SIMPLICIAL VOLUME AND FILLINGS OF HYPERBOLIC MANIFOLDS

KOJI FUJIWARA AND JASON FOX MANNING

Abstract

Let M be a hyperbolic n-manifold whose cusps have torus crosssections. In FM10, the authors constructed a variety of nonpositively and negatively curved spaces as " 2π-fillings" of M by replacing the cusps of M with compact "partial cones" of their boundaries. These 2π-fillings are closed pseudomanifolds, and so have a fundamental class. We show that the simplicial volume of any such 2π-filling is positive, and bounded above by $\frac{\operatorname{Vol}(M)}{v_{n}}$, where v_{n} is the volume of a regular ideal hyperbolic n-simplex. This result generalizes the fact that hyperbolic Dehn filling of a 3-manifold does not increase hyperbolic volume.

Contents

1. Introduction 1
2. Simplicial volume and duality 4
2.1. Gromov norms 4
2.2. Symmetrization 6
3. Main result 7
Appendix A. A proportionality theorem 13
Appendix B. (Anti)Symmetrization of chains 18
Acknowledgments 20
References 20

1. Introduction

Simplicial volume was defined for manifolds by Gromov in Gro82. For an n-dimensional closed manifold M of constant sectional curvature $K=-1$, the simplicial volume $\|M\|$ is proportional to the (Riemannian) volume $\operatorname{Vol}(M)$, and the ratio is the volume of a regular ideal hyperbolic n-simplex; in particular, it depends only on the dimension [Gro82, 0.4]. More generally, Gro82, 0.3,0.5], for constants $a \leq b<0$, there is a constant $C=C(a, b, n)>1$ so that if the sectional curvatures K satisfy $a \leq K \leq b$, then

$$
\begin{equation*}
\operatorname{Vol}(M) / C \leq\|M\| \leq C \operatorname{Vol}(M) \tag{1}
\end{equation*}
$$

This note is motivated in part by the (apparently open) question:

[^0]Question 1.1. Fix $v>0$, and let $\mathcal{M}_{n, v}$ be the set of (homotopy classes of) closed n manifolds whose sectional curvatures are all negative, and whose simplicial volume is bounded above by v. Is $\mathcal{M}_{n, v}$ finite whenever $n \geq 4$?

Some comments, fixing $n \geq 4$ and $v>0$:

- The set $\mathcal{M}_{n, v}$ contains only finitely many constant curvature manifolds, even up to diffeomorphism. This follows from Wang's finiteness theorem Wan72 together with the proportionality of simplicial volume to hyperbolic volume for closed manifolds (see, e.g., [BP92, C.4]).
- Fix $b>0$. The set $\mathcal{M}_{n, v}$ contains only finitely many diffeomorphism classes of manifolds with sectional curvatures K pinched between -1 and b. Indeed, as noted in the inequality (11), the curvature assumption $-1 \leq K \leq b<0$ together with an upper bound on the simplicial volume gives an upper bound on the volume Gro82, 0.3, 1.2]. On the other hand, the condition $-1 \leq K<0$ together with the upper bound on the volume gives an upper bound on the diameter Gro78, 1.2] and a lower bound on the volume Gro78, 1.3 A]. Now, Cheeger's finiteness theorem applies Gro78, 1.4].

Thus if there are infinitely many diffeomorphism types of closed $n-$ manifolds of bounded volume, with sectional curvatures ≤-1, there cannot be any uniform lower bound on their sectional curvatures, so long as $n \geq 4$. So a negative answer to Question 1.1 would have to involve manifolds without uniformly pinched curvature. For $n>3$ there do exist sequences of negatively curved manifolds whose curvatures cannot be uniformly pinched. Gromov-Thurston GT87, 0.5] describe a sequence $\left\{V_{i}\right\}$ of negatively curved closed manifolds which are i-fold ramified covers of a fixed closed manifold V of constant negative curvature, and show the curvatures of the V_{i} cannot be uniformly pinched. We remark that such a sequence of ramified covers V_{i} must satisfy $0<i\|V\| \leq\left\|V_{i}\right\|$, so it does not imply a negative answer to Question 1.1 .

- The sets $\mathcal{M}_{3, v}$ are infinite for large enough v, even if one restricts to constant curvature. This is because of Thurston's hyperbolic Dehn surgery theorem, and Thurston's theorem (which we generalize in this note) that volume decreases under hyperbolic Dehn filling.
It is easy to extend the definition of simplicial volume to closed pseudomanifolds. This is explained in Section2(cf. Yam97]). Pseudomanifold versions of the bounds in (1) have been established by Yamaguchi Yam97, Theorem 0.2 and 0.5] as follows. First, if X is an orientable n-dimensional, compact, geodesically complete (locally) CAT(-1) pseudo-manifold, then

$$
\begin{equation*}
\operatorname{Vol}(X) \leq \frac{\pi}{(n-1)!}\|X\| \tag{2}
\end{equation*}
$$

Yamaguchi conjectures that the factor of $\frac{\pi}{(n-1)!}$ in (2) can be replaced by the volume of a regular ideal hyperbolic n-simplex. Second, if X is an n-dimensional compact orientable geodesic space without boundary such that $K \geq-1$ in the sense of Alexandrov and X is "locally Lipschitz contractible", then

$$
\|X\| \leq n!(n-1)^{n} \operatorname{Vol}(X)
$$

where $\operatorname{Vol}(X)$ is the n-dimensional Hausdorff measure of X. Both bounds cannot be applied at once except in the manifold setting, since upper and lower curvature
bounds can only coexist in a manifold. We do not use either bound in this paper, except in Remark 1.10 below.

We do not answer Question 1.1, but we answer the analogous question for negatively curved pseudomanifolds:

Question 1.2. Let $n \geq 4$. Fix $v>0$, and let $\mathcal{P}_{n, v}$ be the set of (homotopy classes of) closed locally $C A T(-1)$ n-pseudomanifolds whose simplicial volume is bounded above by v. Is $\mathcal{P}_{n, v}$ finite?

Specifically, we apply a "Dehn filling" construction to give a negative answer to Question 1.2

Let M be a compact n-manifold with boundary a union of m tori, whose interior $V=\operatorname{Int}(M)$ admits a complete hyperbolic metric of finite volume. Let $\bar{M} \cong M$ be a compact manifold obtained from V by removing horospherical neighborhoods of the cusps. The manifold \bar{M} has m boundary components N_{1}, \ldots, N_{m}, each of which inherits a flat metric from the hyperbolic metric on $\operatorname{Int}(M)$. In [FM10], we defined and studied fillings of M, which are topological spaces obtained by gluing the product of a torus with the cone on another torus to each boundary component of \bar{M}. Here is an equivalent definition.

Definition 1.3. For each $i \in\{1, \ldots, m\}$, let $T_{i}<N_{i}$ be a k_{i}-dimensional submanifold which is totally geodesic in N_{i}. The $(n-1)$-torus N_{i} is foliated by parallel copies of T_{i}, with leaf space V_{i} homeomorphic to an $\left(n-1-k_{i}\right)$-dimensional torus. Let $h_{i}: N_{i} \rightarrow V_{i}$ be the quotient map, and define $M\left(T_{1}, \ldots, T_{m}\right)$ to be the quotient \bar{M} / \sim, where $x \sim x^{\prime}$ if $h_{i}(x)=h_{i}\left(x^{\prime}\right)$ for some i. The space $M\left(T_{1}, \ldots, T_{m}\right)$ is called a filling of M. If all of the tori T_{i} have injectivity radius strictly larger than $\pi, M\left(T_{1}, \ldots, T_{m}\right)$ is called a 2π-filling of M.

In case M is 3 -dimensional, and each T_{i} is one-dimensional, fillings $M\left(T_{1}, \ldots, T_{m}\right)$ are the same as ordinary Dehn fillings of M. In [FM10], we generalize work in BH96, Sch89, MS97 (including the Gromov-Thurston 2π Theorem) to prove:

Theorem 1.4. FM10] Let M be an n-dimensional hyperbolic manifold as above. Every 2π-filling $M\left(T_{1}, \ldots, T_{m}\right)$ of M admits a locally $C A T(0)$ metric, so the universal cover is $C A T(0)$ with isolated flats. If every T_{i} has dimension at least $n-2$, then $M\left(T_{1}, \ldots, T_{m}\right)$ admits a locally $C A T(-1)$ metric.

Each filling of M is a closed pseudomanifold with singular set equal to a disjoint union of tori of dimensions $n-\left(1+\operatorname{dim}\left(T_{1}\right)\right), \ldots n-\left(1+\operatorname{dim}\left(T_{m}\right)\right)$ (see Definition 2.1 for these terms). In particular, its simplicial volume is well-defined Yam97. The main result of the current paper is that these fillings have positive simplicial volume, bounded above by the simplicial volume of M.

Theorem 1.5. Let M be a compact n-manifold with boundary a union of $(n-1)$ tori, and suppose that $V=\operatorname{Int}(M)$ admits a complete hyperbolic metric of finite volume $\operatorname{Vol}(V)$. Let $M\left(T_{1}, \ldots, T_{m}\right)$ be a 2π-filling of $\operatorname{Int}(M)$. Then

$$
0<\left\|M\left(T_{1}, \ldots, T_{m}\right)\right\| \leq \frac{\operatorname{Vol}(V)}{v_{n}}
$$

where v_{n} is the volume of a regular ideal hyperbolic n-simplex.
Corollary 1.6. The answer to Question 1.2 is " $n o$," for v equal to the volume of any hyperbolic n-manifold with torus cusps.

Proof. Let $M, \bar{M}, N_{1}, \ldots, N_{m}$ be as in the discussion preceding Definition 1.3, For each $j \in\{1, \ldots, m\}$, choose a sequence $\left\{T_{i}^{j}\right\}_{i \in \mathbb{N}}$ of totally geodesic codimension 1 tori in N_{j}, all with inj $>\pi$, and so that $\lim _{i \rightarrow \infty} \operatorname{inj}\left(T_{i}^{j}\right)=\infty$. Let M_{i} be the filling $M\left(T_{i}^{1}, \ldots, T_{i}^{m}\right)$. Proposition 2.12 of FM10 implies that for any i only finitely many M_{j} have fundamental group isomorphic to $\pi_{1} M_{i}$, so the set $\left\{M_{i}\right\}_{i \in \mathbb{N}}$ contains infinitely many homotopy classes. Theorem 1.4 implies that $0<\left\|M_{i}\right\| \leq \frac{\operatorname{Vol}(V)}{v_{n}}$ for all i.

It would be interesting to get some further information on the possible volumes of fillings of M. Hyperbolic Dehn filling of a 3-manifold strictly decreases volume, and the volume difference goes to zero as the length of the filling slope goes to infinity (see [Thu80, 6.5.6] for strictness and [NZ85, HK05a, FKP08 for estimates of the difference). We conjecture that similar phenomena hold in higher dimensions.

Conjecture 1.7. The volumes $\left\|M\left(T_{1}, \ldots, T_{m}\right)\right\|$ accumulate on $\frac{\operatorname{Vol}(V)}{v_{n}}$ but do not attain it.

Question 1.8. Let $\epsilon>0$. Is there some R so that if every torus T_{i} has injectivity radius bigger than R, then

$$
\frac{\operatorname{Vol}(V)}{v_{n}}-\epsilon<\left\|M\left(T_{1}, \ldots, T_{m}\right)\right\|<\frac{\operatorname{Vol}(V)}{v_{n}} ?
$$

Question 1.9. Consider the set of fundamental groups of 2π-fillings of M as a subspace of the space of "marked groups" generated by some fixed set of generators of $\pi_{1} M$. Is the simplicial volume a continuous function on this space?

Remark 1.10. It is possible to analyze the metrics constructed in FM10 and apply Yamaguchi's inequality (2) to deduce that the $\operatorname{CAT}(-1)$ fillings of a fixed M have simplicial volume bounded away from zero, but this is about all we know for certain.

2. Simplicial volume and duality

In this section we recall the definition of simplicial volume for pseudomanifolds and set up some computational tools.
2.1. Gromov norms. Let X be any space, and let $\omega \in H_{*}(X ; \mathbb{R})$ or $\omega \in H_{*}(X, Y ; \mathbb{R})$ for some $Y \subset X$. The Gromov norm of ω is the smallest $l^{1}-$ norm of a real singular chain representing ω,

$$
\|\omega\|=\inf \left\{\sum_{i=1}^{k}\left|\alpha_{i}\right| \mid\left[\sum_{i=1}^{k} \alpha_{i} \sigma_{i}\right]=\omega\right\} .
$$

(Since this infimum may be zero, the "Gromov norm" is only a seminorm in general.) This quantity only depends on ω and the homotopy type of the pair (X, Y). In the absolute case, we can use it to define the Gromov norm of any $\omega \in H_{*}(G)$, where G is a discrete group, by choosing X to be a $K(G, 1)$.

If ω is an integral cycle and η is the canonical map from integral to real homology, then we set $\|\omega\|=\|\eta(\omega)\|$.

The Gromov norm of a cycle can be computed via the pairing between bounded cohomology and l^{1} homology: If $\omega \in H_{k}(X)$ and $H_{b}^{k}(X ; \mathbb{R})$ is the k-dimensional
bounded cohomology of X, then

$$
\begin{equation*}
\|\omega\|=\sup \left(\left\{\left.\frac{1}{\|\phi\|_{\infty}} \right\rvert\, \phi \in H_{b}^{k}(X ; \mathbb{R}),\langle\phi, \omega\rangle=1\right\} \cup\{0\}\right) . \tag{3}
\end{equation*}
$$

See BP92, Proposition F.2.2] for a proof.
For M a closed orientable n-manifold, Gromov defined the simplicial volume $\|M\|$ to be the Gromov norm of the fundamental class in $H_{n}(M ; \mathbb{R})$. For a manifold with boundary, it is natural to define $\|M, \partial M\|$ to be the Gromov norm of the fundamental class in $H_{n}(M, \partial M ; \mathbb{R})$. It is clear from the definition that this volume only depends on the homotopy type of $(M, \partial M)$. For closed hyperbolic manifolds the simplicial volume is proportional to the volume. More generally, if M is compact, and the interior of M admits a complete finite volume hyperbolic metric of volume Vol, then

$$
\|M, \partial M\|=\frac{1}{v_{n}} \mathrm{Vol},
$$

where v_{n} is the volume of a hyperbolic regular ideal simplex of dimension n. (See BP92, C.4] for the closed case; we show how to extend to the finite volume case in Appendix A.)

In Yam97, Yamaguchi extended the notion of simplicial volume to orientable pseudomanifolds, defined as follows.

Definition 2.1. Yam97, Definition 2.1] A locally compact, Hausdorff, locally homologically n-connected space X is called an oriented n-pseudomanifold if it contains a closed subset S (the singular set) so that:
(i) $X \backslash S$ is an orientable n-manifold,
(ii) $\operatorname{dim}(S) \leq n-1$, and
(iii) $\operatorname{dim}(S \cap \overline{X \backslash S}) \leq n-2$.

In Yam97, Proposition 2.2], Yamaguchi shows that such a space X has a fundamental class $[X]$ in $H_{n}(X)=H_{n}\left(\pi_{1}(X)\right)$ so that the orientation cocycle $\beta \in H^{n}(X)$ is dual to this class. For such a pseudomanifold X, the simplicial volume of X is defined to be the Gromov norm of $[X]$, and written $\|X\|$.

If X is aspherical, and $\pi_{1}(X)$ is hyperbolic, then the orientation cocycle is cohomologous to a bounded cocycle by the main theorem of Min02, and so $\|X\|>0$ by the duality equation (3).

If $\pi_{1}(X)$ is only relatively hyperbolic, we need the following corollary of a theorem of Mineyev-Yaman:

Proposition 2.2. Let M be a closed orientable aspherical n-dimensional pseudomanifold with singular set $V \subset M$ which is a disjoint union of aspherical components $V=\cup_{i=1}^{m} V_{i}$. Suppose that $\pi_{1}(M)$ is hyperbolic relative to the collection of subgroups $\left\{\pi_{1}\left(V_{i}\right) \mid i \in\{1, \ldots, n\}\right\}$. Then $\|M\|>0$.

Proof. The inclusion of pairs $(M, \emptyset) \rightarrow(M, V)$ gives a natural map

$$
H^{n}(M, V ; \mathbb{R}) \rightarrow H^{n}(M ; \mathbb{R})
$$

Since $\operatorname{dim}(V \cap \overline{M \backslash V}) \leq n-2$, the Mayer-Vietoris exact sequence shows this map to be an isomorphism (cf. Yam97, Proposition 2.2]). The main result of Mineyev-Yaman MY implies that the map

$$
H_{b}^{n}\left(\pi_{1}(M),\left\{\pi_{1}\left(V_{i}\right)\right\}_{i=1}^{m} ; \mathbb{R}\right) \rightarrow H^{n}\left(\pi_{1}(M),\left\{\pi_{1}\left(V_{i}\right)\right\}_{i=1}^{m} ; \mathbb{R}\right)
$$

is surjective, since $\pi_{1}(M)$ is hyperbolic relative to the fundamental groups of the components of V. Since M and the components of V are aspherical, this is the same as saying that the map

$$
\begin{equation*}
H_{b}^{n}(M, V ; \mathbb{R}) \rightarrow H^{n}(M, V ; \mathbb{R})=H^{n}(M ; \mathbb{R}) \tag{4}
\end{equation*}
$$

is surjective. It follows that the orientation cocycle of M is cohomologous to a bounded cocycle α. (The cocycle moreover can be chosen to vanish on chains in V, but we don't use this.) Equation (3) gives $\|M\| \geq \frac{1}{\|\alpha\|_{\infty}}>0$.
2.2. Symmetrization. It will be convenient in the arguments of Section 3 to assume that all chains considered are symmetric. Here we say what this means and justify the assumption.

Consider the abstract n-simplex Δ^{n}. The symmetric group S_{n+1} acts in an obvious way on the vertices, and any permutation $p \in S_{n+1}$ extends to Δ^{n} as an affine transformation.

Let X be some space. Any singular simplex $\sigma: \Delta^{n} \rightarrow X$ can be altered by precomposition with some $p \in S_{n+1}$ and the singular simplices σ and $\sigma \circ p$ are generally different, though if p is an odd permutation and q is an even one (so $\operatorname{sgn}(p)=-1$ and $\operatorname{sgn}(q)=1$), we'd really like to think of $\sigma \circ p$ as being the same as $\sigma \circ q$ or σ, just with opposite orientation. We would also like to avoid the annoying bookkeeping which is standard when dealing with simplices. We therefore define the symmetrization map

$$
S: C_{*}(X ; \mathbb{R}) \rightarrow C_{*}(X ; \mathbb{R})
$$

on singular n-simplices σ by

$$
\begin{equation*}
S(\sigma)=\frac{1}{(n+1)!} \sum_{p \in S_{n+1}} \operatorname{sgn}(p)(\sigma \circ p) \tag{5}
\end{equation*}
$$

and extend linearly over $C_{*}(X ; \mathbb{R})$.
Lemma 2.3. S is a chain map, chain homotopic to the identity. Moreover $\|S(c)\|_{1} \leq$ $\|c\|_{1}$ for any chain c.

Proof. It is evident that norm does not increase. The chain homotopy is described in Appendix B

Define $C_{*}^{S}(X ; R)$ to be the subcomplex of $C_{*}(X ; R)$ consisting of chains in the image of S; the transformation S restricts to the identity on this subcomplex. Lemma 2.3 implies that in computing Gromov norms, we may as well restrict attention to $C_{*}^{S}(X ; R)$.

Suppose X has the structure of a simplicial complex (or more generally just a CW complex so that each cell is a simplex, and so that each restriction of a gluing map to a face is affine) with triangulation \mathcal{T}.

Definition 2.4. We call a singular simplex $\sigma: \Delta^{n} \rightarrow X$ affine if $\sigma=\tau \circ a$ where $a: \Delta^{n} \rightarrow \Delta^{k}$ is some affine surjection, and τ is the characteristic map of some k-simplex of \mathcal{T}. A linear combination of affine simplices is an affine chain, and so on.

Remark 2.5. There is a nice inclusion

$$
\mathcal{C}_{*}^{\mathcal{T}}(X ; \mathbb{R}) \xrightarrow{i} C_{*}^{S}(X ; \mathbb{R})
$$

of simplicial chains $\mathcal{C}_{*}^{\mathcal{T}}(X ; \mathbb{R})$ given by sending a simplex of X to the symmetrization of its characteristic map. This gives a way to think of simplicial chains as symmetric affine singular chains.

In fact, the image of the map i from Remark 2.5 contains all of the symmetric affine simplices; the symmetrization of an affine simplex which drops dimension must vanish:

Lemma 2.6. Let X have a triangulation \mathcal{T}, and suppose that σ is an affine singular n-simplex with image in the $(n-1)$-skeleton of X. Then $S(\sigma)=0$.
Proof. Since σ has image in the $(n-1)$-skeleton, there must be a pair of vertices $\left\{v_{i}, v_{j}\right\}$ of the standard simplex Δ^{n} which are identified by σ. Let p be a permutation of the vertices of Δ^{n}, and let τ be the transposition switching v_{i} and v_{j}. The maps $\sigma \circ p$ and $\sigma \circ \tau \circ p$ are the same as singular simplices, but the permutations p and $\tau \circ p$ have opposite signs, so the terms $\operatorname{sgn}(p)(\sigma \circ p)$ and $\operatorname{sgn}(\tau \circ \mathrm{p})(\sigma \circ \tau p)$ cancel in the sum (5).
(In Appendix we use ordinary rather than symmetrized chains.)

3. Main Result

In this section we prove the main result, Theorem 1.5. The strategy is to modify an efficient relative fundamental cycle for $(M, \partial M)$ to a fundamental cycle on the filling, without increasing norm by too much.
Lemma 3.1. Let X be a topological space. Let $c \in C_{n}(X ; \mathbb{R})$ be homologous to a rational chain, and let $\epsilon>0$. Then there is some $c^{\prime} \in C_{n}(X ; \mathbb{Q})$ homologous to c so that $\left\|c^{\prime}-c\right\|_{1}<\epsilon$. If c is symmetric, c^{\prime} can be chosen to be symmetric.

Proof. By assumption, there is some $f \in C_{n+1}(X ; \mathbb{R})$ so that $c+\partial f \in C_{n}(X ; \mathbb{Q})$. Since $C_{n+1}(X ; \mathbb{Q})$ is dense in $C_{n+1}(X ; \mathbb{R})$, there is some $f^{\prime} \in C_{n+1}(X ; \mathbb{Q})$ with $\left\|f-f^{\prime}\right\|<\frac{\epsilon}{n+2}$. The chain $c^{\prime}=c+\partial\left(f-f^{\prime}\right)$ satisfies $\left\|c^{\prime}-c\right\|<\epsilon$, since $\left\|\partial_{n+1}\right\|=$ $n+2$.

If c is symmetric, we can take f and f^{\prime} to be symmetric in the above argument, and it will follow that c^{\prime} is symmetric.

Definition 3.2. Let \mathcal{T} be a finite triangulation of a space X, and let \mathcal{T}^{\prime} be its barycentric subdivision. The (closed) star neighborhood of a simplex τ of \mathcal{T} is the union of those simplices of the subdivision \mathcal{T}^{\prime} intersecting τ. A point in the interior of an n-simplex of X lies in at least one closed star neighborhood of a vertex, and in at most $n+1$ such closed stars.

The open star neighborhood of a simplex is the interior of its star neighborhood. (So the open star neighborhood of a simplex does not include its proper faces.) The open star neighborhoods of the simplices of \mathcal{T} form an open cover of X.

Let $\sigma: \Delta^{n} \rightarrow X$ be a singular simplex. We say σ is small with respect to \mathcal{T} if the image of σ is contained entirely in the open star of some vertex of \mathcal{T}^{\prime}.

A singular chain will be called small if all its simplices are small.
Given an order on the vertices of \mathcal{T} there is a canonical way to homotope a small chain to an affine chain, as we describe in the next lemma.
Lemma 3.3. Let X be a space with a (combinatorial) triangulation \mathcal{T}, and let $<\mathcal{T}$ be a total order on the vertices of \mathcal{T}. Canonically associated to any small singular simplex $\sigma: \Delta^{n} \rightarrow X$ are
(1) a "straightened" affine simplex $a(\sigma)$, and
(2) a homotopy $f_{t}(\sigma)$ so that $f_{0}(\sigma)=\sigma$ and $f_{1}(\sigma)=a(\sigma)$,
so that if F is a face of Δ^{n}, then $a(\sigma \mid F)=a(\sigma) \mid F$ and $f_{t}(\sigma \mid F)=f_{t}(\sigma) \mid F$. (In other words, homotopies on a face depend only on that face, so a cycle remains a cycle throughout the homotopy.) Moreover, if σ is invariant under precomposition with an affine map τ, so are $a(\sigma)$ and $f_{t}(\sigma)$.

Proof. The idea is illustrated quite well by the figure given in the proof of Proposition 6.5.1 in Thurston's notes Thu80. We give a little more detail. (The figure given there is not of a combinatorial triangulation. In that case a total order on the "corners" of the simplices must be given, rather than on the vertices. We avoid this complication here by assuming a combinatorial triangulation.)

We begin by defining the straightening $a(\sigma)$. For $x \in X$ define $n(x)$ to be the least vertex v of \mathcal{T} so that x is in the closed star neighborhood of v. Let $\left\{v_{0}, \ldots, v_{n}\right\}$ be the vertices of the standard simplex Δ^{n}. Since σ is small, the image of σ lies in the open star neighborhood of some simplex τ of \mathcal{T}. (In fact there may be several choices for τ, but the maps $a(\sigma)$ and $f_{t}(\sigma)$ we define will not depend on the choice.) It follows that $n\left(\sigma\left(v_{i}\right)\right)$ is a vertex of τ for each i. We define $a(\sigma)\left(v_{i}\right)=n\left(\sigma\left(v_{i}\right)\right)$ and then extend to an affine map $a(\sigma): \Delta^{n} \rightarrow \tau$. It is clear that if F is a face of Δ^{n} we have $a(\sigma \mid F)=a(\sigma) \mid F$.

We now must define the homotopies $f_{t}(\sigma)$. For each $x \in \Delta^{n}$, we let $\tau(x)$ be the unique simplex of \mathcal{T} so that
(1) $\sigma(x) \in \tau(x)$, and
(2) $\tau(x)$ has minimal dimension subject to (11).

Since $\tau(x)$ lies in the open star neighborhood of τ, the simplex τ is a face of $\tau(x)$. Thus both $\sigma(x)$ and $a(\sigma)(x)$ lie in $\tau(x)$. Convex combination is well-defined for points in the same simplex, so we may take, for $t \in[0,1]$,

$$
f_{t}(\sigma)(x)=(1-t) \sigma(x)+t a(\sigma)(x)
$$

The reader may check that f_{t} is well-defined, continuous, and satisfies the property $f_{t}(\sigma \mid F)=f_{t}(\sigma) \mid F$ for each face F of Δ^{n}.

Finally, we note that if τ is some affine map from Δ^{n} to itself so that $\sigma \circ \tau=\sigma$, then $a(\sigma \circ \tau)=a(\sigma)$ and therefore $f_{t}(\sigma \circ \tau)=f_{t}(\sigma)$ for all t.

Lemma 3.4. Let N be a manifold, and let \mathcal{T} be a triangulation of ∂N. If $c \in$ $C_{k}(N ; \mathbb{R})$ is a relative singular cycle in $(N, \partial N)$ so that ∂c is small with respect to \mathcal{T}, then c is (relatively) homologous to c^{\prime} with $\left\|c^{\prime}\right\|_{1} \leq\|c\|_{1}$ and ∂c^{\prime} an affine chain. If c was symmetric, then so is c^{\prime}.

Proof. The chain c is a finite linear combination $c=\sum_{i=1}^{m^{\prime}} \lambda_{i} \sigma_{i}$ of singular simplices $\sigma_{i}: \Delta^{k} \rightarrow N$. The idea is to "preassemble" the simplices to get a map $\phi: K_{c} \rightarrow$ N from a certain CW complex K_{c}, so that c is ϕ_{\sharp} of a linear combination of characteristic maps. We can use Lemma 3.3 to homotope the "boundary" of K_{c} to a simplicial map, and then apply the homotopy extension property of CW pairs.

More precisely, let $J=\left\{1, \ldots m^{\prime}\right\} / \sim$, where $i \sim j$ if $\sigma_{i}=\sigma_{j} \circ q$ for some permutation q. We define

$$
\begin{equation*}
K_{c}=\left(\coprod_{[i] \in J} \Delta_{[i]}^{k}\right) / \sim \tag{6}
\end{equation*}
$$

where $x_{1} \sim x_{2}$ whenever there are $(k-1)$-dimensional faces $F_{1} \subset \Delta_{\left[i_{1}\right]}^{k}$ and $F_{2} \subset$ $\Delta_{\left[i_{2}\right]}^{k}$ satisfying
(1) $x_{j} \in F_{i}$ for $j \in\{1,2\}$, and
(2) there is an affine map $\tau: F_{1} \rightarrow F_{2}$ so that $\tau\left(x_{1}\right)=x_{2}$ and $\sigma_{i_{1}} \mid F_{1}=\sigma_{i_{2}} \circ \tau$.

That is, if two singular simplices agree on a codimension 1 face, we glue the corresponding faces together in K_{c}. Moreover, if a codimension 1 face is unchanged by precomposing with some isometry, we identify the face to itself by the corresponding symmetry. We thus obtain a CW complex K_{c} and a map $\phi: K_{c} \rightarrow N$ given by $\phi(x)=\sigma_{i}(x)$ where $x \in \Delta_{[i]}^{k}$. In the complex K_{c} we can canonically build a chain \tilde{c} made up of "characteristic maps" $\Delta_{[i]}^{k} \rightarrow K_{c}$ so that

$$
c=\phi_{\sharp}(\tilde{c}) .
$$

If c was symmetric, then so is \tilde{c}.
The boundary $\partial \tilde{c}$ is supported in some minimal subcomplex of K_{c}, which we'll refer to as ∂K_{c}. Because c is a relative cycle, the map ϕ described in the last paragraph is really a map of pairs

$$
\phi:\left(K_{c}, \partial K_{c}\right) \rightarrow(N, \partial N) .
$$

After fixing some total order on the simplices of \mathcal{T}, Lemma 3.3 gives a homotopy in ∂N of $\phi \mid \partial K_{c}$ to a "simplicial" map ψ; this map is simplicial in the sense that if F is any face of one of the simplices $\Delta_{[i]}^{k}$ used to define K_{c}, and if ι_{F} is the inclusion map, then $\phi \circ \iota_{F}$ is affine, with image in a single simplex of \mathcal{T}.

By the homotopy extension property of CW pairs, the homotopy from $\phi \mid \partial K_{c}$ to ψ can be extended to all of K_{c}. Let

$$
\Phi_{t}: K_{c} \rightarrow N, t \in[0,1]
$$

be this homotopy, with $\Phi_{0}=\phi$. The chain

$$
c^{\prime}=\left(\Phi_{1}\right)_{\sharp}(\tilde{c})
$$

has all the properties we want.
We need to show that tori can be triangulated so that every simplex of diameter much smaller than the injectivity radius is small. Say that a triangulation of a torus is K-fat if every singular simplex of diameter less than K is small with respect to that triangulation.

Lemma 3.5. For each $d \geq 1$ there is a constant $0<K_{d}<1$ so that every flat torus of dimension d with injectivity radius R has a $\left(K_{d} R\right)$-fat triangulation with $t_{d}=2^{d} d!$ simplices.
Proof. Let T be a flat d-torus, which we can think of as \mathbb{R}^{d} / Λ, where Λ is some rank d lattice. Every such lattice has a Lovász-reduced basis LLL82 $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{d}\right\}$. For $k \in\{1, \ldots, d\}$ define θ_{k} to be the angle made by v_{k} with the subspace of \mathbb{R}^{d} spanned by the rest of the basis. Babai [Bab86] showed that, for all k ,

$$
\sin \left(\theta_{k}\right) \geq\left(\frac{\sqrt{2}}{3}\right)^{d}
$$

Any basis \mathcal{B} of Λ gives rise in a canonical way to a triangulation $\mathcal{T}_{\mathcal{B}}$ of T with t_{d} simplices given by the first barycentric subdivision of the parallelepiped spanned by \mathcal{B}.

Let V be the set of all ordered bases of lattices in \mathbb{R}^{d}, topologized as a subset of $\mathbb{R}^{d^{2}}$, and let $F: V \rightarrow \mathbb{R}_{+}$be the function which sends \mathcal{B} to the least real k so that $\mathcal{T}_{\mathcal{B}}$ is k-fat. The number $F(\mathcal{B})$ is also the least number k so that triangulation of \mathbb{R}^{d} covering $T_{\mathcal{B}}$ is k-fat. We note the following useful properties of F :
(1) F is continuous and positive everywhere on V.
(2) If $\lambda \in \mathbb{R}_{+}$and $\mathcal{B} \in V$, then $F(\lambda \mathcal{B})=\lambda F(\mathcal{B})$.
(3) If there is a length-decreasing map from \mathcal{B} to \mathcal{B}^{\prime} then $F(\mathcal{B}) \geq F\left(\mathcal{B}^{\prime}\right)$.

Let $U \subset V$ be the set of bases consisting of unit vectors, any two of which make an angle θ with $\sin (\theta) \geq\left(\frac{\sqrt{2}}{3}\right)^{d}$. Since U is compact, F takes some minimum, positive value L on U. We will show that every torus of injectivity radius $\geq 1 / 2$ has a triangulation which is L-fat. Linearity of F (property (2) above) then implies the lemma for $K_{d}=2 L$.

Let $T=\mathbb{R}^{d} / \Lambda$ be a torus of injectivity radius at least $1 / 2$. A Lovász-reduced basis $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{d}\right\}$ for Λ has all angles between basis vectors within $[\pi / 3,2 \pi / 3]$, by Babai's result. Since the injectivity radius of T is at least $1 / 2$, there is a distancedecreasing map from \mathcal{B} to a basis in U, namely

$$
\mathcal{B}^{\prime}=\left\{\frac{\mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|}, \ldots, \frac{\mathbf{v}_{d}}{\left\|\mathbf{v}_{d}\right\|}\right\}
$$

Property (3) above tells us that $F(\mathcal{B}) \geq F\left(\mathcal{B}^{\prime}\right) \geq L$, so the triangulation $\mathcal{T}_{\mathcal{B}}$ is L-fat, and the proof of the lemma is completed.

Lemma 3.6. For each $d \geq 1$ and each s there is a constant $K(d, s)$ so that any null-homologous real singular s-cycle z in a d-dimensional torus bounds a singular $(s+1)$-chain c with

$$
\|c\|_{1} \leq K(d, s)\|z\|_{1}
$$

Proof. We follow the proof of Thu80, Proposition 6.5.1], which discusses the case $d=s=2$. Let T be a d-dimensional torus, and let z be an s-cycle. Since here are only finitely many singular simplices in z, their lifts to the universal cover \mathbb{R}^{d} have diameters bounded by some $D>0$. Let K_{d} be the constant from Lemma 3.5 and let $\tilde{T} \xrightarrow{\pi} T$ be some cover of T with injectivity radius bigger than D / K_{d}. By Lemma 3.5, there is a triangulation \mathcal{T} of \tilde{T} with t_{d} simplices so that if $\tilde{\sigma}: \Delta^{s} \rightarrow \tilde{T}$ is any lift of a singular simplex appearing in z, then $\tilde{\sigma}$ is small with respect to \mathcal{T} (in the sense of Definition 3.2). The proof of Lemma 3.5 shows that the combinatorics of this triangulation are independent of the particular chain z and the cover \tilde{T}.

Write $C_{*}(X)$ for the real singular chain complex of X. There is a transfer map

$$
\text { trans: } C_{*}(T ; \mathbb{R}) \rightarrow C_{*}(\tilde{T} ; \mathbb{R})
$$

which sends any singular simplex to the average of its lifts. The map trans is an isometric embedding with respect to the l^{1} norm. The map $\pi_{\sharp}: C_{*}(\tilde{T} ; \mathbb{R}) \rightarrow$ $C_{*}(T ; \mathbb{R})$ induced by the covering is norm decreasing and ($\pi_{\sharp \circ} \circ$ trans) is the identity map.

By the choice of \tilde{T} and \mathcal{T}, the chain $\operatorname{trans}(z)$ is small. By Lemma 3.3, the simplices of $\operatorname{trans}(z)$ can be homotoped simultaneously and consistently to the affine singular simplices making up the singular chain $a(\operatorname{trans}(z))$. Triangulating this homotopy in a standard way, we find that $\operatorname{trans}(z)-a(\operatorname{trans}(z))$ bounds an $(s+1)$-chain c_{1} in T, so that

$$
\left\|c_{1}\right\|_{1} \leq C_{1}\|z\|_{1}
$$

for some constant C_{1} depending on the dimension s but otherwise independent of z. The space of affine real singular s-boundaries B is finite dimensional, and only depends on the combinatorics of the triangulation \mathcal{T}.

The affine filling norm $\|b\|_{\text {fill }}$ on B is defined, for a boundary $b \in B$, to be the smallest l^{1}-norm of an affine $(s+1)$-chain bounded by b. Let

$$
C_{2}(d, s)=\sup \left\{\|b\|_{\text {fill }} \mid b \in B \text { and }\|b\|_{1}=1\right\}
$$

and note that $C_{2}(d, s)$ only depends on the combinatorics of \mathcal{T}.
The boundary $a(\operatorname{trans}(z))$ bounds an $(s+1)$-chain c_{2} in T of l^{1}-norm at most $C_{2}(d, s)\|a(\operatorname{trans}(z))\|_{1} \leq C_{2}\|z\|_{1}$. Thus we have

$$
\operatorname{trans}(z)=\partial\left(c_{1}+c_{2}\right)
$$

and

$$
z=\pi_{\sharp}\left(\partial\left(c_{1}+c_{2}\right)\right)=\partial\left(\pi_{\sharp}\left(c_{1}+c_{2}\right)\right)
$$

and

$$
\left\|\pi_{\sharp}\left(c_{1}+c_{2}\right)\right\|_{1} \leq\left\|c_{1}+c_{2}\right\|_{1} \leq\left(C_{1}(s)+C_{2}(d, s)\right)\|z\|_{1} .
$$

Proof of Theorem 1.5. Theorem 1.4 implies that the universal cover of the 2π-filling $M\left(T_{1}, \ldots, T_{m}\right)$ is $\operatorname{CAT}(0)$ with isolated flats; the flats are components of the preimage of the singular set. It follows HK05b that $\pi_{1}\left(M\left(T_{1}, \ldots, T_{m}\right)\right)$ is hyperbolic relative to the fundamental groups of the components of the singular set HK05b. Since $M\left(T_{1}, \ldots, T_{m}\right)$ is a closed orientable n-dimensional pseudomanifold, Proposition 2.2 implies $\left\|M\left(T_{1}, \ldots, T_{m}\right)\right\|>0$.

It remains to show $\left\|M\left(T_{1}, \ldots, T_{m}\right)\right\| \leq \frac{\operatorname{Vol}(V)}{v_{n}}$. The strategy is to first choose a symmetric representative c_{0} for the (relative) fundamental class of ($M, \partial M$) which is close to optimal, and then modify it to obtain a fundamental class c_{0}^{\prime} for $M\left(T_{1}, \ldots, T_{m}\right)$. If such a modification can be done in such a way that $\left|c_{0}^{\prime}\right|_{1}$ is within some arbitrarily small constant of $\|M, \partial M\|$, then we will have shown:

$$
\left\|M\left(T_{1}, \ldots, T_{m}\right)\right\| \leq\|M, \partial M\|
$$

The first step is to pass to a rational cycle. Let $\epsilon>0$. Let $c_{0} \in C_{n}(M ; \mathbb{R})$ be a real symmetric singular relative cycle representing $[M, \partial M]$, and satisfying

$$
\begin{equation*}
\left\|c_{0}\right\|_{1}<\|M, \partial M\|+\epsilon \tag{7}
\end{equation*}
$$

By Lemma 3.1, there is a symmetric rational singular relative cycle $c_{1} \in C_{n}(M ; \mathbb{Q})$ homologous to c_{0} with $\left\|c_{1}-c_{0}\right\|_{1}<\epsilon$.

We now pick a finite cover and triangulation of the boundary so that ∂c_{1} lifts to a chain which is small with respect to that triangulation. Let $t_{n-1}=2^{n-1}(n-1)$!.
Claim 3.7. We can choose a finite cover $\tilde{M} \xrightarrow{\pi} M$ and a triangulation \mathcal{T} of $\partial \tilde{M}$ satisfying the conditions:
(1) The restriction of π to any component of $\partial \tilde{M}$ has degree bigger than m / ϵ, where m is the number of cusps of M.
(2) If trans: $C_{*}(M ; \mathbb{R}) \rightarrow C_{*}(\tilde{M} ; \mathbb{R})$ is the transfer map, then $\operatorname{trans}\left(\partial c_{1}\right)$ is small with respect to \mathcal{T}.
(3) Each boundary component of \tilde{M} is triangulated by $t_{n-1}(n-1)$-simplices.

Proof. The compact manifold M is homeomorphic to \bar{M} as described in the introduction, a hyperbolic manifold minus a union of disjoint horospherical neighborhoods of its cusps. We identify M with \bar{M}. Any simplex in the support of ∂c_{1} therefore lifts to \mathbb{H}^{n}. Only finitely many such simplices occur, so there some number r bounding the diameter of any such lift. Residual finiteness of $\pi_{1} M$ implies that we can pass to a finite cover $\tilde{M} \rightarrow M$ so that
(1) Every boundary component of \tilde{M} has injectivity radius bigger than r / K_{n-1}, where K_{n-1} is the constant from Lemma 3.5, and
(2) Every boundary component N of \tilde{M} has area at least m / ϵ times more than the area of the component of ∂M covered by N.
Lemma 3.5 implies that $\partial \tilde{M}$ admits an r-fat triangulation with $t_{n-1}(n-1)-$ simplices per component so that singular simplices lifted from ∂c are all small respect to this triangulation.

Let D be the degree of the cover coming from Claim 3.7. Since c_{1} is rational and symmetric, $\operatorname{trans}\left(c_{1}\right)$ must also be rational and symmetric. In particular,

$$
\operatorname{trans}\left(c_{1}\right)=\frac{1}{q} c_{2}
$$

for some integral symmetric chain $c_{2} \in C_{*}^{S}(\tilde{M} ; \mathbb{Z})$ and some positive integer q. Homologically $\left[c_{2}\right]=\frac{q}{D}[\tilde{M}, \partial \tilde{M}]$ in $H_{n}(\tilde{M}, \partial \tilde{M} ; \mathbb{R})$. Since trans: $C_{*}(M ; \mathbb{R}) \rightarrow$ $C_{*}(\tilde{M} ; \mathbb{R})$ is isometric, $\left\|c_{2}\right\|_{1}=q\left\|c_{1}\right\|_{1}$.

Since $\operatorname{trans}\left(\partial c_{1}\right)$ is small with respect to \mathcal{T}, the chain ∂c_{2} is also small with respect to \mathcal{T}. Using Lemma 3.4 , we find a symmetric integral chain c_{3} with $\left\|c_{3}\right\|_{1} \leq$ $\left\|c_{2}\right\|_{1}$ so that c_{3} is (relatively) homologous to c_{2} and so that ∂c_{3} is an affine chain, i.e., $\partial c_{3} \in C_{n-1}^{\mathcal{T}}(\partial \tilde{M} ; \mathbb{Z})$.

Let $\tilde{N}_{1}, \ldots, \tilde{N}_{p}$ be the boundary components of \tilde{M}. We have $\left[c_{3}\right]=\frac{q}{D}[\tilde{M}, \partial \tilde{M}]$ in $H_{n}(\tilde{M}, \partial \tilde{M})$ and $\left[\partial c_{3}\right]=\frac{q}{D} \sum_{i=1}^{p}\left[\tilde{N}_{i}\right]$ in $H_{n-1}(\partial \tilde{M})$.

The cycle ∂c_{3} is symmetric, affine and represents $\frac{q}{D}$ times the fundamental class of $\partial \tilde{M}$. By Lemma 2.6, ∂c_{3} has no "degenerate" affine simplices in its support. It follows that ∂c_{3} consists of exactly $\frac{q}{D}$ appropriately oriented copies of every $(n-1)$-simplex in \mathcal{T}.

Each of the p boundary components of \tilde{M} is triangulated with exactly t_{n-1} simplices of dimension $n-1$. We therefore have

$$
\left\|\partial c_{3}\right\|_{1}=p t_{n-1} \frac{q}{D}
$$

For each i between 1 and n, the i th boundary component of M is covered by p_{i} boundary components of \tilde{M}, so that $p=\sum_{i} p_{i}$. The degrees of these components are $d_{i 1}, \ldots, d_{i p_{i}}$, and $\sum_{j} p_{i j}=D$ for each i. Since each $d_{i j} \geq \frac{m}{\epsilon}$, we get

$$
D \geq p_{i} \frac{m}{\epsilon} \forall i
$$

which implies that $m D \geq p \frac{m}{\epsilon}$, and so $p \leq \epsilon D$. We therefore obtain

$$
\left\|\partial c_{3}\right\|_{1} \leq \epsilon t_{n-1} q
$$

Projecting c_{3} back down to M gives a chain c_{4} with $\left[c_{4}\right]=q[M, \partial M]$ in relative homology, and with

$$
\left\|c_{4}\right\|_{1} \leq\left\|c_{3}\right\|_{1} \leq\left\|c_{2}\right\|_{1}=q\left\|c_{1}\right\|_{1}
$$

and with

$$
\left\|\partial c_{4}\right\|_{1} \leq\left\|\partial c_{3}\right\|_{1} \leq \epsilon t_{n-1} q .
$$

Dividing by q we obtain a fundamental cycle $c=\frac{1}{q} c_{4}$ for $[M, \partial M]$ satisfying $\|c\|_{1} \leq$ $\|M, \partial M\|+2 \epsilon$ and $\|\partial c\|_{1} \leq t_{n-1} \epsilon$.

Now we will take this relative cycle c for $[M, \partial M]$, and modify it to an honest cycle in $M\left(T_{1}, \ldots, T_{m}\right)$. We start by pushing it forward from M to $M\left(T_{1}, \ldots, T_{m}\right)$ by a map of pairs

$$
h:(M, \partial M) \rightarrow\left(M\left(T_{1}, \ldots, T_{m}\right), Z\right)
$$

where Z is the singular set of $M\left(T_{1}, \ldots, T_{m}\right)$ and h is the quotient map described in Definition 1.3. (Here we are implicitly identifying M with the space \bar{M} described before Definition (1.3) Let ∂h be h restricted to ∂M. The chain $(\partial h)_{\sharp}(\partial c)$ is an $(n-1)$-cycle in Z. Lemma 3.6 implies there is some K depending only on n so that $(\partial h)_{\sharp}(\partial c)$ can be filled in Z with a n-chain c^{\prime} satisfying $\left\|c^{\prime}\right\|_{1} \leq K\left\|(\partial h)_{\sharp}(\partial c)\right\|_{1} \leq$ $K t_{n-1} \epsilon$. It is easy to check that $h_{\sharp} c-c^{\prime}$ is a fundamental cycle for $M\left(T_{1}, \ldots, T_{m}\right)$. Moreover, we have

$$
\left\|h_{\sharp} c-c^{\prime}\right\|_{1} \leq\|M, \partial M\|+\left(2+K t_{n-1}\right) \epsilon .
$$

Letting ϵ tend to zero, we have established

$$
\left\|M\left(T_{1}, \ldots, T_{m}\right)\right\| \leq\|M, \partial M\|
$$

An application of the proportionality theorem for finite volume hyperbolic manifolds (Theorem A.1) gives the upper bound:

$$
\left\|M\left(T_{1}, \ldots, T_{m}\right)\right\| \leq \frac{\operatorname{Vol}(V)}{v_{n}}
$$

Appendix A. A proportionality theorem

The purpose of this appendix is to establish the following proportionality theorem.

Theorem A.1. Let M be a manifold with boundary, so that the interior V of M admits a complete hyperbolic metric of volume $\operatorname{Vol}(V)<\infty$. Then

$$
\|M, \partial M\|=\frac{\operatorname{Vol}(V)}{v_{n}}
$$

Thurston gives a proof in dimension 3 of a version of theorem A. 1 in his lecture notes Thu80, 6.5.4], where the norm $\|M, \partial M\|$ is replaced by one coming from measure homology. There is a natural map from singular homology to measure homology, which at least does not increase norm. Zastrow and Hansen independently showed this map to be an isomorphism of vector spaces for any CW pair Han98, Zas98, leaving open the question of whether it was an isometry. Löh Löh06] proved that the map from (absolute) singular homology to measure homology is an isometric isomorphism for all connected CW complexes. Since it is not entirely clear whether measure homology is isometric to singular homology in the relative case, we give a proof of Theorem A. 1 which avoids measure homology. Such a proof can also be obtained as a special (and simpler) case of the arguments in Frigerio-Pagliantini FP10. Some related ideas may be found in Francaviglia Fra04.

Our proof of Theorem A. 1 follows closely Benedetti and Petronio's proof of BP92, C.4], which covers the case of $\partial M=\emptyset$. As some parts of our proof are identical to steps in BP92, we refer to that text for some details. The proof in BP92 uses ordinary real singular chains, rather than symmetrized ones, so we do not symmetrize our chains here.

We use the following notation for parts of the manifold V : For $I \subseteq \mathbb{R}_{>0}$, we let V_{I} be the subset of V consisting of points $x \in V$ where the injectivity radius $\operatorname{inj}(V, x)$ is in I.

Definition A.2. Let M be a Riemannian n-manifold, and let $\sigma: \Delta^{n} \rightarrow M$ be a smooth singular simplex. The algebraic volume of σ, written $\operatorname{alg} \operatorname{vol}(\sigma)$ is the integral over Δ^{n} of the pullback of the volume form on M. The algebraic volume is extended to smooth chains by linearity.

Obtaining the correct lower bound for simplicial volume is fairly easy.
Lemma A.3. $\|M, \partial M\| \geq \frac{\operatorname{Vol}(V)}{v_{n}}$.
Proof. This direction is Thurston's "straightening" argument Thu80, 6.5.4]. For any sufficiently small $\epsilon>0$, the subset $V_{(0, \epsilon]}$ is an open neighborhood of the cusps of V. Collapsing the components of $V_{(0, \epsilon]}$ to their boundaries gives a homotopy equivalence of pairs $\left(V, V_{(0, \epsilon]}\right) \rightarrow(M, \partial M)$. Since the Gromov norm of a (relative) homology class is homotopy invariant, we can use chains ($V, V_{(0, \epsilon]}$) to compute $\|M, \partial M\|$.

The straightening map (see BP92 or Rat94 for a precise definition) is a chain map

$$
\text { str: } C_{*}(V) \rightarrow C_{*}(V)
$$

chain homotopic to the identity, and taking each singular simplex to a totally geodesic simplex with the same vertices. The map str preserves the subspace $C_{*}\left(V_{(0, \epsilon]}\right)$ (because horoballs are convex), as does the chain homotopy between str and the identity, so str induces a (norm-decreasing) chain homotopy equivalence of $C_{*}\left(V, V_{(0, \epsilon]}\right)$ to itself. It follows that we need only consider straight (and therefore smooth) chains.

If $z=\sum_{i}^{k} \lambda_{i} \sigma_{i}$ is a real smooth chain representing the relative fundamental class $\left[V, V_{(0, \epsilon]}\right]$, then

$$
\operatorname{algvol}(z)=\sum_{i}^{k} \lambda_{i} \operatorname{algvol}\left(\sigma_{i}\right)
$$

The absolute value $|\operatorname{algvol}(z)|$ is at least as big as $\operatorname{Vol}\left(V_{[\epsilon, \infty)}\right)$, the volume of the thick part of V.

Let $z_{\epsilon}=\sum_{i}^{k} \lambda_{i} \sigma_{i}$ be a straight real singular chain representing $\left[V, V_{(0, \epsilon]}\right]$ which ϵ-nearly realizes $\|M, \partial M\|$, i.e., so that

$$
\left\|z_{\epsilon}\right\|_{1} \leq\|M, \partial M\|+\epsilon
$$

We then have

$$
\begin{equation*}
\operatorname{Vol}\left(V_{[\epsilon, \infty)}\right) \leq\left|\operatorname{algvol}\left(z_{\epsilon}\right)\right| \leq \sum_{i=1}^{k}\left|\lambda_{i}\right| v_{n}=\left\|z_{\epsilon}\right\|_{1} v_{n} \leq(\|M, \partial M\|+\epsilon) v_{n} \tag{8}
\end{equation*}
$$

Letting ϵ tend to zero in (8) yields the lemma.

It is worth noting that essentially the same proof establishes the bound of Lemma A. 3 for measure cycles.

To obtain the upper bound for simplicial volume, we must construct chains representing the fundamental class which are "close" to the smeared chains from measure homology. The argument from BP92 in the closed case uses rather strongly that there is a compact (and therefore finite diameter) fundamental domain. We work around this by chopping the fundamental domain into pieces of bounded diameter.

Proposition A.4. $\|M, \partial M\| \leq \frac{V o l(V)}{v_{n}}$
Proof. We suppose that V is an orientable finite volume hyperbolic n-manifold with m cusps, homeomorphic to the interior of M. Let $\Gamma<\operatorname{Isom}\left(\mathbb{H}^{n}\right)$ be the fundamental group of V, so that $\mathbb{H}^{n} / \Gamma=V$. Let D be the closure of a convex fundamental domain for the action of Γ on \mathbb{H}^{n}, and let $\pi: D \rightarrow V$ be the quotient.

There is a number $\mu>0$ so that $V_{(0, \epsilon]}$ has exactly m connected components for any $\epsilon \leq \mu$. Let $P_{0} \subseteq V$ be equal to $V_{(\mu, \infty)}$, and choose some $x_{0} \in P_{0}$. The complement of P_{0} in V is a union of cusp neighborhoods C_{1}, \ldots, C_{n}.

Let $D_{0}=\pi^{-1}\left(P_{0}\right) \subset D$, and choose \tilde{x}_{0} in the interior of D_{0}. Let $x_{0}=\pi\left(\tilde{x}_{0}\right) \in P_{0}$.
For each $l \in \mathbb{N}$, and each $j \in\{1, \ldots, m\}$, we let

$$
P_{j, l}=\left\{x \in V \mid l-1 \leq d\left(x, P_{0}\right) \leq l\right\} \cap C_{j}
$$

and let $D_{j, l}=\pi^{-1}\left(P_{j, l}\right) \subset D$. We will refer to any Γ-translate of D_{0} or $D_{j, l}$ as a piece.

There is some $d>0$ so that $\operatorname{diam}\left(D_{\alpha}\right)<d$ for every piece $D_{\alpha} \subset \mathbb{H}^{n}$. For each $l \in \mathbb{N}$ and each $j \in\{1, \ldots, m\}$, choose $\tilde{x}_{j, l}$ in the interior of $D_{j, l}$ and let $x_{j, l}=\pi\left(\tilde{x}_{j, l}\right)$. The union of the Γ-orbits of \tilde{x}_{0} and the $\tilde{x}_{j, l}$ can be identified in an obvious way with

$$
\hat{\Gamma}:=\Gamma \cup(\Gamma \times\{1, \ldots, m\} \times \mathbb{N})
$$

(This is essentially the 0-skeleton of the "cusped space" of GM08 associated to the pair $\left(\Gamma,\left\{\pi_{1}\left(C_{j}\right)\right\}\right)$.) Vertices of $\hat{\Gamma}$ have a depth associated to them: The depth of an element of Γ is 0 , and the depth of an element of $\Gamma \times\{1, \ldots, m\} \times \mathbb{N}$ is given by the third coordinate. The group Γ acts on $\hat{\Gamma}$ by left multiplication in an obvious way, and this action preserves depth.

We let Ω be the quotient $\Gamma \backslash \hat{\Gamma}^{n+1}$. For $k>0$ an integer, let $\hat{\Gamma}_{k} \subset \hat{\Gamma}$ be the subset of vertices of depth at most k. Let $\tilde{\Omega}_{k}=\hat{\Gamma}_{k}^{n+1}$, and let $\Omega_{k} \subset \Omega$ be the set of Γ-orbits in $\tilde{\Omega}_{k}$.

For any element $\omega=\left[\left(y_{0}, \ldots, y_{n}\right)\right] \in \Omega$, there is a unique straight simplex

$$
\sigma_{\omega}: \Delta^{n} \rightarrow V
$$

which is equal to the composition of a simplex $\tilde{\sigma}_{\omega}: \Delta^{n} \rightarrow \mathbb{H}^{n}$ satisfying $\tilde{\sigma}_{\omega}\left(v_{i}\right)=y_{i}$ with the projection $\mathbb{H}^{n} \rightarrow V$. (Here v_{i} is the i th vertex of the n-simplex Δ^{n}.) As in BP92, we define

$$
\mathcal{S}(R)=\left\{\left(u_{0}, \ldots u_{n}\right) \in\left(\mathbb{H}^{n}\right)^{n+1} \mid d\left(u_{i}, u_{j}\right)=R, \forall i \neq j\right\}=\mathcal{S}_{+}(R) \sqcup \mathcal{S}_{-}(R),
$$

where \mathcal{S}_{+}and \mathcal{S}_{-}are those tuples which determine positively and negatively oriented straight n-simplices in \mathbb{H}^{n}, respectively. There is a measure on $\mathcal{S}(R)$ coming from Haar measure on $\operatorname{Isom}\left(\mathbb{H}^{n}\right)$, and we denote this measure by m. For

$$
\omega=\left[\left(y_{0}, \ldots, y_{n}\right)\right] \in \Omega
$$

and $R>0$, we define

$$
\begin{aligned}
& a_{R}^{+}(\omega)=m\left(\left\{\left(u_{0}, \ldots, u_{n}\right) \in \mathcal{S}_{+}(R) \mid u_{i} \text { and } y_{i} \text { lie in the same piece }\right\}\right), \text { and } \\
& a_{R}^{-}(\omega)=m\left(\left\{\left(u_{0}, \ldots, u_{n}\right) \in \mathcal{S}_{-}(R) \mid u_{i} \text { and } y_{i} \text { lie in the same piece }\right\}\right) .
\end{aligned}
$$

Obviously these definitions do not depend on the choice of representative of ω. Moreover, for a given R and k, there are only finitely many $\omega \in \Omega_{k}$ for which $a_{R}^{+}(\omega)$ or $a_{R}^{-}(\omega)$ is nonzero. (This is because there are only finitely many elements of $\hat{\Gamma}$ which are distance approximately R from a given element of $\hat{\Gamma}$.) It follows that if we define $a_{R}(\omega):=a_{R}^{+}(\omega)-a_{R}^{-}(\omega)$, then

$$
z_{R, k}=\sum_{\omega \in \Omega_{k}} a_{R}(\omega) \sigma_{\omega}
$$

is a finite real singular n-chain in V. Moreover, we claim that

$$
\begin{equation*}
z_{R, \infty}=\sum_{\omega \in \Omega} a_{R}(\omega) \sigma_{\omega} \tag{9}
\end{equation*}
$$

is a locally finite real singular n-chain. Indeed, let $p \in V$, and $r>0$. We must show only finitely many simplices in the support of $z_{R, \infty}$ (i.e., occurring in the sum (9) with nonzero coefficient) intersect the ball of radius r about p. Let \tilde{p} be any point in $\pi^{-1}(p) \subset D$, and note that any simplex σ_{ω} in the support of $z_{R, \infty}$ must lift to one which comes within r of \tilde{p}, and whose vertices are therefore within $R+2 d+r$ of \tilde{p}. As there are only finitely many such vertices, there are only finitely many such simplices σ_{ω} in the support of $z_{R, \infty}$.

Claim A.5. The chain $z_{R, \infty}$ is a locally finite cycle.
Proof. We have just argued that $z_{R, \infty}$ is locally finite. The proof that $z_{R, \infty}$ is a cycle is nearly the same as the proof of Claim (ii) on pp. 115-116 of BP92], except that sums/unions over Γ are replaced by sums/unions over $\hat{\Gamma}$, and conditions of the form " $u_{i} \in \gamma_{i}(D)$ " are replaced by " $u_{i} \in D(i)$ " for appropriately chosen pieces $D(i)$.

For $k \in \mathbb{N}$, let $\epsilon(k)$ be the smallest injectivity radius at any point in a piece of depth at most k, i.e.,

$$
\epsilon(k)=\inf \left\{\operatorname{inj}(V, x) \mid x \in P_{0} \text { or } x \in \bigcup\left\{P_{j, l} \mid j \in\{1, \ldots, m\}, l \leq k\right\}\right\} .
$$

It is not hard to see that as $k \rightarrow \infty$, the quantity $\epsilon(k)$ tends to zero. In particular, there is a constant C so that if $k>C$, then $\epsilon(k)<\mu$.
Claim A.6. Let $R>0$, and let C be such that $\epsilon\left(k^{\prime}\right)<\mu$ for all $k^{\prime}>C$. If $k>R+C+2 d+1$, then $z_{R, k}$ is a relative cycle in $\left(V, V_{(0, \mu]}\right)$.
Proof. Suppose an $(n-1)$-dimensional simplex σ is in the support of $\partial z_{R, k}$. By Claim A.5, σ must also be in the support of $\partial\left(z_{R, \infty}-z_{R, k}\right)$, so any lift $\tilde{\sigma}$ of σ to \mathbb{H}^{n} must have a vertex mapped to $\hat{\Gamma} \backslash \hat{\Gamma}_{k}$. The diameter of the image of $\tilde{\sigma}$ is at most $R+2 d$. Thus the vertices lie in $\hat{\Gamma} \backslash \hat{\Gamma}_{k^{\prime}}$ for $k^{\prime}=k-\lceil R+2 d\rceil>C$, and no part of the image of $\tilde{\sigma}$ lies in a translate of the "fat piece" D_{0}. Since $\epsilon\left(k^{\prime}\right)<\mu, \sigma$ has image in the part of V with injectivity radius less than μ.

Claim A.7. If $R>2 d$ then $a_{R}^{+}(\omega) \cdot a_{R}^{-}(\omega)=0$ for all $\omega \in \Omega$.

Proof. This statement (and its proof) are identical to Claim (iii) on pp. 116-117 of BP92.

Claim A.8. There is a quantity $\delta(R)>0$ so that $\lim _{R \rightarrow \infty} \delta(R)=0$ and so that the simplices in the support of $z_{R, \infty}$ all have volume at least $v_{n}-\delta(R)$.

Proof. This statement is a slight rephrasing of Claim (iv) on p. 117 of BP92. The proof is the same.

Claim A.9. If $R>2 d$ and $a_{R}(\omega) \neq 0$, then $a_{R}(\omega) \operatorname{algvol}\left(\sigma_{\omega}\right)>0$.
Proof. See Claim (v) on p. 117 of BP92. Claim A.7 is used here.
Claim A.10. Suppose $R>2 d+C$ and $k>2 R+1$, where C is the constant from Claim A.6. The classes $\left[z_{R, \infty}\right] \in H_{n}^{l f}(V ; \mathbb{R})$ and $\left[z_{R, k}\right] \in H_{n}\left(V, V_{(0, \mu]} ; \mathbb{R}\right)$ are nontrivial.

Proof. See Claim (vi) on p. 117 of BP92. The point here is just that some element of $\mathcal{S}(R)$ is a tuple of interior points of pieces corresponding to some tuple ω, so that there is an open (and therefore positive measure) neighborhood of tuples of points all corresponding to the same tuple ω.

We now complete the proof of the Proposition. Suppose $R>2 d+C$ and $k=$ $\lceil 2 R\rceil+2$.

It follows from Claim A. 10 that there is some $\lambda>0$ so that $\lambda\left[z_{\infty, R}\right]$ is the fundamental class in the locally finite homology group $H_{n}^{l f}(V ; \mathbb{R})$ and some λ^{\prime} so $\lambda^{\prime}\left[z_{k, R}\right]$ is the fundamental class in $H_{n}\left(V, V_{(0, \epsilon]} ; \mathbb{R}\right)$. In fact we must have $\lambda^{\prime}=\lambda$, since both $\lambda\left[z_{\infty, R}\right]$ and $\lambda^{\prime}\left[z_{k, R}\right]$ restrict to the orientation cycle at x_{0}, and the set of simplices in the supports of $z_{k, R}$ and $z_{\infty, R}$ which intersect a small neighborhood of x_{0} is the same.

It follows from Claim A.9 that $\operatorname{algvol}\left(z_{k, R}\right) \leq \operatorname{algvol}\left(z_{\infty, R}\right)$. Moreover, an easy argument shows that if c is a locally finite fundamental cycle for V, then $\operatorname{Vol}(V)=$ $\operatorname{algvol}(c)$. We therefore have:

$$
\begin{array}{rlrl}
\operatorname{Vol}(V) & \geq \operatorname{algvol}\left(\lambda z_{k, R}\right) & \\
& =\sum_{\omega \in \Omega_{k}} \lambda a_{R}(\omega) \operatorname{algvol}\left(\sigma_{\omega}\right) & & \\
& =\sum_{\omega \in \Omega_{k}} \lambda\left|a_{R}(\omega)\right| \cdot\left|\operatorname{algvol}\left(\sigma_{\omega}\right)\right| & \text { by A.9 } \\
& \geq\left(v_{n}-\delta(R)\right) \sum_{\omega \in \Omega_{k}} \lambda\left|a_{R}(\omega)\right| & \text { by A. } 8 \\
& =\left(v_{n}-\delta(R)\right)\left\|\lambda z_{k, R}\right\|_{1} \geq\left(v_{n}-\delta(R)\right)\|M, \partial M\|, &
\end{array}
$$

since $\lambda z_{k, R}$ gives a representative for the fundamental class of $(M, \partial M)$ via the homotopy equivalence of pairs $\left(V, V_{(0, \mu]}\right) \rightarrow(M, \partial M)$. Letting R tend to infinity, Claim A. 8 says that $\delta(R)$ tends to zero, so we have

$$
\operatorname{Vol}(V) \geq v_{n}\|M, \partial M\|
$$

and the proposition is proved.
Lemma A. 3 and Proposition A. 4 together immediately imply Theorem A. 1 .

Appendix B. (Anti)Symmetrization of chains

In this section we prove that the chain map S defined in Section 2.2 is chain homotopic to the identity.

We let Δ^{n} denote the standard n-simplex, and begin by defining a "coning" operator for all n and k

$$
c_{n}: C_{k}\left(\Delta^{n} ; \mathbb{R}\right) \rightarrow C_{k+1}\left(\Delta^{n} ; \mathbb{R}\right)
$$

We define c_{n} on a singular k-simplex $\psi: \Delta^{k} \rightarrow \Delta^{n}$ and then extend by linearity. Let ι : $\Delta^{k} \rightarrow \Delta^{k+1}$ be the affine map taking each vertex e_{i} of Δ^{k} to the vertex e_{i+1} of Δ^{k+1}; the vertex e_{0} is the only one missed by ι. Each point in Δ^{k+1} is uniquely expressible convex combination of some point in $\iota\left(\Delta^{k}\right)$ with e_{0}. Let m_{n} be the barycenter of Δ^{n}, and define

$$
c_{n}(\psi)\left(t e_{0}+(1-t) \iota(x)\right)=t m_{n}+(1-t) \psi(x) .
$$

In words, $c_{n}(\psi)$ is ψ coned to the barycenter m_{n}. The key fact about c_{n} is that for any chain $a \in C_{k}\left(\Delta^{n} ; \mathbb{R}\right)$, we have

$$
\begin{equation*}
\partial c_{n}(a)=a-c_{n}(\partial a) \tag{10}
\end{equation*}
$$

(In other words, c_{n} is a chain contraction of $C_{*}\left(\Delta^{n} ; \mathbb{R}\right)$.)
We use the coning operator to inductively define an element $\mu_{n} \in C_{n+1}\left(\Delta^{n} ; \mathbb{R}\right)$, and, for any space Y, a map

$$
P_{n}^{(Y)}: C_{n}(Y ; \mathbb{R}) \rightarrow C_{n+1}(Y ; \mathbb{R})
$$

As in the definition of symmetrization, we abuse notation by using $q \in S_{n+1}$ to denote the unique affine map from Δ^{n} to itself which is equal to q when restricted to the vertices. We start with $\mu_{0}=0$, and $P_{0}=0$ for all Y. We may assume $P_{n-1}^{\left(\Delta^{n}\right)}$ has been defined, and set

$$
\begin{equation*}
\mu_{n}=\left(\frac{1}{\left|S_{n+1}\right|} \sum_{q \in S_{n+1}} \operatorname{sign}(q) c_{n}(q)\right)-c_{n}\left(\mathbf{1}_{\Delta^{n}}\right)-c_{n}\left(P_{n-1}^{\left(\Delta^{n}\right)}\left(\partial \mathbf{1}_{\Delta^{n}}\right)\right) \tag{11}
\end{equation*}
$$

For any space Y, we define $P_{n}: C_{n}(Y ; \mathbb{R}) \rightarrow C_{n+1}(Y ; \mathbb{R})$ on simplices, and then extend linearly; for $\phi: \Delta^{n} \rightarrow Y$ a singular n-simplex, define

$$
\begin{equation*}
P_{n}^{(Y)}(\phi)=\phi_{\sharp}\left(\mu_{n}\right) . \tag{12}
\end{equation*}
$$

The maps $P_{n}^{(\cdot)}$ commute with continuous maps:
Lemma B.1. If $f: X \rightarrow Y$ is any continuous map, and n is an integer, then $f_{\sharp} \circ P_{n}^{(X)}=P_{n}^{(Y)} \circ f_{\sharp}$.
Proof. Since all the maps involved are linear, it suffices to verify this for a single singular simplex $\phi: \Delta^{n} \rightarrow X$. We have:

$$
\left(f_{\sharp} \circ P_{n}^{(X)}\right)(\phi)=f_{\sharp} \phi_{\sharp}\left(\mu_{n}\right)=(f \circ \phi)_{\sharp}\left(\mu_{n}\right)=P_{n}^{(Y)}(f \circ \phi)=\left(P_{n}^{(Y)} \circ f_{\sharp}\right)(\phi) .
$$

Lemma B.2. $P_{*}^{(X)}$ as defined in equation (12) is a chain homotopy between S and $\mathbf{1}_{C_{*}(X ; \mathbb{R})}$.

Proof. In this proof we'll write $P_{k}^{(X)}$ as P_{k}.
It suffices to show that, for each n and each singular n-simplex ϕ,

$$
\partial P_{n}(\phi)=S(\phi)-\phi-P_{n-1}(\partial \phi)
$$

For $n=0$, this is immediate, so we suppose that $n>0$ and argue inductively. We compute from (12) and (10),

$$
\begin{aligned}
\partial P_{n}(\phi)=\phi_{\sharp}(& \frac{1}{\left|S_{n+1}\right|} \sum_{q \in S_{n+1}} \operatorname{sign}(q)\left(q-c_{n}(\partial q)\right) \\
& \left.-\mathbf{1}_{\Delta^{n}}+c_{n}\left(\partial \mathbf{1}_{\Delta^{n}}\right)-P_{n-1}\left(\partial \mathbf{1}_{\Delta^{n}}\right)+c_{n} \partial\left(P_{n-1}^{\left(\Delta^{n}\right)}\left(\partial \mathbf{1}_{\Delta^{n}}\right)\right)\right)
\end{aligned}
$$

By induction on n (and the fact that $\partial^{2}=0$) we have

$$
\partial P_{n-1}^{\left(\Delta^{n}\right)}\left(\partial \mathbf{1}_{\Delta^{n}}\right)=S\left(\partial \mathbf{1}_{\Delta^{n}}\right)-\partial \mathbf{1}_{\Delta^{n}}
$$

so we can rewrite

$$
\begin{aligned}
\partial P_{n}(\phi)=\phi_{\sharp}(& \frac{1}{\left|S_{n+1}\right|} \sum_{q \in S_{n+1}} \operatorname{sign}(q)\left(q-c_{n}(\partial q)\right) \\
& \left.-\mathbf{1}_{\Delta^{n}}+c_{n}\left(\partial \mathbf{1}_{\Delta^{n}}\right)-P_{n-1}^{\left(\Delta^{n}\right)}\left(\partial \mathbf{1}_{\Delta^{n}}\right)+c_{n}\left(S\left(\partial \mathbf{1}_{\Delta^{n}}\right)-\partial \mathbf{1}_{\Delta^{n}}\right)\right) \\
=\phi_{\sharp}(& S\left(\mathbf{1}_{\Delta^{n}}\right)-\mathbf{1}_{\Delta^{n}}-P_{n-1}^{\left(\Delta^{n}\right)}\left(\partial \mathbf{1}_{\Delta^{n}}\right) \\
& \left.+c_{n}\left(S\left(\partial \mathbf{1}_{\Delta^{n}}\right)\right)-\frac{1}{\left|S_{n+1}\right|} \sum_{q \in S_{n+1}} \operatorname{sign}(q) c_{n}(\partial q)\right)
\end{aligned}
$$

The last two terms exactly cancel because c_{n} and ∂ are both linear, so

$$
\frac{1}{\left|S_{n+1}\right|} \sum_{q \in S_{n+1}} \operatorname{sign}(q) c_{n}(\partial q)=c_{n} \partial\left(\frac{1}{\left|S_{n+1}\right|} \sum_{q \in S_{n+1}} \operatorname{sign}(q) q\right)=c_{n} \partial S\left(\mathbf{1}_{\Delta^{n}}\right)
$$

and, since S is a chain map, $c_{n}\left(\partial S\left(\mathbf{1}_{\Delta^{n}}\right)\right)=c_{n}\left(S\left(\partial \mathbf{1}_{\Delta^{n}}\right)\right)$. We therefore have

$$
\partial P_{n}(\phi)=\phi_{\sharp}\left(S\left(\mathbf{1}_{\Delta^{n}}\right)-\mathbf{1}_{\Delta^{n}}-P_{n-1}^{\left(\Delta^{n}\right)}\left(\partial \mathbf{1}_{\Delta^{n}}\right)\right) .
$$

We now invoke Lemma B.1 which implies that

$$
\phi_{\sharp}\left(P_{n-1}^{\left(\Delta^{n}\right)}\left(\partial \mathbf{1}_{\Delta^{n}}\right)\right)=P_{n-1}(\partial \phi),
$$

and so

$$
\partial P_{n}(\phi)=S(\phi)-\phi-P_{n-1}(\partial \phi)
$$

Acknowledgments

We thank Danny Calegari and Bill Thurston for useful conversations, and Clara Löh for a useful email exchange.

Jason Manning did part of this work during visits to the Caltech mathematics department and the Cornell mathematics department, and thanks Caltech and Cornell for their hospitality.

References

[Bab86] L. Babai. On Lovász' lattice reduction and the nearest lattice point problem. Combinatorica, 6(1):1-13, 1986.
[BH96] Steven A. Bleiler and Craig D. Hodgson. Spherical space forms and Dehn filling. Topology, 35:809-833, 1996.
[BP92] Riccardo Benedetti and Carlo Petronio. Lectures on hyperbolic geometry. Universitext. Springer-Verlag, Berlin, 1992.
[FKP08] David Futer, Efstratia Kalfagianni, and Jessica S. Purcell. Dehn filling, volume, and the Jones polynomial. J. Differential Geom., 78(3):429-464, 2008.
[FM10] Koji Fujiwara and Jason F. Manning. CAT(0) and CAT(-1) fillings of hyperbolic manifolds. J. Differential Geom., 85(2):229-270, 2010.
[FP10] Roberto Frigerio and Cristina Pagliantini. The simplicial volume of hyperbolic manifolds with geodesic boundary. Alg. Geom. Top, 9:979-1001, 2010.
[Fra04] Stefano Francaviglia. Hyperbolic volume of representations of fundamental groups of cusped 3-manifolds. Int. Math. Res. Not., (9):425-459, 2004.
[GM08] Daniel Groves and Jason Fox Manning. Dehn filling in relatively hyperbolic groups. Israel Journal of Mathematics, 168:317-429, 2008.
[Gro78] M. Gromov. Manifolds of negative curvature. J. Differential Geom., 13(2):223-230, 1978.
[Gro82] Michael Gromov. Volume and bounded cohomology. Inst. Hautes Études Sci. Publ. Math., (56):5-99 (1983), 1982.
[GT87] M. Gromov and W. Thurston. Pinching constants for hyperbolic manifolds. Invent. Math., 89(1):1-12, 1987.
[Han98] Søren Kold Hansen. Measure homology. Math. Scand., 83(2):205-219, 1998.
[HK05a] Craig D. Hodgson and Steven P. Kerckhoff. Universal bounds for hyperbolic Dehn surgery. Ann. of Math. (2), 162(1):367-421, 2005.
[HK05b] G.C. Hruska and B. Kleiner. Hadamard spaces with isolated flats. Geometry and Topology, 9:1501-1538, 2005. (with an appendix written jointly with M. Hindawi).
[LLL82] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational coefficients. Math. Ann., 261(4):515-534, 1982.
[Löh06] Clara Löh. Measure homology and singular homology are isometrically isomorphic. Math. Z., 253(1):197-218, 2006.
[Min02] Igor Mineyev. Bounded cohomology characterizes hyperbolic groups. Q. J. Math., 53(1):59-73, 2002.
[MS97] Lee Mosher and Michah Sageev. Nonmanifold hyperbolic groups of high cohomological dimension, 1997. Preprint, available at http://andromeda.rutgers.edu/~mosher/
[MY] Igor Mineyev and AslıYaman. Relative hyperbolicity and bounded cohomology. preprint, available at http://www.math.uiuc.edu/~mineyev/math/art/rel-hyp.pdf
[NZ85] Walter D. Neumann and Don Zagier. Volumes of hyperbolic three-manifolds. Topology, 24(3):307-332, 1985.
[Rat94] John G. Ratcliffe. Foundations of hyperbolic manifolds, volume 149 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1994.
[Sch89] Viktor Schroeder. A cusp closing theorem. Proc. Amer. Math. Soc., 106(3):797-802, 1989.
[Thu80] William P. Thurston. Geometry and topology of three-manifolds. Princeton lecture notes available at http://www.msri.org/publications/books/gt3m/. 1980.
[Wan72] Hsien Chung Wang. Topics on totally discontinuous groups. In Symmetric spaces (Short Courses, Washington Univ., St. Louis, Mo., 1969-1970), pages 459-487. Pure and Appl. Math., Vol. 8. Dekker, New York, 1972.
[Yam97] Takao Yamaguchi. Simplicial volumes of Alexandrov spaces. Kyushu J. Math., 51(2):273296, 1997.
[Zas98] Andreas Zastrow. On the (non)-coincidence of Milnor-Thurston homology theory with singular homology theory. Pacific J. Math., 186(2):369-396, 1998.

Tohoku University
E-mail address: fujiwara@math.is.tohoku.ac.jp
University at Buffalo, SUNY
E-mail address: j399m@buffalo.edu

[^0]: Koji Fujiwara is supported in part by a Grant-in-Aid for Scientific Research (No. 19340013). Jason Manning is supported in part by NSF grant DMS-0804369.

