0. Suppose Ȳ is a log del

Pezzo surface of rank 1 with a unique singularity y0. Then Y can be further contracted
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b

x0

b

y0

f

g

π∃µ

X

X̄

Y
Ȳ

C
C̄

D

E

Figure 2. Divisorial Contraction

along (−1)-curves into the Hirzebruch surface Fr for some r ≥ 0 [6, Theorem 2.1, 3.1,

4.1]. For either case,

(2) 2 + n = ρ(X) = 10− (KX)
2.

We can now determine the size of the weighted dual graphs of D in Figure 1.

Proof of Proposition 1 (2). Recall that −KX̄ is ample. In particular,

0 < (KX̄)
2 = π∗(KX̄) · π

∗(KX̄) = KX · π∗(KX̄)

= KX ·

(

KX +

n
∑

j=1

ajDj

)

= (KX)
2 +

n
∑

j=1

aj(−2− (Dj)
2).

For both the fiber contraction (1) and the divisorial contraction (2),

2 + n = ρ(X) = 10− (KX)
2 < 10 +

n
∑

j=1

aj(−2 − (Dj)
2).

That is, n < 8 +
∑n

j=1 aj(−2 − (Dj)
2). Recall that D# =

∑n

j=1 ajDj is evaluated

explicitly in the proof of part (1), we can easily compute the possible size n of D:

V. n < 8 + 2/3 · 2 + 2/3 · 2 ⇔ n ≤ 10;
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VI. n < 8 + 2/3 · 1 + 2/3 · 2 ⇔ n ≤ 9;

VII. n < 8 + 2/3 · 1 + 2/3 · 1 ⇔ n ≤ 9;

VIII. n < 8 + 2/3 · 2 ⇔ n ≤ 9;

IX. n < 8 + 2/3 · 1 ⇔ n ≤ 8.

This completes the proof of Proposition 1 (2). �

Proof of Main Theorem. 1) Suppose dim Ȳ = 1. We have seen that C + D can be

smoothly contracted to F ∼= P1 with F 2 = 0 along C and consecutive (−1)-curves in

C + D. However, by verifying all the weighted dual graphs in Figure 1, we see that

none of them with any (−1)-curve can be contracted to such a curve, a contradiction.

Therefore, dim Ȳ = 2 and Ȳ is a log del Pezzo surface of rank 1. In particular, as

proved in Section 3, C is a (−1)-curve.

2) Case 1. If Ȳ is smooth, then Y = Ȳ ∼= P2 and C +D is contracted to the smooth

point y0 along C and consecutive (−1)-curves in C +D. In particular, by noting that

D is a simple normal crossing divisor, we have C ·D = 1.

Case 2. Suppose Ȳ is not smooth. Then Ȳ is a log del Pezzo surface with a unique

singularity y0. Let E be the exceptional divisor of the minimal resolution g : Y → Ȳ .

The configuration of E is completely classified in [6, Theorem 2.1]. Recall that the

possible weighted dual graphs of D have been listed in Figure 1.

(i) If x0 /∈ C̄, then C is disjoint from D, and the weighted dual graphs of D is the

same as that of E.

(ii) If x0 ∈ C̄, then C+D is a connected simple normal crossing divisor since E is of A-

D-E Dynkin’s type. Note that D is connected. Then C ·D = 1 and X\(C∪D) ∼= Y \E.

We only need to check how C + D is contracted to E along C and consecutive (−1)-

curves in C +D.

By checking all the possible weighted dual graphs ofD in Figure 1 and all the possible

places of C, there are 3 configurations of C + D (VI (n = 5) (b), VI (n = 6) (b), IX

(n = 5) (b)) for the case when Ȳ is smooth, and 26 configurations of C + D for the

case when Ȳ is not smooth. They are given in Figure 6.

According to the discussions above, each of these 29 possible configurations of C+D

can be contracted to E (resp. a smooth point) along C and consecutive (−1)-curves in

C+D. There exists a log del Pezzo surface Ȳ of rank 1 with a unique singularity (resp.
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Ȳ ∼= P2), such that E is the exceptional divisor of its minimal resolution Y → Ȳ (resp.

Y = Ȳ ). We can construct the surface X by blowing up points from the corresponding

surface Y . Let X → X̄ be the contraction of D. Then X̄ is a projective normal surface

of rank 2 and Cartier index 3 with a unique quotient singularity. We claim that

Lemma 6. For each of the configuration of C + D in Figure 6, let X̄ be the surface

defined above, then −KX̄ is ample.

It follows that X̄ is a log del Pezzo surface of rank 2 and Cartier index 3 with a unique

singularity x0, and D is the exceptional divisor of its minimal resolution X → X̄ . In

other words, every configuration in Figure 6 is realizable. We have completed the proof

of Main Theorem. �

4. Ampleness of −KX̄

In the proof of Main Theorem, for each weighted graph of C + D in Figure 6, we

constructed a normal projective surface X̄ of rank 2 and Cartier index 3 with a unique

quotient singularity, such that D is the exceptional divisor of its minimal resolution

X → X̄ . In order to prove that X̄ is a log del Pezzo surface, it remains to show that

−KX̄ is ample (cf. Lemma 6.)

First of all, we shall evaluate −KX̄ . We explore the notations used in the discussion

of the divisorial contraction case in Section 3 (as illustrated in Figure 2). Recall that

µ : X → Y is the successive contraction of (−1)-curves in C +D. If Ȳ is smooth, then

Y = Ȳ ∼= P2, and µ factors through X → F1 → Y . If Ȳ has a unique singularity,

then Y can be further contracted to the Hirzebruch surface Fr for some r ≥ 0 along

(−1)-curves [6, Theorem 3.1, 4.1].

We can verify the list of configurations in Figure 6 to conclude that

Lemma 7. Let X̄ be a log del Pezzo surface of rank 2 and Cartier index 3 with a unique

singularity, and (X,D) → X the minimal resolution. Then there exists a P1-fibration

X
Φ
−→ Fr → P1 with at most two singular fibers, such that one of the components Dℓ of

D is a cross-section, C and the other components of D are contained in the singular

fibers.

Then Mr := Φ(Dℓ) is the minimal section of Fr. If there are two singular fibers, let

their images in Fr be F1 and F2. If there is only one singular fiber, let its image in Fr be
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F1 and take F2 to be the image of a general fiber. Take a section Nr ∼ Mr + rF1 which

does not contain the image of any center of blowup. Then −KFr
= Mr +Nr +F1 +F2,

which form a circle (Figure 3).

Mr

Nr

F1 F2

Figure 3. −KFr

We can decompose Φ : X → Fr as the composite of blow-downs X = X0

φ1

−→ X1 →

· · · → Xk−1

φk−→ Xk = Fr. Denote the exceptional curve of φi by Ei, i = 1, . . . , k. Then

KXi−1
= φ∗

i (KXi
) + Ei. Therefore, −KX can be evaluated explicitly.

Note that −KX is supported by ∆ := Φ−1(Mr +Nr + F1 + F2). Let ∆+ denote the

sum of the irreducible curves which have positive coefficients appearing in −KX . Note

that ∆+ forms a loop, and every irreducible curve in ∆+ has coefficient 1 appearing in

−KX . In particular, the proper transforms of Mr, Nr, F1 and F2 on X belong to ∆+.

Recall that in the proof of Proposition 1 (1), we computed the unique numbers

aj ∈ {1/3, 2/3}, i = 1, . . . , n, such that

f ∗(KX̄) = KX +
n
∑

j=1

ajDj.

We can thus evaluate −f ∗(KX̄) explicitly.

The weighted dual graphs for some −f ∗(KX̄) are illustrated in Figures 4 and 5. For

each of the irreducible curves, the label with brackets indicates its coefficient, and the

label without brackets indicates its self-intersection number. The labels for coefficient

1 are omitted. A dotted line stands for a (−1)-curve, and a solid line stands for a

(−2)-curve if its self-intersection number is not indicated.

Proof of Lemma 6. From the proof of Proposition 1 (2),

(−KX̄)
2 = (KX)

2 +
n
∑

j=1

aj(−2− (Dj)
2) = 8− n +

n
∑

j=1

aj(−2− (Dj)
2).
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)
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)
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)

( 1
3
)

( 1
3
)
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3
) −4

(0)

(0)
C

V (n = 10)

0

−4 ( 1
3
)

( 1
3
)

(0)

( 1
3
)

( 1
3
)

( 1
3
)

( 1
3
)

( 1
3
)

( 1
3
)

(0) (0)

( 2
3
)

−3

C

VI (n = 9)

1

0

( 2
3
)

( 1
3
)

−3

(− 2

3
)

(− 1

3
)(− 4

3
)

(−2)

C

VI (n = 6) (b)

0

( 2
3
)

( 1
3
)

(− 1

3
)

(−1)
( 1
3
)

( 1
3
)

( 1
3
)

C

−3
(0)

IX (n = 6)

Figure 4. −f ∗(KX̄) (c1 + c2 + r = 0)

The size n of D in Figure 1 is chosen so that n > 8 +
∑n

j=1 aj(−2 − (Dj)
2). Then

(−KX̄)
2 > 0. So by Nakai-Moishezon criterion, −KX̄ is ample if and only −KX̄ · Ḡ > 0

for every irreducible curve Ḡ on X̄.

Let Ḡ be an irreducible curve on X̄ , and G the proper transform of Ḡ on X . Then

−KX̄ · Ḡ = −f ∗(KX̄) · f
∗(Ḡ) = −f ∗(KX̄) ·G.

We will show that this number is positive by considering the following two possibilities:

G is contained in a fiber.

Case 1. Suppose G is a general fiber. Then Ḡ does not contain the image of any

center of blowup. So G intersects with the proper transforms of Mr and Nr on X . It

follows that −f ∗(KX̄) ·G ≥ 1 + 1/3 > 0.

Case 2. Suppose G is contained in a singular fiber. Then G2 < 0. Note that

G * Supp(D). By Lemma 2, G is a (−1)-curve. Its coefficient in −f ∗(KX̄) is the same

as that in −KX .
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0
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(−1)
( 1
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( 1
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( 1
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)

−4
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(0)

( 1
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)
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( 1
3
)

VIII (n = 9)

0

( 2
3
)

( 1
3
)

(− 1

3
)

(−1)
( 1
3
) ( 1

3
)

( 1
3
)

−3

( 2
3
)

( 1
3
)

(0) (0)

C

IX (n = 8)

Figure 5. −f ∗(KX̄) (c1 + c2 + r < 0)

(i) If G ⊆ Supp(∆+), then G intersects with exactly two irreducible components of ∆,

which are contained in ∆+. Moreover, exactly one of them is an irreducible component

of D. We have −f ∗(KX̄) ·G ≥ (−1) + 1/3 + 1 > 0.

(ii) If G * Supp(∆+), let c be the coefficient of G in −KX , then G intersects with

exactly one irreducible component of D, whose coefficient in −KX is c + 1. Note

that G is disjoint from any other irreducible component of ∆. So −f ∗(KX̄) · G ≥

(−1)c+ (c+ 1− 2/3) > 0.

G is not contained in a fiber.

Note that G0 := Φ(G) is a curve in Fr. Write G0 ∼ aMr + bF1, where a > 0 and

b ≥ ar. We have G0 · F1 = G0 · F2 = a, G0 ·Mr = b − ar ≥ 0 and G0 · Nr = b. Let ci

be the smallest coefficient among all the irreducible components of Φ−1(Fi) appearing

in −f ∗(KX̄), i = 1, 2. Then

(3) − f ∗(KX̄) ·G ≥ ac1 + ac2 + 0 + b ≥ a(c1 + c2 + r).
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By considering the sign of c1 + c2 + r, we have the following three cases:

Case 1. c1 + c2 + r > 0. This is true for 22 configurations in Figure 6. For this case,

it follows immediately from (3) that −f ∗(KX̄) ·G > 0.

Case 2. c1 + c2 + r = 0. There are 4 configurations as given in Figure 4.

For this case, we may assume that b = ar; otherwise b > ar and (3) implies that

−f ∗(KX̄) · G ≥ a(c1 + c2 + r) + (b − ar) > 0. Then G0 ∼ aNr, and thus G0 is

disjoint from the minimal section Mr. Therefore, there must exist irreducible curves

Li ⊆ Φ−1(Fi) with coefficient ci appearing in −f ∗(KX̄) such that Φ(Li) is not a point

in Mr (i = 1, 2). However, it is easy to see from Figure 4 that F1 does not exist for any

of these 4 configurations.

Case 3. c1 + c2 + r < 0. There are 3 configurations as given in Figure 5.

For each of them, denote {Pi} := Mr ∩Fi (i = 1, 2), and let C ′, C ′′ be the irreducible

curves in Φ−1(F1) with coefficients ≤ −(c2 + r) in −f ∗(KX̄). Suppose that −f ∗(KX̄) ·

G ≤ 0. Then s := (C ′ + C ′′) ·G > 0.

(i) VI (n = 6) (b). By computing the multiplicities of the center of blowups, we have

(F1 ·G0)P1
≥ 4s and (M1 ·G0)P1

≥ 4s. In particular, G0 ∼ aM1 + bF1 with a ≥ 4s and

b ≥ 8s. Then it would follow that −f ∗(KX̄) ·G ≥ (−3)s+4s+8s > 0, a contradiction.

(ii) and (iii). VIII (n = 9) and IX (n = 8). For these cases, (M0 · G0)P1
≥ s and

(F1 ·G0)P1
≥ 2s. If P2 ∈ F2 ∩G0, then G0 ·N0 ≥ (G0 ·M0)P1

+ (G0 ·M0)P2
≥ s+1. We

would have −f ∗(KX̄) ·G ≥ (−1)s+ (s+ 1) > 0. Suppose P2 /∈ F2 ∩G0.

IX (n = 8): Let F ′

2 be the proper transform of F2 on X . Then G ·F ′

2 = G0 ·F2 ≥ 2s.

But then −f ∗(KX̄) ·G ≥ (−1)s+ (2/3)2s+ s > 0, a contradiction.

VII (n = 9): Note that −f ∗(KX̄) · G ≥ (−1)s + s = 0. If −f ∗(KX̄) · G = 0, then

G0 ·M0 = (G0 ·M0)P1
= s and G0 · F1 = (G0 · F1)P1

= 2s; that is, G0 ∼ 2sM0 + sF1.

Note that G is disjoint from F ′

2. Then G · C = 2s−G · F ′

2 = 2s. However, this would

imply that G0 has multiplicity 2s at the point Φ(C), and thus s = G0 · M0 ≥ 2s, a

contradiction again.

Therefore, −KX̄ · Ḡ = f ∗(KX̄) · G > 0 for every irreducible curve Ḡ on X̄ . Since

(−KX̄)
2 > 0, by Nakai-Moishezon criterion, −KX̄ is ample for all the 29 configurations

listed in Figure 6. We have completed the proof of Lemma 6. �
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5. The List of Weighted Dual Graphs of C +D

I (a) and (b):
bc bc

−3 −1

−3 −1

II (a) and (b):
bc bc

−6 −1

−6 −1

III:

−1 −2 −5

V (n = 5) (a) and (b):

−1 −4 −2 −2 −2 −4

−4 −2 −2 −2 −4

−1

V (n = 6) (a) and (b):
bc

−4 −2 −2 −2 −2 −4 −1

−4 −2 −2 −2 −2 −4 −1

V (n = 10):

−4 −2 −2 −2 −2 −2 −2 −2 −2 −4 −1

VI (n = 4):

−2 −3 −2 −4

−1

VI (n = 5) (a) and (b):

−1 −2 −3 −2 −2 −4

−2 −3 −2 −2 −4

−1

VI (n = 6) (a) and (b):

−2 −3 −2 −2 −2 −4

−1
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−2 −3 −2 −2 −2 −4

−1

VI (n = 7):

−1 −2 −3 −2 −2 −2 −2 −4

VI (n = 9):

−2 −3 −2 −2 −2 −2 −2 −2 −4

−1

VII (n = 5) (a) and (b):

−2 −3 −2 −3 −2

−1

−2 −3 −2 −3 −2

−1

VII (n = 6) (a) and (b):
bc

−2 −3 −2 −2 −3 −2 −1

−1 −2 −3 −2 −2 −3 −2

VIII (n = 4):

−4 −2 −2

−2 −1

VIII (n = 5) (a) and (b):

bc

−1 −4 −2 −2 −2

−2

−1 −4 −2 −2 −2

−2

VIII (n = 9):

−1 −4 −2 −2 −2 −2 −2 −2 −2

−2

IX (n = 5) (a) and (b):
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−2 −3 −2 −2

−1 −2

−2 −3 −2 −2

−1−2

IX (n = 6):

−1 −2 −3 −2 −2 −2

−2

IX (n = 8):

−2 −3 −2 −2 −2 −2 −2

−1 −2

Figure 6. Weighted Dual graphs of C +D

Acknowledgements. The author would like to thank Prof D.-Q. Zhang for in-

troducing the topic and his kind guidance of the paper, and thank the referee for the

valuable comments.

References

1. V.A. Alekseev and V.V. Nikulin, Classification of del Pezzo surfaces with log-terminal singularities

of index ≤ 2, involutions on K3 surfaces and reflection groups in Lobachevskǐı spaces, Lectures in
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