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ON THE NUMBER OF FACTORS IN THE UNIPOTENT FACTORIZATION

OF HOLOMORPHIC MAPPINGS INTO SL2(C)

BJÖRN IVARSSON AND FRANK KUTZSCHEBAUCH

Abstract. We estimate the number of unipotent elements needed to factor a null-homotopic
holomorphic map from a finite dimensional reduced Stein spaces X into SL2(C) .
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1. Introduction

It’s an old well known problem whether any matrix in SLn(R) for a ring R (associative,
commutative, with unit) is a product of elementary (or equivalent unipotent) matrices with
entries in the ring R. Especially interesting are the cases of polynomial rings C[Cm], of rings
C(X) of continuous functions on a topological space X or of holomorphic functions O(X) on a
Stein space. In the algebraic case for n = 2 such a factorization does not always exist, the first
counterexample was found by Cohn [Coh66]. By Suslin’s deep result for n ≥ 3 there is always a
polynomial factorization [Sus77]. There are no uniform bounds on the number of factors in the
algebraic case [vdK82]. The topological case was solved by Vaserstein, there are uniform bounds
on the number of matrices needed, but no estimate for these numbers are known. More precisely
in [Vas88] Vaserstein proved the following result.

Theorem. Let X be a finite dimensional normal topological space and f : X → SLn(C) be a
null-homotopic continuous mapping. There exist a number K, depending only on the dimension
of X and n, and continuous mappings g1, . . . , gK : X → Cn(n−1)/2 such that

f(x) = M1(g1(x))M2(g2(x)) . . .MK(gK(x)).
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Here Mj is defined as follows. For j odd put

Mj(gj(x)) =




1 0
. . .

gj(x) 1




and for j even

Mj(gj(x)) =



1 gj(x)

. . .

0 1


 .

The holomorphic case was solved by the authors [IK08a] (announced in [IK08b]) where the
following theorem is proven.

Theorem. Let X be a finite dimensional reduced Stein space and f : X → SLn(C) be a null-
homotopic holomorphic mapping. There exist a number K, depending only on the dimension of
X and n, and holomorphic mappings g1, . . . , gK : X → C

n(n−1)/2 such that

f(x) = M1(g1(x))M2(g2(x)) . . .MK(gK(x)).

The proof of this theorem is done by reduction via the Oka-Grauert-Gromov-h-principle to
the topological result of Vaserstein. This of course relates the number of factors needed for the
holomorphic factorization to the numbers needed for the topological factorization. The relation
given by the proof in [IK08a] is probably not very sharp. To describe it let’s introduce the
following numbers: Let K(n,m,C) be the minimal number that all null-homotopic continuous
mappings from normal topological spaces of dimension m into SLn(C) factorize as a product of
K(n,m,C) continuous unipotent matrices (starting with a lower triangular one) and K(n,m,O)
be the minimal number that all null-homotopic holomorphic mappings from Stein spaces of
dimension m into SLn(C) factorize as a product of K(n,m,O) holomorphic unipotent matrices
(starting with a lower triangular one): Then the relation given by our proof is:

K(n,m,O) ≤ 1 +

n∑

i=2

(K(i, 2m,C) + 3)

The proof goes by induction over the size of matrices since we could not prove that a certain
fibration satisfies the Oka-Grauert-Gromov-h-principle. We had to project to the last row in order
to construct the stratified spray. Adding 3 at each step in the induction is used to avoid the
singularity set of the fibration by the topological section provided from the Vaserstein theorem.
Now of course a Stein space X of dimension m is a topological space of dimension 2m, but
Stein spaces are very special topological spaces (they have homology at most up to half of the
real dimension) and holomorphic maps are special among continuous maps. So if we introduce
a number K(n,m,C,O) to be the minimal number l such that all null-homotopic holomorphic
mappings from Stein spaces of dimension m into SLn(C) factorize as a product of l continuous
unipotent matrices (starting with a lower triangular one), then the above mentioned proof gives

(1) K(n,m,O) ≤ 1 +

n∑

i=2

(K(i,m,C,O) + 3)

which might be a better estimate since obviously K(i,m,C,O) ≤ K(i, 2m,C) and this inequal-
ity might be strict.

In general it is a very interesting question to find out bounds for the number of factors.
Moreover such bounds lead to concrete estimates for Kazhdan constants. Namely, in a small
note [IK10] the authors show that the groups SLn(O(X)) for a contractible Stein space X admit
Kazhdan’s property (T) for n ≥ 3.

The present paper is a starting point of a systematic study of the number of factors needed.
We have only results in the case n = 2, i.e., matrices of size 2 by 2.

The first result of our paper is an improvement of the estimate in equation (1) by 2 factors.
We gain one factor compared to our earlier work by some easy trick, but the other factor is hard
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work. We find a stratified spray for a more complicated situation. Namely we can avoid the
projection to the last row. More precisely we prove:

Theorem. (see Theorem 3.1) Let X be a finite dimensional Stein space and f : X → SL2(C) be
a holomorphic mapping that is null-homotopic. Assume that there exists continuous mappings
g1, . . . , gK : X → C such that

f(x) = M1(g1(x))M2(g2(x)) . . .MK(gK(x)).

Then there exists holomorphic mappings h1, . . . , hK+2 : X → C such that

f(x) = M1(h1(x))M2(h2(x)) . . .MK+2(hK+2(x)).

This result (in our terms stated as K(2,m,O) ≤ 2+K(2,m,C,O)) is almost sharp. In section
4 we work out in detail the Cohn example and find that one needs to add one factor for the
holomorphic factorization compared to the continuous factorization.

Our second result in the paper are some first exact estimates (see Theorems 5.1 and 5.2):

K(2, 1,O) = 4, K(2, 2,O) = 5

Clearly at least 4 factors are always needed since multiplication of 3 elementary matrices is
not surjective to SL2(C).

We thank Shulim Kaliman and Anand Dessai for helpful conversations on topological matters.

2. Proof of factorization for SL2(C)

2.1. Overview of the proof. We will give a new proof of the following theorem.

Theorem 2.1. Let X be a finite dimensional Stein space and f : X → SL2(C) be a holomorphic
mapping that is null-homotopic. Then there exist a number K, depending only on the dimension
of X, and holomorphic mappings g1, . . . , gK : X → C such that

f(x) = M1(g1(x))M2(g2(x)) . . .MK(gK(x)).

Sometimes below we will write

U(g(x)) =

(
1 g(x)
0 1

)

and

L(g(x)) =

(
1 0

g(x) 1

)
.

The strategy for proving this result is as follows. Below we will define a holomorphic mapping
ΦN : CN → SL2(C) which is surjective when N ≥ 4. However it is submersive only outside a
certain set SN so therefore we study ΦN : CN \SN → SL2(C). This mapping will still be surjective
so we have a surjective holomorphic submersion. If we can find a holomorphic g : X → CN \ SN

such that the diagram

C
N \ SN

ΦN

��
X

f
//

g
;;

w
w

w
w

w
w

w
w

w

SL2(C)

is commutative we will have found the desired factorization. To find this mapping we will
pull-back the bundle ξ = (CN \ SN ,ΦN , SL2(C)) with f to get the bundle f∗ξ = (f∗(CN \
SN ), f∗ΦN , X) via the commutative diagram

f∗(CN \ SN )
fξ

//

f∗ΦN

��

C
N \ SN

ΦN

��
X

f
// SL2(C)
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and a section of this bundle will correspond to a factorization into a product of unipotent
matrices. The result by Vaserstein gives us a continuous mapping that after some manipulation
can be made to avoid SN . After this change of the mapping it pulls back to a continuous
section of the pull-back bundle. This manipulation is the geometric reason for the increase in
the number of factors needed in the holomorphic case. We will construct complete holomorphic
vector fields on the fibers of ΦN and consequently on the fibers of f∗ΦN . We can then use
results of Gromov [Gro89] and Forstnerič [For10] to conclude that the continuous section can
be homotopically deformed to a holomorphic section. We then have proven that the desired
holomorphic factorization exists.

2.2. The mapping ΦN and it’s fibers. Define the mapping ΦN : CN → SL2(C) as

ΦN(z1, . . . , zN ) = M1(z1)M2(z2) · · ·MN(zN ).

Let us investigate where the mapping ΦN is submersive.

Lemma 2.2. The mapping ΦN is submersive exactly at points

z ∈ C
N
r {(z1, 0, . . . , 0, zN)}

when N ≥ 4.

Proof. We begin by studying when the differential of Φ3 spans a 3-dimensional space. Therefore
we study the equation

λ1
∂Φ3

∂z1
+ λ2

∂Φ3

∂z2
+ λ3

∂Φ3

∂z3
= 0

which we write as, using

e12 =

(
0 1
0 0

)
and e21 =

(
0 0
1 0

)
,

λ1e21U(z2)L(z3) + λ2L(z1)e12L(z3) + λ3L(z1)U(z2)e21 = 0.

We now multiply this equation from the right by

(L(z1)U(z2)L(z3))
−1

= L(−z3)U(−z2)L(−z1).

This doesn’t change the dimension of the span of the differential and since e21L(−z3) = e21 we
get the equation

λ1e21L(−z1) + λ2L(z1)e12U(−z2)L(−z1) + λ3L(z1)U(z2)e21L(−z3)U(−z2)L(−z1) =

= λ1e21 + λ2L(z1)e12L(−z1) + λ3L(z1)U(z2)e21U(−z2)L(−z1) = 0

Notice that we have an equation that is independent of z3. We can therefore put z3 = 0 in the
original equation. If we now multiply the original equation in the same way but from the left we
see in the same way that we can put z1 = 0. Our simplified equation takes the form

λ1e21U(z2) + λ2e12 + λ3U(z2)e21 = 0.

Once again we multiply the equation from the right with an inverse, this time U(−z2). We do
this in order to use the basis, e12, e21, and

d12 = e11 − e22 =

(
1 0
0 −1

)

for the Lie algebra sl2(C) which is the tangent space for SL2(C) at the identity. Doing so we get

λ1e21 + λ2e12 + λ3U(z2)e21U(−z2) =

= λ1e21 + λ2e12 + λ3(e21 − z2e22 + z2e11 − z22e12) =

= (λ1 + λ3)e21 + (λ2 − z22λ3)e12 + z2λ3d12 = 0.

Therefore the span is 3-dimensional when

det



1 0 1
0 1 −z22
0 0 z2


 = z2 6= 0.
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A similar calulation shows that Ψ3(z2, z3, z4) = U(z2)L(z3)U(z4) is submersive when z3 6= 0.
Now assume that zi 6= 0 for some 2 ≤ i ≤ N − 1. We can then find only trivial solutions to

λ1
∂ΦN

∂zi−1
+ λ2

∂ΦN

∂zi
+ λ3

∂ΦN

∂zi+1
= A

(
λ1

∂Φ3

∂zi−1
+ λ2

∂Φ3

∂zi
+ λ3

∂Φ3

∂zi+1

)
B = 0,

for appropriate matrices A and B, by what we already have proved. Therefore the result follows.
�

2.3. The fibers of ΦN . In order to understand the fibers of ΦN let us do the following calcu-
lations. We have(

1 0
z1 1

)(
Q1 Q2

Q3 Q4

)(
1 z2n
0 1

)
=

(
Q1 Q2 +Q1z2n

Q3 +Q1z1 Q4 +Q2z2 +Q3z2n +Q1z1z2n

)

and(
1 0
z1 1

)(
Q1 Q2

Q3 Q4

)(
1 0

z2n+1 1

)
=

(
Q1 +Q2z2n+1 Q2

Q3 +Q1z1 +Q4z2n+1 +Q2z1z2n+1 Q4 +Q2z1

)
.

Here Q1, Q2, Q3, and Q4 are polynomials in z2, . . . , n2n−1 or z2, . . . , z2n depending on N being
even or odd. Remember that the map ΦN is non-submersive precisely when all these variables
are 0. That is at points where (

Q1 Q2

Q3 Q4

)
=

(
1 0
0 1

)
.

2.3.1. The fibers when N is even. We now try to understand the fibers for the map Φ2n : C
2n \

S2n → SL2(C). Here we have the equations

(1) Q1 = a
(2) Q2 +Q1z2n = b
(3) Q3 +Q1z1 = c
(4) Q4 +Q2z1 +Q3z2n +Q1z1z2n = a

that describes the fiber

Φ−1
2n

((
a b
c d

))
.

What will be important is that the fibers can be described as graphs over smooth manifolds.
Note that we have ad− bc = 1 and Q1Q4 −Q2Q3 = 1.

We will first study the generic case when a 6= 0 and show that in this case equations (1), (2),
and (3) implies (4). We have

a(Q4 +Q2z1 +Q3z2n +Q1z1z2n − d) = aQ4 + aQ3z1 + aQ2z2n + aQ4z1z2n − ad =

= Q1Q4 − ad+Q1Q3z1 +Q1Q2z2n +Q2
1z1z2n =

= Q2Q3 − bc+Q1Q3z1 +Q1Q2z2n +Q2
1z1z2n =

= (b −Q1z2n)(c−Q1z1)− bc+ (c−Q4z2n)Q1z1 + (b−Q1z2n)Q1z2n +Q2
1z1z2n = 0

and since a 6= 0 we see that (4) is automatically fulfilled if (1), (2), and (3) are.
We show that Q1 = a defines a smooth surface when a 6= 1. We claim that the singularity on

Q1 = 1 is located where all variables are zero. We begin with case N = 4. Here Q1(z2, z3) =
1 + z2z3. We immediately see that dQ1 = z3 dz2 + z2 dz3 = 0 precisely when z2 = z3 = 0 and
this is what we want to prove in this case. Now assume that the claim is true when N = 2n− 2
and we study N = 2n. We have

(
Q1(z2, . . . , z2n−1) Q2(z2, . . . , z2n−1)
Q3(z2, . . . , z2n−1) Q4(z2, . . . , z2n−1)

)
=

=

(
Q̃1(z2, . . . , z2n−3) Q̃2(z2, . . . , z2n−3)

Q̃3(z2, . . . , z2n−3) Q̃4(z2, . . . , z2n−3)

)(
1 z2n−2

0 1

)(
1 0

z2n−1 1

)

and we are interested in

Q1 = z2n−1Q̃2 + (1 + z2n−2z2n−1)Q̃1.
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We want to show that dQ1 = 0 precisely where all variables are zero. We get

dQ1 = z2n−1 dQ̃2 + Q̃2 dz2n−1 + (1 + z2n−2z2n−1) dQ̃1 + Q̃1(z2n−2 dz2n−1 + z2n−1 dz2n−2)

and hence dQ1 = 0 if and only if

• z2n−1Q̃1 = 0

• Q̃2 + z2n−2Q̃1 = 0

• z2n−1 dQ̃2 + (1 + z2n−2z2n−1) dQ̃1 = 0

If Q̃1 = 0 then Q̃2 = 0 and this implies that Q1 = a = 0 and we are not considering this case

here. Hence we must have z2n−1 = 0 and this implies that dQ̃1 = 0. The induction hypothesis

implies that z2 = · · · = z2n−3 = 0. This implies in turn that Q̃1 = 1 and Q̃2 = 0 which implies
that z2n−2 = 0 and the claim follows by induction.

It is now easy to write the generic fibers as graphs over Q1 = a 6= 0. We immediately see
from (2) and (3) that z1 = (c−Q3)/a and z2n = (b−Q2)/a.

In the non-generic case a = 0 we see that (1) and (2) implies (3) since bc = Q2Q3 = −1 in
this case. We see that Q1 = 0 and Q2 = b implies Q3 = c since b(Q3 − c) = Q2Q3 − bc = 0. So
in this case we need to investigate

• Q1 = 0
• Q2 = b
• Q4 + cz1 + bz2n = d

Since we have a mapping into the special linear group b 6= 0. We claim that Q2 = b defines a
smooth complex hypersurface of in C2n ∩ {z ∈ C2n : z2n−1 = z2n = 0} and that we can write
the non-generic fibers as graphs over this hypersurface. To see this notice that

(
Q1(z2, . . . , z2n−1) Q2(z2, . . . , z2n−1)
Q3(z2, . . . , z2n−1) Q4(z2, . . . , z2n−1)

)
=

=

(
R1(z2, . . . , z2n−2) R2(z2, . . . , z2n−2)
R3(z2, . . . , z2n−2) R4(z2, . . . , z2n−2)

)(
1 0

z2n−1 1

)

and we get the equations R2 = b and R1 + z2n−1R2 = 0. We see that we can express z2n−1 =
−R1/b and then z2n = (d−Q4 − cz1)/b.

We have

• Q2 = Q̃2 + z2n−2Q̃1

• Q1 = z2n−1Q̃2 + (1 + z2n−2z2n−1)Q̃1 = Q̃1 + z2n−1Q2

and we want to show that Q2 = b 6= 0 defines a smooth complex hypersurface. Hence we want
to show that dQ2 6= 0 when Q1 = 0 and Q2 = b. In order to do that we begin by showing that
dQ1 ∧ dQ2 6= 0. We see that

dQ1 ∧ dQ2 = (dQ̃1 + z2n−1 dQ2 +Q2 dz2n−1) ∧ dQ2 = dQ̃1 ∧ dQ2 +Q2 dz2n−1 ∧ dQ2

and therefore Q2 = 0 when dQ1 ∧ dQ2 = 0. But Q2 = b 6= 0 so therefore we have dQ1 ∧ dQ2 6= 0
when Q1 = 0 and Q2 = b 6= 0. When N = 4 we have that Q2 = z2 so here we obviously have

dQ2 6= 0. Now assume that dQ̃2 6= 0 and study

dQ2 = d(Q̃2 + z2n−2Q̃1) = dQ̃2 + z2n−2 dQ̃1 + Q̃1 dz2n−2.

We see that dQ2 = 0 implies that Q̃1 = 0. If dQ2 = 0 then 0 = dQ̃2 ∧ dQ2 = z2n−2 dQ̃2 ∧ dQ̃1

implies z2n−2 = 0. But this in turn implies that dQ2 = dQ̃2 = 0 which is a contradiction. So
by induction dQ2 6= 0 and we see that also in the non-generic case the fibers are graphs over
smooth manifolds.

We have shown that the fibers of Φ2n can be described as graphs over smooth manifolds.
This will let us construct C-complete holomorphic vector fields that in turn will give us the fiber
spray that we need.
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2.3.2. The fibers when N is odd. Using the same reasoning we can describe the fibers of the map
Φ2n+1 : C

2n+1 \S2n+1 → SL2(C) as graphs over smooth manifolds. The situation is very similar
to when N is even only here in the generic case we write the fiber as a graph over Q2 = b 6= 0
and in the non-generic case as a graph over Q1 = a 6= 0. We will skip doing the details.

2.4. Stratified sprays associated with ΦN . We will introduce the concept of a spray asso-
ciated with a holomorphic submersion following [Gro89] and [FP02]. First we introduce some
notation and terminology. Let h : Z → X be a holomorphic submersion of a complex manifold
Z onto a complex manifold X . For any x ∈ X the fiber over x of this submersion will be de-
noted by Zx. At each point z ∈ Z the tangent space TzZ contains the vertical tangent space
V TzZ = kerDh. For holomorphic vector bundles p : E → Z we denote the zero element in the
fiber Ez by 0z.

Definition 2.3. Let h : Z → X be a holomorphic submersion of a complex manifold Z onto a
complex manifold X . A spray on Z associated with h is a triple (E, p, s), where p : E → Z is
a holomorphic vector bundle and s : E → Z is a holomorphic map such that for each z ∈ Z we
have

(i) s(Ez) ⊂ Zh(z),
(ii) s(0z) = z, and
(iii) the derivative Ds(0z) : T0zE → TzZ maps the subspace Ez ⊂ T0zE surjectively onto the

vertical tangent space V TzZ.

Remark 2.4. We will also say that the submersion admits a spray.

One way of constructing sprays associated with a holomorphic submersion is to find finitely
many C-complete vector fields that are tangent to the fibers and span the tangent space of
the fibres at all points in Z. One can then use the flows ϕt

j of these vector fields Vj to define

s : Z × CN → Z via s(z, t1, . . . , tN ) = ϕt1
1 ◦ · · · ◦ ϕtN

N (z) which gives a spray associated with h.

2.4.1. The even-dimensional case. The case when N is even is only superficially different from
the case when N is odd. We do the even-dimensional case carefully and leave out most of the
details for the odd-dimensional case. We begin with the generic case and study the polynomial
equation Φ11

N = Q1 = a 6= 0. For ease of notation put P = Φ11
N . Let Pj = ∂P/∂zj and define the

complete vector fields

Vkl = Pl
∂

∂zk
− Pk

∂

∂zl
.

We immediately see that Vkl(P − a) = 0. The vector fields Vkl, 2 ≤ k < l ≤ N − 1, spans
the tangent spaces of the fibers at points where P = a defines a manifold. This is because
dP = ∂P 6= 0 at these points. Since we already know that P = a 6= 0 defines a manifold when
a 6= 1 and the points where P = 1 has singularities are located in SN we get the spanning
property for the vector fields. The vector fields are complete since the coefficient functions are
no more than linear in each variable, Pl

∂
∂zk

is independent of zl, and Pk
∂
∂zl

is independent of zk.

Finally lift the vector fields onto the fibers of the holomorphic submersion and we have handled
the generic case. We need to construct new vector fields to handle the case non-generic case
a = 0 and in order to use the results of [FP01] we will need so called stratified sprays.

Definition 2.5. We say that a submersion h : Z → X , whereX is a Stein space, admits stratified
sprays if there is a descending chain of closed complex subspaces X = Xm ⊃ · · · ⊃ X0 such that
each stratum Yk = Xk \Xk−1 is regular and the restricted submersion h : Z|Yk

→ Yk admits a
spray over a small neighborhood of any point x ∈ Yk.

In [For10], see also [FP01], the following theorem is proven.

Theorem 2.6. Let X be a Stein space with a descending chain of closed complex subspaces
X = Xm ⊃ · · · ⊃ X0 such that each stratum Yk = Xk\Xk−1 is regular. Assume that h : Z → X is
a holomorphic submersion which admits stratified sprays then any continuous section f0 : X → Z
such that f0|X0

is holomorphic can be deformed to a holomorphic section f1 : X → Z by a
homotopy that is fixed on X0.
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Our stratification will be SL2(C) ⊃ X1 ⊃ ∅ where

X1 =

{(
a b
c d

)
∈ SL2(C); a = 0

}
.

We have constructed a spray associated with ΦN : CN |SL2(C)\X1

→ SL2(C) \X1 and need one

associated with ΦN : CN |X1
→ X1. So we need to consider the case a = 0. The construction

of complete vector fields will be done in the same way as the case a 6= 0 but with some minor
modifications. Let P = Φ12

N (z1, z2, . . . , z2n−2, 0, 0) (notice that we have P = Q2 when Q1 = 0)
and define

Wkl = Pl
∂

∂zk
− Pk

∂

∂zl
for 1 ≤ k < l ≤ N − 2 where Pj = ∂P/∂zj. These vector fields spans the tangent space of
Q2 = b 6= 0 and are integrable for the same reason as in the case a 6= 0. Once again we lift the
vector fields onto the fiber and we are done.

2.4.2. The odd-dimensional case. This works in the same way as the even-dimensional case. We
only note that the stratification will be SL2(C) ⊃ X1 ⊃ ∅ where

X1 =

{(
a b
c d

)
∈ SL2(C); b = 0

}

and that the bad set SN is contained in the fibers over X1. However these points can be avoided
and hence removed from the fibration and therefore presents no problem for us.

3. Unipotent generation of null-homotopic holomorphic mappings into SL2(C)

3.1. The first result on the number of factors. Consider ΦN : CN → SL2(C). By Lemma
2.2 we know that the mapping is submersive outside the set

SN = {z ∈ C
N ; z = (z1, 0, . . . , 0, zN)}.

Therefore the bundle ξ = (CN \ SN ,ΦN , SL2(C)) has a submersive projection. Here we abuse
notation slightly and write ΦN = ΦN |CN\SN

. The pull-back bundle

f∗ξ = (f∗(CN \ SN ), f∗ΦN , X)

also has a submersive projection. Here the total space of f∗ξ is the subspace

f∗(CN \ SN ) = {(x, z) ∈ X × (CN \ SN); f(x) = ΦN (z)}

and the projection is f∗ΦN (x, z) = x. We also have fξ : f
∗(CN \ SN ) → CN \ SN defined as

fξ(x, z) = z. We get the commutative diagram

f∗(CN \ SN )
fξ

//

f∗ΦN

��

CN \ SN

ΦN

��
X

f
// SL2(C)

and this induces a commutative diagram for the tangent spaces which lets us conclude that f∗ξ
has submersive projection and we saw in the previous section that it admits a stratified spray.

By Vaserstein’s result there exists a continuous mapping g : X → CN such that f(x) =
ΦN (g(x)). Assume that we know that g(X) ∩ SN = ∅. Then we get a global continuous section
f∗g : X → f∗(CN \SN) defined as f∗g(x) = (x, g(x)) and we can use Theorem 2.6 to deform this
section into a holomorphic section and this will show that we can write the map f as a product
of elementary matrices with holomorphic entries. In general we don’t know if the continuous
mapping g is such that g(X)∩SN = ∅ but we can add two matrices in the factorization to make
sure that we avoid the bad set. Assume that

f(x) =

(
1 g1(x)
0 1

)(
1 0

g2(x) 1

)
. . .

(
1 0

gN (x) 1

)
.
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Trivially we have

f(x) =

(
1 g1(x)
0 1

)(
1 1
0 1

)(
1 0
0 1

)(
1 −1
0 1

)(
1 0

g2(x) 1

)
. . .

(
1 0

gN (x) 1

)
=

=

(
1 g1(x) + 1
0 1

)(
1 0
0 1

)(
1 −1
0 1

)(
1 0

g2(x) 1

)
. . .

(
1 0

gN (x) 1

)

and we see that we have a new factorization corresponding to the map

g̃(x) = (g1(x) + 1, 0,−1, g2(x), . . . , gN (x)) ∈ C
N+2

which avoids the bad set SN+2. The same trick also works when N is odd. Therefore we have

Theorem 3.1. Let X be a finite dimensional Stein space and f : X → SL2(C) be a holomorphic
mapping that is null-homotopic. Assume that there exists continuous mappings g1, . . . , gK : X →
C such that

f(x) = M1(g1(x))M2(g2(x)) . . .MK(gK(x)).

Then there exists holomorphic mappings h1, . . . , hK+2 : X → C such that

f(x) = M1(h1(x))M2(h2(x)) . . .MK+2(hK+2(x)).

4. The example

The counterexample to factorization in the algebraic case (C[z, w]) of Cohn is
(
1 + zw z2

−w2 1− zw

)

and we will find a holomorphic and a topological factorization of this matrix. The minimal
number of factors in the continuous case will be 4 and we will show that in the holomorphic case
we need 5 factors.

Let us start with giving a concrete holomorphic factorization. Of course the existence of a
factorization with 5 factors follows also from Theorem 5.2. The first step is

(
1 −h1(z, w)
0 1

)(
1 + zw z2

−w2 1− zw

)
=

(
ezw z2 − (1− zw)h1(z, w)
−w2 1− zw

)

where

h1(z, w) =
ezw − 1− zw

w2
.

Putting h2(z, w) = (1− w2)e−zw we get
(

1 0
−h2(z, w) 1

)(
ezw z2 − (1− zw)h1(z, w)
−w2 1− zw

)
=

(
ezw H(z, w)
1 G(z, w)

)
.

Using h3(z, w) = ezw − 1 and h4(z, w) = 1 we see
(
1 −h3(z, w)
0 1

)(
ezw H(z, w)
1 G(z, w)

)
=

(
1 H2(z, w)
1 G2(z, w)

)

and (
1 0

−h4(z, w) 1

)(
1 H2(z, w)
1 G2(z, w)

)
=

(
1 H2(z, w)
0 G3(z, w)

)
.

Now G3(z, w) = 1 so we have a factorization. We get
(
1 + zw z2

−w2 1− zw

)
=

(
1 h1

0 1

)(
1 0
h2 1

)(
1 h3

0 1

)(
1 0
h4 1

)(
1 H2

0 1

)
.

Now we analyze what it means to find a factorization using just 4 matrices. If we can find
h1, h2, h3, and h4 such that

(
1 + zw z2

−w2 1− zw

)
=

(
1 h1

0 1

)(
1 0
h2 1

)(
1 h3

0 1

)(
1 0
h4 1

)
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then we get the relations

1 + h2h3 = 1− zw

h1 + h3 + h1h2h3 = z2

h2 + h4 + h2h3h4 = −w2

1 + h1h2 + h1h4 + h3h4 + h1h2h3h4 = 1 + zw.

Rewriting we get
h2h3 = −zw

(1− zw)h1 + h3 = z2

h2 + (1− zw)h4 = −w2

h1h2 + (1− zw)h1h4 + h3h4 = zw.

Now on zw = D these relations become

h2h3 = −D

(1−D)h1 + h3 = z2

h2 + (1−D)h4 = −w2

h1h2 + (1−D)h1h4 + h3h4 = D.

and assuming for the moment that D 6= 0 and D 6= 1 we see that

h2 = −D/h3 = −zw/h3

h1 = (z2 − h3)/(1−D) = (z2 − h3)/(1− zw)

h4 =
−h3w

2 +D

h3(1 −D)
=

−h3w
2 + zw

h3(1− zw)
.

We see that any choice of h3 : C
2 \ ({zw = 0} ∪ {zw = 1}) → C∗ gives a factorization in this

part of C2. In other words the fibre of the fibration f∗(Φ4) over C
2 \ ({zw = 0} ∪ {zw = 1}) =

{(z, w) ∈ C2 : D ∈ C \ {0, 1} is C∗ and the fibration is trivial there. To get a factorization we
must be able to extend this function to the whole of C2 so that h1, h2 and h4 still are well-defined.

When D = 1 we have

(2)

h3 = z2

h2 = −w2

1 = −w2h1 + z2h4 = zw

and we see that we can pick h1 arbitrary and use the last equation to define h4. In other words
the fibre of f∗(Φ4) here is C and again the fibration is trivial when restricted to D = 1.

Just to complete the picture we remark that over the set ({zw = 0}, i.e., D = 0 the fibre of
f∗(Φ4) is the cross of axis and the point (0, 0) in the cross of axis is the singular point in those
fibres.

A continuous section s = (h1, h2, h3, h4) : C
2 \ {zw = 0} gives a map h3 : C

2 \ {zw = 0} → C
∗

such that h3|{zw=1} = z2 by (2). Now view C2 \ {zw = 0} as a bundle over C∗ with fibers C∗

via zw = D. Thus h3 gives a family of maps hD : C∗ → C∗. Since hD for D = 1 is prescribed,
the degree of these mappings is 2 for all D ∈ C \ {0} (depending on some fixed parametrization
of the fibre involved, we could as well choose parametrization to get −2). Continuous mappings
C∗ → C∗ are homotopic iff they have the same degree. Therefore, if we find a continuous section
of the fibration in a neighborhood U of D = 0 of the form U = {|D| < ǫ} having degree 2 for
D 6= 0, we can join it to a section in a neighborhood of D = 1 (say given by h3 = z2, h2 = −w/z,
h1 = 0, and h4 = w/z). Here is that section:

Define h3 = w2/(|w|3/2) outside zw = 0 and the other mappings becomes h2 = −(z|w|3/2)/w,
h1 = (z2 − (w2/(|w|3/2)))/(1 − zw), and h4 = −w2 + (z|w|3/2/w). These mappings all extends
to the whole of D = 0 and the required relations are satisfied on zw = 0. Also this extension of
h3 gives mapping degree 2. Remark that this section does not avoid the singularity set. Over
the point (0, 0) its value is the double point in the cross of axis. Now let’s show that there is
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no continuous section of f∗(Φ4) avoiding the singularity set S4. Indeed, removing S4 means
removing the zero point in the fibres over D = 0, the fibre over D = 0 becomes now a disjoint
union of two copies of C∗. Since D = 0 is a connected set the section has to be entirely in one
of the copies. Now there are two ways of continuing our family of C∗’s parametrized by D ∈ C∗

in into D = 0:

(
z,

D

z

)
D→0
−−−→ (z, 0)

and (
D

z
, z

)
D→0
−−−→ (0, z)

One continuation lands in the z-axis, the other in the w-axis. Since they are achieved by using
different parametrizations of C∗, the corresponding degrees for the map into C∗ are different,
+2 and −2. But shrinking circles in D = 0 towards (0, 0), one sees that the map to C∗ has to
be null-homotopic, i.e., to have degree 0.

Next we prove that there is no holomorphic factorization by 4 factors: The condition h2h3 =
−zw means by division theory in the ring of holomorphic functions that there are 4 possibilities
for h3 up to nowhere vanishing functions (units) which are null-homotopic and therefore do not
contribute to degree: 1, z, w or zw. The corresponding degrees are 0 and ±1, different from 2.
Thus there is no holomorphic section of f∗(Φ4). Summarizing we have proved:

Proposition 4.1. The matrix
(
1 + zw z2

−w2 1− zw

)
∈ SL2(C[z, w])

(which is known to be not factorizable by elementary matrices with polynomial entries) can be
factorized as a product of 4 continuous elementary matrices and as a product of 5 holomorphic
elementary matrices. Both numbers are minimal in the respective ring. Moreover any factoriza-
tion of it by 4 continuous matrices has to meet the singularity set in the corresponding fibration
over C2.

5. Numerical bounds when dimX ≤ 2

We will use obstruction theory to get an upper bound for the number of factors needed when
dimX ≤ 2.

5.1. The one-dimensional case. We begin by describing the situation when dimX = 1 and
we will show that 4 factors are enough. We write

Φ4(u, z1, z2, v) =

(
1 0
u 1

)(
P1 P2

P3 P4

)(
1 v
0 1

)

where P1 = 1+ z1z2. The map Φ4 is submersive outside {z1 = z2 = 0} which is contained in the

set Z̃ = Φ−1
4 (Z) where

Z = {

(
1 b
c d

)
}.

The stratification of X is X ⊃ f−1(Z) ⊃ ∅. Note that this is not the stratification used to
construct the stratified spray. We now construct a section over f−1(Z) using 4 matrices. We
simply write

(
1 b
c d

)
=

(
1 0
c 1

)(
1 b
0 1

)
=

(
1 0

c− 1 1

)(
1 0
0 1

)(
1 0
1 1

)(
1 b
0 1

)
.

We view this as a section of f∗Φ4 over f−1(Z) which we can do this because of the constant

matrix

(
1 0
1 1

)
in the factorization. Since f∗Φ4 is submersive we can extend this section into

a neighborhood U ⊃ f−1(Z). We need to extend this section over the whole of X and this is
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where we need obstruction theory. The obstructions for extending the section live in the relative
cohomology groups

Hi+1(X \ f−1(Z), U \ f−1(Z), πi(F ))

for i ≥ 1 where F is the fiber in the trivial bundle over X \ f−1(Z). The triviality follows since
we can pass from fiber {z1z2 = α} to fiber {z1z2 = β} via the transformation Tα,β(z1, z2) =
(z1, α

−1βz2, ) for α, β 6= 0. We see that the fiber F = {z1z2 = α} ∼= C∗.
We calculate the relative cohomology groups

Hi+1(X \ f−1(Z), U \ f−1(Z), πi(F ))

for i ≥ 1. By excision these are the same as

Hi+1(X, f−1(Z), πi(F )).

Study the diagram

H1(f−1(Z), π1(F )) // H2(X, f−1(Z), π1(F )) // H2(X, π1(F ))

Now X is Stein and we may assume that f−1(Z) is a discrete point set. We get

H2(X, f−1(Z), π1(F )) = 0.

We also see that Hi+1(X, f−1(Z), πi(F )) = 0 when i ≥ 2 in the same way.
WriteX = ∪∞

i=1X
i where eachX i is irreducible. Then either f−1(Z)∩X i = X i or f−1(Z)∩X i

is a point set. On the components where f−1(Z)∩X i = X i we use the explicit factorization we
constructed above and these components intersect the rest of the components in a point set. We
can therefore assume that f−1(Z) is a point set.

Since all obstructions for extension of the section vanish we get a factorization using 4 ele-
mentary matrices with continuous entries. Using the spray we can homotope the section to a
holomorphic section and we get a factorization of the matrix using 4 elementary matrices with
holomorphic entries. We have

Theorem 5.1. Let X be a one-dimensional Stein space and f : X → SL2(C) be a holomorphic
mapping. Then there exists holomorphic mappings g1, . . . , g4 : X → C such that

f(x) =

(
1 0

g1(x) 1

)(
1 g2(x)
0 1

)(
1 0

g3(x) 1

)(
1 g4(x)
0 1

)
.

5.2. The two-dimensional case. We now turn to the case dimX = 2. Here we will show that
5 factors are enough. Remember that

Φ5(u, z1, z2, z3, v) =

(
1 0
u 1

)(
P1 P2

P3 P4

)(
1 0
v 1

)

where P2 = z1 + z3 + z1z2z3. The map Φ5 is submersive outside {z1 = z2 = z3 = 0} which is

contained in the set Z̃ = Φ−1
5 (Z) where

Z = {

(
a 0
c a−1

)
}.

The stratification of X is X ⊃ f−1(Z) ⊃ ∅. We now construct a section over f−1(Z) using 4
matrices. We simply write

(
a 0
c a−1

)
=

(
1 0

a−1(c− 1) 1

)(
1 a− 1
0 1

)(
1 0
1 1

)(
1 a−1 − 1
0 1

)
.

We then add an extra identity matrix at the end and view this as a section of f∗Φ5 over f−1(Z).

We can do this because of the constant matrix

(
1 0
1 1

)
in our factorization. Since f∗Φ5 is

submersive we can extend this section into a neighborhood U ⊃ f−1(Z). We need to extend this
section over the whole of X and this is where we need obstruction theory. The obstructions for
extending the section are located in the relative cohomology groups

Hi+1(X \ f−1(Z), U \ f−1(Z), πi(F ))
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for i ≥ 1 where F is the fiber in the trivial bundle overX \f−1(Z). The triviality follows since we
can pass from fiber to fiber via the transformation Tα(z1, z2, z3) = (αz1, α

−1z2, αz3) for α 6= 0.
The fiber F is given by F = {z1 + z3 + z1z2z3 = 1}.

The relative cohomology groups

Hi+1(X \ f−1(Z), U \ f−1(Z), πi(F ))

for i ≥ 1 are easily calculated. By excision these are the same as

Hi+1(X, f−1(Z), πi(F )).

First we have

H2(X, f−1(Z), π1(F )) = 0

trivially since π1(F ) = 0 by Lemma 5.5 below. Study the diagram

H2(f−1(Z), π2(F )) // H3(X, f−1(Z), π2(F )) // H3(X, π2(F ))

Now both X and f−1(Z) are Stein and we may assume that f−1(Z) has dimension 1 or 0, see
below. We get H3(X, f−1(Z), π2(F )) = 0. We also see that Hi+1(X, f−1(Z), πi(F )) = 0 when
i ≥ 3 in the same way.

WriteX = ∪∞
i=1X

i where eachX i is irreducible. Then either f−1(Z)∩X i = X i or f−1(Z)∩X i

has strictly lower dimension than X i. On the components where f−1(Z) ∩ X i = X i we use
the explicit factorization we constructed above and these components intersect the rest of the
components in one- or zero-dimensional sets. We can therefore assume that dim f−1(Z) < 2.

Since all obstructions for extension of the section vanish we get a factorization using 5 ele-
mentary matrices with continuous entries. Using the spray we can homotope the section to a
holomorphic section and we get a factorization of the matrix using 5 elementary matrices with
holomorphic entries. We have

Theorem 5.2. Let X be a two-dimensional Stein space and f : X → SL2(C) be a holomorphic
mapping. Then there exists holomorphic mappings g1, . . . , g5 : X → C such that

f(x) =

(
1 0

g1(x) 1

)(
1 g2(x)
0 1

)(
1 0

g3(x) 1

)(
1 g4(x)
0 1

)(
1 0

g5(x) 1

)
.

Remark 5.3. Note that any holomorphic map from a two-dimensional Stein space into SL2(C),
which is three-dimensional, is null-homotopic.

Remark 5.4. Note that we have not proven that any continuous map f : X → SL2(C) fac-
tors using only 5 matrices. We used the fact that f−1(Z) is Stein in our calculations of
Hi+1(X, f−1(Z), πi(F )) = 0.

Lemma 5.5. The fiber F = {z1 + z3 + z1z2z3 = 1} is simply connected.

Proof. Rewrite z1 + z3(1 + z1z2) = 1, put c = 1 + z1z2 and we see that part of F is a graph in
C4 via

(z1, c) 7→ (z1, c, (c− 1)/z1, (1− z1)/c)

over (C∗)2. We have π1((C
∗)2) = Z2 and let us call the generators (g1, 0) and (0, g2).

We need to understand what happens at the points where z1 = 0 and where c = 0. If z1 = 0
then c = 1 + z1z2 = 1, z2 free and z3 = 1. So over the point (0, 1) we glue a complex line and
(g1, 0) becomes contractible.

Now when c = 0 then z3 is a free variable, z1 = 1 and z2 = −1 and therefore over the
point (1, 0) we glue a complex line to get the whole of F . Now (0, g2) becomes contractible and
therefore π1(F ) = 0.

�
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