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Bounding and estimating an exceedance probability in output from
monotonous computer codes

Nicolas Bousquet

Abstract This article deals with the estimation of a proba-
bility pf of an undesirable event. Its occurence is formalized
by the exceedance of a threshold reliability value by the uni-
dimensional output of a computer codeG with multivariate
probabilistic inputX. WhenG is assumed time-consuming
and monotonous with respect toX, the Monotonous Relia-
bility Method, proposed by de Rocquigny (2009) in an engi-
neering context, can provide bounds and crude estimates of
pf , via deterministic or stochastic designs of experiments.
The present article consists in a formalization and technical
deepening of this idea, as a large basis for future theoreti-
cal and applied studies. Three kinds of results are especially
emphasized. First, the bounds themselves remain too crude
and conservative estimators ofpf for a dimension ofX up-
per than 2. Second, a maximum-likelihood estimator ofpf

can be easily built, presenting a high variance reduction with
respect to a standard Monte Carlo case, but suffering from
conservative bias. Third, the theoretical properties of a fam-
ily of unbiased estimators ofpf , based on sequential nested
importance samplings, are analyzed. Their supplementary
potential improvement requires further studies whose main
lines are discussed. Along the paper, the efficiency and diffi-
culties of these approaches are illustrated by a generic exam-
ple. In fine, we show that both approaches lead to promising
parsimonious estimation algorithms provided a sequential
emulation of the limit state (failure) surface, seen as a super-
vised classification problem, can be made under monotony
constraints. Besides, some connections and research avenues
are identified in various mathematical areas like multivariate
statistics, multi-objective optimization and computational ge-
ometry.
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1 Introduction

In many technical areas, the exceedance of some unidimen-
sional variableZ over a certain critical valuez∗ is an event
the probabilitypf of which must be carefully monitored.
For instance, a conservative estimation of a river flood prob-
ability pf , defined by the downstream water heightZ and a
given dyke heightz∗, can be a fundamental task required by
control authorities. The termconservativemeans here that
pf should not be underestimated. Since the natural frame-
work of such a concern is structural reliability, where the
event is often undesirable,pf will be often called thefailure
probability and obviously be assumed stricly positive.

We consider here the frequent case wherez∗−Z=G(X)

whereG is a deterministic function, usually a computer code,
andX is a vector of uncertain input parameters. In the flood-
ing example,X can typically include parameters of river
geometry, friction coefficients and upstream rainfall height,
andG is a hydraulical code resolving numerically fluid mech-
anism equations. Probabilistic approaches being commonly
used to take account of the variability of input parameters,
X is assumed to be a random vector with probability density
function (pdf) fX in a d−dimensional spaceID.

The most traditional way to estimate

pf = P(G(X)≤ 0) =

∫

ID
1{G(x)≤0} fX(x) dx.

is adopting a Monte Carlo (MC) strategy, namelypf is es-
timated by ˆpf n = n−1∑n

k=11{G(Xk)≤0} wheren is large and
theXk are independently sampled according tofX . This esti-
mator is well known to present good convergence properties
and does not require any regularity hypotheses onG or the
limit state surface (orfailure surface) ID l = {x ∈ ID |G(x) =
0}. Furthermore the estimation precision is independent on
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the dimensiond. It is thus the most appropriate method when
G is a complete black box.

This strategy presents however some difficulties which
prohibit its use in many problems, especially those for which
a trial of G is very time-consuming. Indeed, a good estima-
tion of a low probabilitypf ∼ 10−q typically requires at least
10q+2 trials (Lemaire and Pendola 2006). Furthermore ˆpf n
is not a robust estimator. In the sense given by Glynn et al.
(2009), it means that for anyn its relative error, namely its
coefficient of variation CV[p̂f n], tends to an infinite limit
whenpf → 0.

Many non-intrusive strategies have been proposed to ac-
celerate the MC approach and build parsimonious estima-
tors, the variances of which being smaller than the variance
VMC = pf (1− pf )/n of the MC estimator. Traditional meth-
ods of the engineer community in structural reliability (First
and Second-Order Reliability Methods (FORM/SORM), cf.
Madsen and Ditlevsen 1996) consider the estimation ofpf

as an optimization rather than a propagation problem. Those
methods are generally very parsimonious but lead to estima-
tors with weakly or non-controllable error.

Statistical methods like quasi-MC, sequential MC or im-
portance sampling approaches (Kroese and Rubinstein 2007)
are based on a static or sequential selection of thedesign of
experiments(DoE), namely the set of pointsxk on which
G is tried, to improve the covering ofID in areas close to
the limit state surface. Most advanced methods often get rid
of the time-consuming difficulties by emulating the behav-
ior of G (Cannamela et al. 2008), for instance using krig-
ing techniques. Although they introduce prediction error,
such techniques may appear necessary to implement Marko-
vian particle-based strategies (L’Ecuyer et al. 2007) orsub-
setsimulations (Au and Beck 2001), which build sequences
of conditional estimations ofpf and can lead to robust esti-
mators of very low probabilities.

All these methods try to minimize the strenght of the
hypotheses placed onG. However, in the engineering prac-
tice the behavior ofZ can be known to be monotonous with
respect toX. In the flooding example, an increasing of the
upstream rainfall usually implies an increasing of the down-
stream water height toward a certain limit linked to the topo-
logical features of the river. See de Rocquigny (2009) for
further details on this example and Rajabalinejad et al. (2010)
on a similar one. Monotonous properties of computer codes
have been considered in various theoretical and engineer-
ing domains, e.g. proving the MC acceleration of Latin Hy-
percube Sampling (MacKay et al. 1979) for the estimation
of expectancies, carrying out screening methods for sensi-
tivity analyses (Lin 1993), predicting the behavior of net-
work queuing systems (Ranjan et al. 2008) or estimating the
safety of a nuclear reactor pressure vessel (Munoz-Muniga
et al. 2010). GivenX and assumingz∗−Z(X) can reliably

be modelled byG(X), the code monotony itself is assumed.
Most traditional relaxations of this hypothesis are assuming
Z = g(X,ε) whereg(x,ε) = G(x) + ε or g(x,ε) = G(x)ε
whereε is somemodel error. Providedε can be assessed,g
is still a monotonous code.

Recently some articles (de Rocquigny 2009, Limbourg
et al. 2010, Rajabalinejad et al. 2010) highlighted the pos-
sibility of taking advantage from code monotony to bound
and estimatepf . Under the name ofMonotonous Reliability
Methods(MRM), De Rocquigny (2009) proposed a class of
sequential algorithms which build a progressive bounding of
the limit state surface, thanks to a sequential DoE, which al-
lows for the computation of a crude estimator ofpf at each
step. Mainly aimed at the community of engineers in struc-
tural reliability, these articles consisted in a brief description
of the MRM features and behavioral studies on some ex-
amples. On the case-studies they considered, their empirical
results showed that the precision of FORM/SORM meth-
ods, as well as a classic MC approach (for a same number of
trials), was significantly improved. Similar results were ob-
tained by Rajabalinejad et al. (2010). However, although a
parallelization of such algorithms was already implemented
(Limbourg et al. 2010), the convergence properties of the
MRM class have not been theoretically studied yet.

The aim of the present article is to start addressing this
issue. Our main contribution is a clear formalization of MRM,
the proper definition of two classes of estimators ofpf , and
providing some theoretical conditions on the DoE and the
limit state surface such that these estimators have better prop-
erties than MC ones. A second contribution is to offer a prac-
tical view of the technical tools needed to study the sequen-
tial inference techniques based on code monotony. Finally,
along the paper some connections are done with other areas
of computational mathematics, especially about implemen-
tation issues.

To go more into details, we describe in Section 2 the
general principle of MRM algorithms. Section 3 deals with
a first estimator ofpf , defined as the maximum likelihood
of progressively sampled dependent-data, for which asymp-
totic normality conditions are provided, implying robust-
ness, conservatism and a theoretically good MC accelera-
tion. Furthermore it does not require any calibration work.
This estimator is however built on a sequence of nested naive
uniform sampling, and can suffer from high bias when the
dimension increases. Therefore Section 4 is dedicated to the
study of a class of unbiased estimators based on nested gen-
eralized importance sampling. Their study shows that a sig-
nificant improvement of the first results emanates from the
sequential resolution of a supervised classification problem
under monotony constraints. A Discussion section ends this
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paper, focusing especially on the research avenues that must
be explored to improve the theoretical and applied results
presented here, before getting turnkey estimators. Guide-
lines are also provided to connect the general convergence
results presented here with advanced techniques evoked here-
inbefore. Finally, note that the technical proofs of all state-
ments in the main text are given in the Appendix.

2 The principle of Monotonous Reliability Methods

2.1 Working assumptions, definitions and basic properties

Let ID : X 7→ G(X) be a deterministic computer code de-
fined as a real-valued scalar function ofX = (X1, . . . ,Xd) on
its definition domainID ⊂ IRd. By deterministic, we mean
thatG(x) produces the same output every time if it is given
the same inputx. A probability space(ID,A ,P) is defined
in order to model the input uncertainty, giving toX the na-
ture of a random vector with joint pdffX and cumulative
distribution function (cdf)FX .

Assumption 1. G is globally increasingoverID.

Global monotony can be defined as follows:∀i, ∃si ∈
{−1,+1}, ∀ε > 0,∀x = (x1, . . . ,xd) ∈ ID, such that

G(x1, . . . ,xi−1,xi + siε,xi+1, . . . ,xd)

≤ G(x1, . . . ,xi−1,xi ,xi+1, . . . ,xd)

wheresi represents the sign of monotonic dependence:si =
1 (resp. si = −1) whenG is decreasing (resp. increasing)
along with thei−th componentxi . In this paper, the increas-
ing monotony assumption is made without loss of generality
since any decreasingi−th component can be changed from
xi to−xi .

Assumption 2. G is continuous with respect to all its inputs
(possibly extended to continuous domains).

The smoothness ofG (ie. x 7→ G(x) is differentiable) is
not required for the algorithms proposed by De Rocquigny
(2009) and Limbourg et al. (2010). This relaxes a standard
hypothesis placed on computer code functions when dealing
with estimations based on interpolation (O’Hagan 2006).
However, further in the text a smoothness assumption on the
limit state surface is needed to get theoretical convergence
results on the estimation ofpf .

Definition 1 A set of points ofID is saidsafety-dominated
(resp. failure-dominated) if G is guaranteed to be positive
(resp.negative) in any point of this set.

Denote by the symbol� the partial order between elements
of any d−dimensional space in bijection withID, namely
x � y means that all components ofx are together larger or
equal to the components ofy. Then assume that some point
valueG(x̃) is known, and consider the sets

ID+
x̃ = {x ∈ ID | x � x̃} , ID−

x̃ = {x ∈ ID | x � x̃} .
The increasing monotony implies that ifG(x̃) > 0 (resp.
G(x̃)< 0), thenID+

x̃ is safety-dominated (resp. ID−x̃ is failure-
dominated). This proves the next lemma.

Lemma 1 Both inequalities are true with probability 1:

pf ≤ 1−P(X ∈ ID+
x̃ ) if G(x̃)> 0,

pf ≥ P(X ∈ ID−
x̃ ) else.

More generally, ifn trials of the numerical modelG have
been performed for a sample ofn input vectors(x j) j=1,...,n,
we may group them into the safe and failure sub-samples
following the corresponding values of(G(x j)) j=1,...,n, re-
spectively

Ξ+
n =

{
x ∈ (x j) j=1,...,n | G(x j)≥ 0

}
,

Ξ−
n =

{
x ∈ (x j) j=1,...,n | G(x j)≤ 0

}
,

then generate the sets

ID+
n =

{
x ∈ ID | ∃x j ∈ Ξ+

n , x � x j
}
,

ID−
n =

{
x ∈ ID | ∃x j ∈ Ξ−

n , x � x j
}
.

Doing so we obtain generalized bounds forpf : denoting
p−n = P(X ∈ ID−

n ) andp+n = 1−P(X ∈ ID+
n ) to alleviate the

notations, we have

p−n ≤ pf ≤ p+n . (1)

Hereafter,ID+
n and ID−

n will be referred to asdominated
spaces, where the sign ofG(X) is known. Note that the com-
plementarynon-dominatedspace

IDn = ID/
(
ID+

n ⊕ ID−
n

)

is the only part of space where further trials ofGare required
to improve the bounding and some estimation ofpf .

Precision criterion.Assuming a computational budget in-
dependent onpf , it is desirable to evaluate the precision
reached by the computation along the algorithmic steps (crudely
speaking, the width between the bounds). Various criteria
ρn = ρ(p−n , p+n ) can be considered according to the context
of the study. For instance, typical safety studies in the nu-
clear field would categorize failure or initiating events ac-
cording to logarithmic probability classes. In a concern of
generality, a criterion built on relative bounding precision
appears desirable, e.g.

ϒn(pf ) = (p+n − p−n )/pf = |p+n /pf −1|+ |1− p−n /pf |.
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Reaching a precision orderε on ϒn(pf ), independently of
the unknownpf , also appears simple. It is enough to run
MRM until

ρn = ϒn(p
−
n ) = (p+n − p−n )/p−n ≤ ε

since one always hasϒn(pf )≤ ρn.

Remark 1In multi-objective optimization (MOO ; Figueira
et al. 2005), a dominated space can be interpreted as a sub-
set of a performance space delimited by a Pareto frontier. In
this framework, the code is thought as a monotonous rule
of decision depending ofd variables, for which the set ofn
best possible configurations (the frontier) is searched. Both
frameworks share concerns of parsimony because of the lim-
ited amount of time in practice for examining the applicabil-
ity of the solutions in MOO.

2.2 The algorithm

2.2.1 Space transformation

Transforming the input space often appears as a preliminary
task of well-known methods in structural reliability to sim-
plify its exploration. For instance FORM/SORM methods
involve the two-steps Nataf iso-probabilistic transformation
of ID to a standardized Gaussian space. The rationale for
such transformations is that estimatingpf appears simpler.
In our case, a link can be done between the computation of
the bounds aroundpf and a classic computational geometry
problem which can be exactly solved, as explained in Ap-
pendix B.

Assumption 3. There exists an invertible transformationΨFX :
ID 7→ U whereU is thed−dimensional hypercube[0,1]d,
such that:

(1) the transformed input vectorννν =ΨFX(X) has all its com-
ponents independent and identically distributed (iid) and
follows a uniform distribution onU, the new failure func-
tion (or code)G becoming

G̃(ννν) = G◦Ψ−1
FX

(ννν) = G(X);

(2) G̃ remains a monotonic (increasing) function of the new
input vectorννν.

When theXi are independent, this assumption is always
satisfied sinceΨ−1

FX
can simply be chosen as the product

of the marginal cdfs. In dependent cases, explanations and
some technical requirements about the choice ofΨ−1

FX
are

given in Appendix A. The image space is now described as
the probability space(U,B(U),P).

2.2.2 The algorithmic scheme

Denote nowU−
n , U+

n andUn =U/(U+
n ⊕U−

n ) the image
spaces throughΨ−1

FX
of ID−

n , ID+
n andIDn. The scheme shared

by all MRM variants can be described as follows.

MRM Global Scheme

Step 0. Initialization:
(a0) let U+

0 = {1d}, U−
0 = {0d} and U0 = [0,1]d

(b0) let (p−0 , p
+
0 ) = (0,1)

(c0) select an initial DoE {ννν(1)
1 , . . . ,ννν(m1)

1 }

Stepn≥ 1. While ρ(p−n−1, p
+
n−1)> ε

(a) if n> 1, select a DoE {ννν(1)
n , . . . ,ννν(mn)

n }∈Un−1

(b) compute the signatures

ξ ( j)
νννn = 1{

G̃
(

ννν( j)
n

)
<0
} (2)

(c) update the spacesU−
n = U−

n−1∪U−U+
n = U+

n−1∪U+Un = U/(U−
n ∪U+

n )

whereU− =
{

ννν ∈U | ∃ ννν ( j)
n , ξ ( j)

n = 1, ννν � ν( j)
n

}U+ =
{

ννν ∈U | ∃ ννν ( j)
n , ξ ( j)

n = 0, ννν � ννν( j)
n

}

and their volumes (V−
n ,V+

n )
(e) update the bounds (p−n , p

+
n ) = (V−

n ,1−V+
n )

At each step, the DoE must be chosen taking account of

the increasing monotony of̃G. Denotingννν(1)
n andννν (2)

n two

points of the DoE and assuming to knowξ (1)
n , the signature

of ννν(2)
n is unnecessary to compute in two cases:

if ξ (1)
n = 1 andννν(1)

n � ννν(2)
n ⇒ ννν(2)

n ∈U−
ννν(1)

n
andξ (2)

n = 1,

if ξ (1)
n = 0 andννν(1)

n � ννν(2)
n ⇒ ννν(2)

n ∈U+

ννν(1)
n

andξ (2)
n = 0.

Thus the order of̃G trials should be carefully monitored, in
relation with the partial order between the points in the DoE.
Reducing the DoE to a single point, i.e.mn = 1 for all steps,
minimizes the number of unnecessary trials. This strategy is
favored in the present paper. A two-dimensional example of
MRM progression is displayed on Figure 1.

2.2.3 Initialization via deterministic Design of Experiments

First MRM iterations should be monitored to reduce signif-
icantly the width of interval[p−n , p

+
n ], such that later iter-

ations mainly focus on scale refinements. Whenpf corre-
sponds to the probability of a rare event, one could hope that
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Un

12

U−
n

ν1

νννb

νννc νννh

ννν j

νννm

νννg

νννe

νννd ννν i

νννa

ννν f

failure surface

νννk

νννn

νννn
ν2

Fig. 1 Two-dimensional uniform space aftern = 14 MRM iterations.
Points{02,νννa,νννb,νννc,νννd,νννe,ννν f ,νννg} have positive signatures and are
vertexes ofU−

n . Points{νννh,ννν i ,ννν j ,νννk,ννν l ,νννm,νννn,12} have zero signa-
tures and are vertexes ofU+

n .

p+n rapidly evolves from 1 to a low value. Most interesting
refinements begin whenp−n > 0, namely when one finds the
first point with signature 1 other than the origin 0d. In this
perspective, we suggest to start the algorithm using a deter-
ministic DoE until reachingp−n > 0, then switch on another
DoE, typicallystochastic(cf. § 2.2.4).

De Rocquigny (2009) suggested using isoprobabilistic
DoEs gridding regularlyU. Such algorithms, however, in-
volve exponentially-increasing numbers of trials, which up-
holds the need for switching to another DoE providing fastest
explorations of the uniform space. In the applications pre-
sented further, a dichotomic diagonal MR method (DD-MRM),
illustrated on Figure 2 in a 2-dimensional case, was used.
It explores the non-dominated spaceUn in a very intuitive
way, maximizing the removable volume at each iteration,
and stops at stepk0 ≥ 1 such that

k0 ≥ log(1/pf )

d log2
.

Consequently, an expected crude prior value ofpf can help
to estimate the minimal numberk0 of trials.

2.2.4 Stochastic Designs of Experiments

From now and to the end of the main text, without loss of
generality, we assume to start the notation(U+

0 ,U−
0 , p

+
0 , p

−
0 )

afterN−1 introductive deterministic steps withN ≥ k0+1.
From stepN, the DoE is chosen stochastic and we denote
Fn theσ−algebra generated by a series ofn stochastic sam-
plings ννν1, . . . ,νννn (although this notation is sometimes dis-
missed to alleviate the text when there cannot be misunder-
standing). All stochastic processes considered in the follow-
ing are adapted to the filtration(Fn)n.

�
�
�
�

��

12ν2

02 ν1

ννν1 (ξννν1 = 0)

ννν3 (ξννν3 = 0)
ννν4 (ξννν4 = 1)

failure surface

U
+2
/U

+1

U
+1

U
+3
/U

+2

U−
4

ννν2 (ξννν2 = 0)

Fig. 2 Diagonal deterministic (DD-MRM) strategy, assuming a low
pf , stopping after 4 steps.

A stochastic exploration of succesive non-dominated spaces
has two advantages. First, it is likely to diminish the cost
of deterministic DoEs. Second, it allows for a statistical es-
timation of pf , which is what the remainder of the paper
deals with. Before that, some basic observations can be done
about the behavior of the bounds and the precision criterion.

Obviously, 1−p−n andp+n both decrease and are bounded
in [0,1]. Sincep−0 and p+0 are known, these processes are
predictible.

Thus 1− p−n andp+n are supermartingales bounded inLp

∀p≥ 1. Therefore, from generalized Doob’s theorem (Bercu
2008), there exists two random limits(p−∞ , p

+
∞) such that

0 < p−∞ ≤ pf ≤ p+∞ < 1 andp−n
a.s.,Lp

−−−−→ p−∞ and p+n
a.s.,Lp

−−−−→
p+∞ . The sequence of random variables{ρn} is a strictly
decreasing predictive process, and converges similarly to-
ward the random variableρ∞ = p+∞/p−∞ −1≥ 0. Lebesgue’s
monotonous convergence theorem implies almost sure con-
vergence of expectancies ofp−n , p+n andρn conditioned on
Fn−k. Using Theorem 2.1 in Cadre (2002), the sequence
{ρmed

n } of median values ofρn along a sampling strategy is
decreasing and converges uniformly to Med[ρ∞].

Example 1Along the paper, the results will be mostly illus-
trated using the following generic toy example. For a given
dimensiond, let

Yd = Hd(X) = X1/(X1+
d

∑
i=2

Xi)

where the inputXi follows the gamma distributionG (i +
1,1). Obviously,∀ d≥ 2,Gd is increasing in(−X1,X2 . . . ,Xd)

andYd follows the beta distributionBe(2,2−1(d+1)(d+2)−
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3). Therefore, denotingqd,pf the pf−order quantile ofYd,
the code defined by

Gd(X) = Hd(X)−qd,pf

is related to the known exceedance probabilitypf .
Choosingpf = 5% and a sampling strategy of the DoE

only based on nested uniform sampling, the behavior of the
bounds is displayed on Figure 3 for dimensions 2 to 4, in
addition to this of the 95% confidence interval of a stan-
dard MC estimation. Whend = 2, the “100%-confidence”
deterministic bounds lead to a significantly better precision
sharper than the statistical confidence interval. The behavior
of ρn andρmed

n is displayed on Figure 4.

Unidimensional cases.Whend = 1, thenp−∞ = p+∞ = pf

and the dynamic bounds are consistent estimators ofpf ,
whatever the sampling of the DoE. Thus any estimator of
pf located between these bounds is automatically consis-

tent, andρn
a.s.−−→ 0 andρmed

n
unif.−−→ 0.

Indeed, it is enough to notice that the sequencean =
|p−n − pf | = pf − p−n is decreasing. Therefore one can ex-
tract a strictly decreasing sequence{aσ(n)} from{an}. Since
aσ(n+1)/aσ(n) < 1, the sum∑n

k=1aσ(k) is converging, which
implies aσ(n) → 0 thenan → 0. Then∃cn → 0 such that

|p−n − pf | ≤ cn, which provesp−n
a.s.−−→ pf .

Multidimensional cases. In multidimensional cases, wecon-
jecture1 that the limitsp−∞ and p+∞ may be not equal topf .
This counter-intuitive idea results from the following spec-
ulation: in dimensions higher than 2, the addition of hyper-
cubes with diminishing sizes seems not to asymptotically fill
the non-dominated space if the limit state surface presents
some linearity in a non-empty measurable set of points inU.
This speculation is precised in the following example, which
was kindly provided by G. Bouchard (Xerox Research Cen-
tre Europe).

Example 2Consider the particular case where the failure
surfaceUl is the diagonal hyperplane such thatpf = 1/2
∀d≥ 2. Then we conjecture that any deterministic or stochas-
tic n−sized DoE cannot be faster to coverU− than the (frac-
talized) dichotomic strategy illustrated in Figure 5: at each
stepk ≥ 1 with k ≤ log2(n+ 2), dk−1 hypercubes of side
(1/2)k, namely of volume 2−kd, are built such that their
higher vertice (the furthest to the origin) belongs toUl . When
n→ ∞, the total dominated volume is

V∞(d) = lim
n→∞

log2(n+2)

∑
k=1

dk−12−kd =
1
d

(
1

1−2−dd
−1

)
.

1 This conjecture is maybe false and the rationale used here needs
to be checked.
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Fig. 3 MRM bounds and MC 95% confidence areas forn= 300 trials
of Gd with d = 2 (a), d = 3 (b) or d = 4 (c). The results are based on
a succession of nested uniform samplings in the non-dominated areas
and estimated over 300 parallel computations withpf = 0.05.

Note thatV∞(2) = 1/2 = pf as it could be expected, but
V∞(d)< pf ∀d ≥ 3; actuallyV∞(d)→ 0 whend increases.

An obvious consequence of this quick behavior study is
that, as soon higlighted by Limbourg et al. (2010) and shown
in Figure 3, the bounds remain very crude conservative esti-
mates ofpf and cannot be practical by themselves in applied
studies whend increases. Therefore,ρn cannot be used as a
precision criterion strictly speaking, but rather as an indica-
tor of reduction speed in space exploration. Hopefully, the
bounds may be used to build statistical estimators ofpf to
improve significantly some features of the MC estimators.
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Fig. 4 Plots of convergence criterionρn (median and 95% confidence
areas estimated over 300 parallel computations).
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Fig. 5 Fractalized (dichotomic) covering of a half-cube in two dimen-
sions.

Following Limbourg et al. (2010), it could be tempting
to consider crude estimators based on an average of these
bounds. But since the bounds may not be consistent esti-
mators ofpf , the self consistency of such estimators seems
questionable whend is higher than 2. Therefore a cautious
elicitation of these estimators is required, as well as the call
to probabilistic arguments to study their convergence.

3 A maximum-likelihood estimator of pf

This section is dedicated to a first approach of the statistical
problem of estimatingpf , assumingννν1, . . . ,νννn+1 are suc-
cessively uniformly sampled in the nested non-dominated
spacesU0, . . . ,Un. The results presented here are useful in
three senses. Firstly, the estimation procedure does not need
to be calibrated. Secondly, the results highlight asymptotic
Monte Carlo acceleration, conservatism and robustness prop-
erties in estimation which testify to the interest of takingac-
count of code monotony in any computational framework
(without specially parsimonious requirements). Thirdly,the
gain in variance with respect to a MC estimator appears as
a new objective to overtake, for instance via a generalized
importance sampling approach considered in the following
section.

When at stepk the sampling is uniform, the occurence
of a nonzero signatureξνννk follows a Bernoulli distribution
B(γk), conditional toFk−1, with

γk = P
(
G̃(ννν)≤ 0|ννν ∈Uk−1

)
,

=
P
(
G̃(ννν)≤ 0

)
−P

(
G̃(ννν)≤ 0|ννν ∈U−

k−1

)
P
(
ννν ∈U−

k−1

)

P(ννν ∈Uk−1)

from Bayes’ formula, hence

γk =
pf − p−k−1

p+k−1− p−k−1

. (3)

After n steps, all information aboutpf is thus brought by
the dependent-data likelihoodLn(pf ) = Ln(pf |ννν1, . . . ,νννn)

defined by the product of these conditional Bernoulli densi-
ties:

Ln(pf ) =
n

∏
k=1

(
pf − p−k−1

p+k−1− p−k−1

)ξνννk
(

p+k−1− pf

p+k−1− p−k−1

)1−ξνννk

,

the maximum estimator ˆpf n of which is considered in next
proposition.

Proposition 1 Denoteℓn(pf ) = logLn(pf ). There exists a
unique solutionp̂f n in (p−n−1, p

+
n−1) of the likelihood equa-

tion ℓ′n(pf ) = ∑n
k=1 ω̃k

(
pf
)
(pk − pf ) = 0, semi-explicitely

defined by

p̂f n =

n
∑

k=1
ω̃k
(
p̂f n

)
pk

n
∑

k=1
ω̃k
(
p̂f n

) ,

where pk = p−k−1+
(
p+k−1− p−k−1

)
ξνννk (4)

and ω̃k (x) =
[(

x− p−k−1

)(
p+k−1− x

)]−1
.

Numerically a simple Newton-Raphson routine can effi-
ciently do the job. The existence of the MLE ˆpf n is however
restricted to cases wherepf cannot be reached by at least
one of the two bounds(p−n−1, p

−
n+1) for any finiten. This is

true when a non-empty subset ofUl is smooth, namely whenUl is not the surface of union of hyperrectangles sharing the
same orthogonal basis, which seems the most likely in prac-
tice. Condition(i) in Theorem 1 formalizes this smoothness
condition.

Although we are in a data-dependent context, the asymp-
totic results about ˆpf n presented in this theorem are classic
in the sense that the Cramer-Rao bound for the variance is
still given by the inverse of the Fisher information, and is
asymptotically reached by the MLE. They are technically
based on the martingality of the score process{ℓ′n(pf )}.
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Theorem 1 DenoteVMC
n (pf ) the variance of a standard MC

n−estimator and Jn(pf ) = ∑n
k=1E

Fk
[ω̃k(pf )] the Fisher in-

formation. Assuming that

(i) Ul is C 1 in a non-empty measurable subset ofU,

then

VMLE
n = J−1

n (pf ) ≤ VMC
n (pf )

(
2pf

1− pf

)(
ρmed

n−1

)2
.

Furthermore, under the supplementary assumptions:

(ii) ∃ δ ∈ [0,1), with δ = 0 only if ρmed
n → 0, such that

n
∑

k=1

(
ω̃k(pf )−E

Fk

[
ω̃k(pf )

])
= o

(
n1−δ (ρmed

n−1

)−2
)

,

(iii) (p+n − pf )/(pf − p−n )
IP−−−→

n→∞
1,

then p̂f n
IP−→ pf

and
1√

VMLE
n

(
p̂f n− pf

) L−→ N (0,1).

Condition (ii) implies that, when the number of steps
comes to infinity, the weights end to vary in a negligible pro-
portion in regards of all possible trajectories of successive
uniform nested samplings. Although it is difficult to check,
this behavior seems rather reasonable in practice because
trajectories mainly vary at the first steps of the algorithm,
when the non-dominated space is still large. A close idea,
expressed in Condition(iii ), is requiring that asymptotically
the reduction speeds of intervals[p−n , pf ] and [pf , p+n ] be-
come similar.

In corollary of the previous theorem, note that asymptot-
ically the coefficient of variation (CV) is such that

CV
[
p̂f n

]
≤ pf ρmed

n−1

E
Fn

[
p−n−1

]
√

2
n

which remains finite at anyn when pf → 0+. The MLE is
thus asymptotically robust.

The variance reduction with respect toVMC
n (pf ) shown

in the previous theorem is practical to demonstrate this asymp-
totic robustness, but remains however submitted to the be-
havior ofρmed

n−1, which is bounded and goes to 0 whend = 1,
but can stay at high values whend increases (cf. Figure 4).
Therefore it must be noticed that from Jensen’inequality,

VMLE
n ≤

(
n

∑
k=1

E−1
[
ω̃k(pf )

]
)−1

=
pf (1− pf )

n
∑

k=1
(1− ck−1)−1

(5)

wherec0 = 0 and∀ k> 1,

ck = E
Fk

[
p−k
pf

+
1− p+k
1− pf

− p−k (1− p+k )

pf (1− pf )

]
(6)

which increases from 0 to 1 whenk→ ∞.

ThusVMLE
n ≤ αn(pf )VMC

n (pf ) with

αn(pf ) =
n

n
∑

k=1
(1− ck−1)−1

< 1.

Proposition 2 Under the assumptions of Theorem 1, and
assuming in addition

(iv) δ > 1/2 in Assumption(ii),
(v) ∄ n≥ 1 such that

pf = (2n)−1
n

∑
k=1

ω̃k(pf )(p
−
k−1+ p−k−1)/

n

∑
k=1

ω̃k(pf ),

then

Ĵ 5/2
n (pf )

|Ĵ′n(pf )|
(
Ĵ −1

n (p̂f n)−VMLE
n

) L−→ N (0,1).

whereĴn(pf ) = ∑n
k=1 ω̃k(pf ).

As a consequence, an asymptotic confidence interval for
pf can be established: denotinguα the standard normalα−order
percentile,

lim
n→∞

P


p̂f n−

u1−α/2√
Ĵn(p̂f n)

≤ pf ≤ p̂f n+
u1−α/2√
Ĵn(p̂f n)


 = 1−α.

Using the recent results by Furrer (2002), strong consis-
tency needs supplementary hypotheses such thatℓ′′n(pf )/Jn(pf )→
1 almost surely, and checking the Lipschitzian nature of the
mappingℓ′′n(pf ): there should exist a sequence{λn}> 0 al-
most surely finite such that,∀ p̃f in a neighborhood ofpf

included in(p−n−1, p
+
n−1),

∣∣∣∣∣
n

∑
k=1

(
pf ω̃2

k (pf )− p̃f ω̃2
k (p̃f )

)
∣∣∣∣∣ ≤ λn

∣∣pf − p̃f
∣∣ .

Whenpf is low, the MLE ˆpf n is a conservative estimator
of pf since its bias remains strictly positive, as exemplified
on Figure 7. This behavior is due to the fact that the highest
weights favor local estimatorspk = p+k when approaching
the failure surfaceUl (ξνννk = 1 in (4). On the exemple con-
sidered in this last figure (as well as in other experiments
not shown here), a marked gap in relative bias was noticed
between dimensions 3 and 4. Under dimension 4, the bias re-
mains reasonable from a moderate number of iterations (typ-
ically 400). Else it dramatically stays at high values. How-
ever, note that from a strictly statistical criterion (rootmean
square error), all MLE in dimensions 2 to 4 for the generic
example end to improve the standard Monte Carlo estimator
(Figure 6,left).
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MRM runs.
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Controlling and correcting the bias could be the sub-
ject of a research based on bootstrap experiments, using a
monotonous estimation of the failure surfaceUl calibrated
from the last obtained non-dominated points inU. However,
naturally unbiased estimators with non-asymptotic proper-
ties appear more relevant in our costly-computational frame-
work. Rather than the usual Monte Carlo variance, getting
variances of such unbiased estimators that are below the
asymptotic variance of the MLE should become an aim. Be-
cause the latter reaches the Cramer-Rao bound, this needs to
consider other forms of sampling than (naive) uniform ones,
in the succession of nested non-dominated spaces, to speed
up the volume removing. Next section provides general re-
sults to handle and select these samplings.

4 Weighted importance sampling estimators ofpf

4.1 Definition

Now denotefk−1(ννν) any importance sampling pdf defined
onUk−1, from which the new point of the DoE,νννk, is sam-
pled at iterationk. Denote

p̃k = p−k−1+
ξνννk

fk−1(νννk)
,

thus p̃k can be seen as a generalization of estimatorpk de-
fined in (4). We obviously assume that Supp( fk−1) =Uk−1

such that ˜pk is always well defined. Notice that

p̃k ∈
[
p−k−1, p

+
k−1

]
⇔ fk−1(νννk)≥

(
p+k−1− p−k−1

)−1 (7)

Lemma 2 Estimatorp̃k is unbiased.

Consequently, the weighted importance sampling esti-
mator (WISE)

p̆f n =
1
n

n

∑
k=1

ωk p̃k, (8)

where theωk are deterministic weights in[0,n], the sum of
which being equal ton, is unbiased too. Its variance is given
in next proposition.

Proposition 3 The variance ofp̆f n is

VWISE
n =

n

∑
k=1

ω2
k

n2 E

[∫Uk−1

1{G̃(ννν)≤0}
fk−1(ννν)

dννν − (pf − p−k−1)
2
]
,

expectations being defined with respect toFk−1. An alter-
native writing is VWISE

n =VU
n (pf )+VF

n (pf ) where

VU
n (pf ) = VMC

n (pf )
n

∑
k=1

ω2
k

n
(1− ck−1) ,

VF
n (pf ) =

n

∑
k=1

ω2
k

n2 E

[∫Uk−1

1{G̃(ννν)≤0}
fk−1(ννν)

dννν −
(pf − p−k−1)

(p+n−1− p−n−1)
−1

]

with VF
n (pf ) = 0 if all the fk−1 are chosen uniform, the ck’s

being defined in (6).

4.2 General properties

The features of this variance deserves some comments.

(a) In the most naive case of sampling, namely whenωk =

1 and fk−1 is uniform onUk−1, then a MC approach
remains always beaten since

VU
n (pf ) = VMC

n (pf )

(
1− 1

n

n

∑
k=1

ck−1

)
< VMC

n (pf ).
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(b) Surprisingly,VWISE
n is the weighted sum of the vari-

ances of estimators ˜pk, k≤ n (see proof), so that they are
decorrelated and the weighted sum of unbiased estima-
tors of Var[p̃k] provides an unbiased estimator ofVWISE

n .
For instance, fork < n, definingV̂k = (p̃k− p−k−1)(p̃k−
p̃k+1), one has E

[
V̂k
]

equal to

E

[
Efk−1

[
ξννν

fk−1(ννν)

(
ξννν

fk−1(ννν)
+ p−k−1−E[p̃n+1|Fk]

)]]
,

= E

[∫Uk−1

ξννν
fk−1(ννν)

dννν − (pf − p−k−1)
∫Uk−1

ξννν dννν
]
,

= E

[∫Uk−1

ξννν
fk−1(ννν)

dννν − (pf − p−k−1)
2
]
,

= Var[p̃k] .

(c) Assuming the{ fk−1} are known, the weights{ωk} can
be theoretically calibrated such that the variance be min-
imized, as explained in Corollary 1.

Corollary 1 Denote d0= 0and dk = ck−E[bk( fk)]/(pf (1−
pf )) ∀k> 1 where

bk( fk) =
∫Uk

1{G̃(ννν)≤0}
fk(ννν)

dννν − (pf − p−k )

(p+n − p−n )−1
.

The solution of the optimization problem

(ω∗
1 , . . . ,ω

∗
n) = argminVWISE

n ,

under the constraint∑n
k=1 ωk = n, is

ω∗
k =

n

(1−dk−1)
n
∑
j=1

(1−d j−1)−1
. (9)

Consequently, the optimized variance is

V∗WISE
n = VMC

n (pf )
n

n
∑

k=1
(1−dk−1)−1

.

(d) When all fk−1 are chosen uniform, thendk = ck and

V∗WISE
n =

(
n

∑
k=1

E−1[ω̃−1
k (pf )

]
)−1

≥ VMLE
n

from (5). This result was expectable sinceVMLE
n is the

Cramer-Rao bound for this kind of sampling. This testi-
fies from the need of eliciting carefully the importance
pdf to diminish the variance.

(e) Eliciting importance pdf{ fk−1} such thatbk−1( fk−1)<

0 for all k ensures the non-asymptotic robustness of the
estimator ˘pf n, especially when the weights are optimized.
Next proposition details this property. Note that this con-
dition is automatically checked iffk−1 is elicited such
that (7) is true for allνννk ∈Uk−1.

Proposition 4 Assume that for any k≥ 1,
∫Uk−1

1{G̃(ννν)≤0}
fk−1(ννν)

dννν ≤ (pf − p−k−1)(p
+
n−1− p−n−1). (10)

Then∃ C> 0 such that

CV
[
p̆f n

]
≤ C

n

√
n

∑
k=1

ω2
k (11)

and p̆f n is also a robust estimator of pf .

(f) As usual in importance sampling approaches in struc-
tural reliability (Rubino and Tuffin 2009), a particular
choice of the importance density (in our case, of succes-
sive importance densities) can reduce the variance of the
estimator to 0: see Proposition 5. This density is obvi-
ously not elicitable in practice since it requires to know
the failure surfaceUl and the probabilitypf that we are
precisely looking for. But this result illustrates the po-
tentiality of strong variance reduction induced by impor-
tance sampling approaches carrying out approximations
ofUl .

Proposition 5 A null variance VWISE
n = 0 can be reached

if and only if, at each step n,∃kn−1(ννν) a density onU+
n =U+∩Un−1 such that

fn−1(ννν) =
{
(pf − p−n−1)

−1 if G̃(ννν)≤ 0,
kn−1(ννν) else

(12)

and,∀ννν l ∈Ul ,

lim
ε→0

∫

Bε
ννν l

kn−1(ννν) dννν =
Vol
(U−

ννν l
∩Un−1

)

pf − p−n−1

where Bε
ννν l

= {ννν l + uε, u ∈ [0,1]d} is the open half-ball of
radiusε ≥ 0 centered onννν l containing safety points only.

More realistically, constrainingbk−1( fk−1) ≤ 0 can be
achieved giving more weight to a failure-dominated area
with maximal volume, namelyfk−1 should sample close toUl . Tthis intuitive reasoning was the rationale for Limbourg
et al. (2010) to propose an empirical directional strategy at
each MRM step. The benefit of such a strategy is illlustrated
in next toy example.

Example 3Consider a unidimensional problem whereUl =
{νννS} = {pf } ∈ [0,1]. After k−1 iterations, denoteννν−

k−1 =

p−k−1 andννν+
k−1 = p+k−1. Assuming to known a priori a per-

fect estimation ofUl (ie., with negligible error), let choose
fk−1(ννν) as the truncated Cauchy distribution on[ννν−

k−1,ννν
+
k−1]

with modeνννS and scaleγ. Then, after basic algebra,

bk−1( fk−1) = (νννS−ννν−
k−1)

[
∆
(γ +νννS−ννν−

k−1)
2/3

ννν+
k−1−ννν−

k−1

−1

]
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with ∆ = arctan((ννν+
k−1−νννS)/γ)+arctan((νννS−ννν−

k−1)/γ)≤
π so that, assuming the mild conditionνννS−ννν−

k−1 <
√

3/π ≃
0.977, one must selectγ < π−1− (νννS−ννν−

k−1)
2/3 to ensure

bk−1( fk−1)< 0, and a decreasingγ (ie., a more concentrated
importance distribution aroundνννS) increases|bk−1( fk−1)|.

Then Remarks(e) and(f) show that a realistic sequence
of good importance pdf{ fk}, cleverer than simple uniforms,
must be elicited based on a sequence ofsurrogatesof the
failure surfaceUl . Next subsection is dedicated to a heuris-
tic (work-in-progress) approach of the elicitation of{ fk} in
practice.

4.3 Heuristic elicitation of{ fk} in practice

Since an arbitrary number of points can be independently
sampled in both dominated areas at each step,Ul can be
easily interpreted as the decision frontier of a supervised
classification binary problem, without horseriding of classes
(perfectly separable). A nonparametric estimationÛk,l of
the frontierUl can be done using Multi-Layer Perceptron
(MLP) neural networks or Support Vector Machines (SVM),
as recommended by Hurtado (2004) in the field of structural
reliability analysis. Li et al. (2006) emphasized that such
tools are flexible, can estimate a frontier on the basis of a
few samples, and can overcome the curse of dimensional-
ity. To be realistic and coherent with the features ofG, two
constraints must be applied on the estimation ofÛk,l :

– the volume ofÛ−
k = {ννν ∈U, ∃ννν l ∈ Ûk,l , ννν � ννν l} must

be equal to the current estimator ˘pf k of pf ;
– Ûk,l must be a decreasing function of the coordinates.

Once the classifier̂Uk,l has been obtained, location and scale
parameters forfk−1 must be elicited (assuming a form for
fk−1 has been chosen) such that the constraints

p̃k ∈
[
p−k−1, p

+
k+1

]
(13)

p̆f k ∈
[
p−k−1, p

+
k+1

]
(if possible), (14)

∫Û−
k

1
fk(ννν)

dννν ≤
(
p̆f k− p−k−1

)(
p+n − p−n−1

)
(15)

are respected. Typically, choosing a small scale parameter
(or a small importance variance) will lead to satisfy the bound-
ary constraints (13) and (14), as exemplified in next propo-
sition when using truncated multinormal importance pdf.

Proposition 6 For d ≥ 2, let µn,d be the unique positive so-
lution of equation D(x) = xd+dxd−2 = (p+n − p−n )/(2π)d/2.
Note thatµn,d strictly decrease with n, following the de-
creasing of p+n − p−n ). For q> d−2, let {ηn} be a sequence
of values in[0,1] such that, for d> 2,

ηn = o
(

n−q/(d−2)d−1/(d−2)(2π)−d/2(d−2)
)

(16)

and defineσn = µn,dηn. Finally, let fn be a multinormal dis-
tribution with meanνννn,0 and varianceσ2

n Id, truncated onUn. Then

p−n ≤ p̃n+1 ≤ p+n +o
(
n−q) .

The quasi-determinism implied by small importance vari-
ances has two major consequences.

(i) A sampledννν ∼ fk−1 remains close to the location param-
eterνννk−1,0, which takes the sense of the point ofUk−1

such that, given the classifier̂Uk,l , the maximal domi-
nated volume can be removed at stepk; based on the
equality 1− ck = E[(pf − p−k )(p

+
k − pf )], a simplified

criterion to minimize inνννk−1,0 could be

Ck−1(ννν) =
(
p̆f k−1− p−k (ννν)

)(
p+k (ννν)− p̆f k−1

)
(17)

wherep−+
k (ννν) is the bound implied by the position ofννν

with respect toÛk,l . See Example 4 for a crude illustra-
tion of the potential benefits of this approach.

(ii) The sequence{p−k , p
+
l } becomes quasi-deterministic too,

in the sense that Var[p−n ] and Var[p+n ] can decrease to-
ward 0. As seen in next subsection, such a behavior ap-
pears as a sufficient condition for the distribution of ˘pf n
to be asymptotically normal.

Example 4Treating the generic example in dimensiond =

2, a simple MLP with 3 hidden layers was calibrated at each
iteration. It was found decreasingly monotonous on nearly
90% of the iterations, and its prediction error was rarely
found over 15%. At iterationn, 103 points were uniformly
sampled in the non-dominated space. The mode of a trun-
cated gaussian importance pdf was selected among these
points by minimizing the criterion (17). Its standard devi-
ation was chosen asσn = n−2(2π)−2µn,2. Despite the cru-
dity of this elicitation, the decreasing of the width between
the bounds was found significantly improved with respect to
the naive approach based on uniform sampling (Figure 8),
as well as the precision of the estimators (Figure 9).

4.4 Asymptotic behavior

Because all estimators ˜pk are dependent, finding the non-
asymptotic distribution of ˘pf n seems rather difficult. The
asymptotic behavior of ˘pf n, which is also needed to deter-
mine the behavior of variance and weights empirical esti-
mators, can however be studied using tools from martingale
theory similar to those that have been used to explore the
asymptotic behavior of the MLE. This requires an autore-
gressive writing of ˘pf n, which is simple to get. Indeed, de-
noting

βn =
ω∗[n]

n

n
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Fig. 8 MRM bounds (uniform / importance samplings) and 95%
Monte Carlo confidence bounds(d = 2). Results are averaged over
300 repeated simulations.
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Fig. 9 Coefficients of variation for the MC, MLE and WISE estimators
(d = 2).

whereω∗[n]
k is the kth optimized weight associated to the

n−estimator ˘pf n, then

p̆f n+1 = (1−βn+1) p̆f n+βn+1p̃n+1. (18)

Then the following results are based on the martingality of
the process{Zn} defined byZn = λn(p̆f n− pf ) whereλn =

n
∏

k=1
(1−βk)

−1.

Theorem 2 Under the following assumptions:

(i) p−
n −E[p−n ]

IP−→ 0, p+n −E[p+n ]
IP−→ 0,

(ii) Cov[p−n , p
+
n ]

IP−→ 0,

(iii) bn( fn)−E[bn( fn)]
IP−→ 0,

then p̆f n
a.s.−−→ pf

and

(
p̆f n− pf

)
√

V∗WISE
n

L−→ N (0,1).

From Chebychev’s inequality, Condition(i) in Theorem
2 is checked if Var[p−n ] and Var[p+n ] can decrease toward 0,
which may be ensured by a quasi-deterministic choice of the
trial νννk at iterationk, as explained before.

To go more in details, consider only the behavior ofp−n .
Notice that

p−n = p−n−1+ ξνννnVol−n−1(νννn)

where Vol−n−1(ννν) is the element of volume added toU−
n−1,

namely the volume of the set of all points ofUn located
underννν. Therefore one has

Var[p−n ] = Var[p−n−1]+2Cov
[
p−n−1,Efn−1

[
ξνννVol−n−1(ννν)

]]

+ V
[
ξνννVol−n−1(ννν)

]

with

V
[
ξνννVol−n−1(ννν)

]
= Var

[
Efn−1

[
ξνννVol−n−1(ννν)

]]

+ E
[
Varfn−1

[
ξνννVol−n−1(ννν)

]]

Formally, Var[p−n ] can decrease toward 0 when the sam-
pling is quasi-deterministic in the sense discussed in the next
items.

1. Denoteδννν the Dirac measure inννν. Assuming the se-
quence{ fn}n can be elicited such thatfn(ννν)−δννν0,n con-
verges weakly to 0 allows forV[ξνννVol−n−1(ννν)] to con-
verge toward 0 in the same sense, using Prohorov’s the-
orem. It simply requires the tighness of the set of mea-
sures{ fn}n and the boundness of their two first mo-
ments, which are both ensured selecting bounded{ fn}n

on [0,1]d.
2. Furthermore,p−n−1 is obviously an increasing function of

the{ννν i}1≤i≤n−1. Assuming thatνννn is selected such that
the additive dominated volume is maximized at iteration
n, then Efn−1[ξνννVol−n−1(ννν)] is a decreasing function of
the {ννν i}1≤i≤n−1. Since these two random variables are
bounded then, from Schmidt (2003),∃N ∈ IN, ∀n≥ N,

Cov
[
p−n−1,Efn−1

[
ξνννVol−n−1(ννν)

]]
≤ 0.

As a consequence of an importance sampling close to
determinism, the sequence of spaces{U−

n } becomes itself
nearly deterministic, which allows for the condition(iii ) in
Theorem 2 to be checked.

Finally, Condition(ii) in Theorem 2 says that asymp-
totically, the probability of improving one bound becomes
decorrelated on the probability of improving the other. This
can be ensured by the symmetry of the volumes of the non-
dominated spaces(U−

n ,U+
n ), which seems a relatively mild

condition in asymptotic terms (ie., when the frontiers of the
dominated sets become very close to the failure surfaceUl ).

Despite those theoretical conditions remain difficult to
check in practice, we noticed that even a single uniform
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nested sampling can lead to observe variance decreasing for
the bounds and asymptotic normality of the WISE estimator.
We are thus confident in the fact that those conditions can be
relaxed in future studies.

4.5 Controlling the WISE estimators

As an important feature of the estimator, it is possible to
bound its convergence speed in function of the decreasing
series of criteriaρ1 > .. . > ρn. Practical usefulness of this
result is to help to stop the computation when reaching a pre-
determined estimation error. Next proposition summarizes
this result under the form of a non-asymptotic Hoeffding-
type concentration inequality, which does not depend on the
distribution of the estimator ˘pf n.

Anti-conservatism can be defined by the fact that at any
stepn, the estimator ˘pf n can underestimatepf . Obviously
the probability of such an event is asymptotically 1/2 be-
cause of the asymptotic normal distribution of ˘pf n. In a non-
asymptotic framework, however, it can be formalized as the
probability

pu,n(ε) = P

(
p̆f n

pf
≤ 1− ε

)
.

that the computed estimator ˘pf n is slightly underpf , the
“slightly” term being associated to a given (possibly nor-
mative) precisionε. Upper bounds for this probability can
then be provided using the martingality arguments used in
the asymptotic study. A first result is given in the following
proposition.

Proposition 7

pu,n(ε) ≤ exp


−2(pε)2




(
n
∑

k=1
(1−dk−1)

−1

)2

n
∑

k=1
(1−dk−1)2/ f 2

k−1(νννk)







5 Discussion

5.1 Main results and mains concerns

In this article, we have formally described the main fea-
tures of methods taking advantage of monotony for bound-
ing and estimating probabilitiespf of undesirable events, in
the common case when such events are defined as a thresh-
old exceedance by the output of a time-consuming black

box. They are based on sequential designs of experiments.
Though the sequential bounds aroundpf seem not being
able to be considered as both consistent and conservative
estimators ofpf , except in dimensions 1 and 2, a parsimo-
nious estimation ofpf can be led by statistical means and
theoretically studied by probabilistic arguments. Two fam-
ily of estimators have been proposed, the properties of each
improving significantly those of standard Monte Carlo esti-
mators.

If the first one allows for simple computation and leads
to a new target variance (rather than the Monte Carlo vari-
ance) in this monotonous context, it can suffer from too con-
servative bias. The second family of estimators, based on se-
quential importance sampling, appears as the most promis-
ing result. However, more work is needed to get a fine cal-
ibration of importance distributions through a criterion to
minimize, and estimating the various quantities involved in
the procedure (importance weights, estimator variance). As
detailed in § 4.2, future studies should especially focus on
building sequential emulations (orsurrogates) of the limit
state surface{x∈ ID, G(x)= 0}under monotony constraints.
Such constraints have began to be studied in the supervised
classification area (see Pelckmans et al. 2005 and Lang 2005,
among others), which efficiently stand up the curse of di-
mensionality, but remain to be adapted to our framework.

The framework considered here remains general and let
us hope in a wide range of interesting theoretical researches
and possible applications. In this regard, our concern was to
provide theoretical and applied tools to allow direct imple-
mentation, not only in the specific area of structural reliabil-
ity where these methods have been heuristically proposed.
In the following points, we briefly describe other points of
technical interest as other research avenues.

5.2 Relaxing hypotheses on inputX

A first significant issue is relaxing the hypotheses made on
the input vectorX. If the stochastic ordering of the distribu-
tion functionFX must be known in absence of another clear
transformΨFX taking into account the correlations between
components ofX, Lemma 3 in Appendix A appears some-
what restrictive. One could think, for instance, that some
conditions on the copula function induced in the input rep-
resentation must be checked to ensure that the monotony of
transformed codẽG is preserved (as those obtained in Chen
2009 about normal copulas). Because inputs can be summa-
rizable in many different ways (through correlation matri-
ces, copulas and marginal distributions, hierarchical build-
ings...), looking for various conditions of monotony is a prac-
tical response to applied concerns. A connected work must
be done about the relaxation of monotony constraints : one
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should explore the conditions for which the methods devel-
oped here can be applied with success to computer codes
with local monotonous properties.

5.3 Behavior and control of estimators

The difficulty to check asymptotic conditions and the non-
asymptotic behavior of estimators can remain tricky issues,
which however can be partially solved using control the-
ory. Estimation results could be enhanced focusing on the
convergence properties of estimator ˘pf n. The result given in
(19) must be seen as a first step toward methods for control-
ling the estimation error (and also the convergence speed),
in function of precision criteriaρ1, . . . ,ρn. As a sum of de-
pendent random variables, one can hope that Stein’s conver-
gence, more refined concentration theorems and large devi-
ations results (Chatterjee 2007, Kontorovich and Ramanan
2008) are applicable too, resulting in a better statisticalcon-
trol. Ideally, better concentration results could be obtained if
the variance of ˘pf n can be incorporated into the convergence
bounds, producing Bernstein-type or Bennett-type inequali-
ties as alternatives to the Azuma-Hoeffding inequality (19),
similarly to the standard case of the sum of iid random vari-
ables.

5.4 Relaxing hypotheses on the failure surface

The lack of consistency of the bounds observed in practice
and theoretically could be overcame by supplementary hy-
potheses made on the regularity of the failure surface. For
instance, it seems natural to link the vertexes by additive seg-
ments such that the bounds can be redefined as volumes of
their convex hulls. This implies that the failure surface does
not present, in the uniform space, a very jagged shape. How-
ever, since this feature appears somewhat difficult to check
in practice, it should be accepted that the interval between
the bounds is no more of 100%-confidence.

5.5 Sensitivity studies

For a givenn−level of granularity, studies of the sensitivity
of pf , its bounds(p−n , p

+
n ) and its various estimators to mod-

ifications of inputs must be, as emphasized by many authors
(references within de Rocquigny et al. 2008), crucial tasks
in future applied studies.

As a supplementary benefit from monotony, it must be
noted that spaces(U−

n ,U+
n ) remain dominated whatever the

choice made on input distributions. Indeed, they purely re-
flect the properties of the deterministic functionG, indepen-
dently of the density of each corresponding sample point

in ID. An immediate and pleasant consequence is the possi-
bility to recompute the bounds without any supplementary
call to G. The only difference lies in the differing probabil-
ity weight associated to those spaces when the uncertainty
model changes fromfX to f ε

X : one just needs to recompute
the hypervolumic calculations (De Rocquigny,private com-
munication)

p−n (ε) =
∫

Ψ−1
FX

(U−
n )

f ε
X(x) dx,

p+n (ε) = 1−
∫

Ψ−1
FX

(U+
n )

f ε
X(x) dx

for instance by a simple Monte Carlo method. In these fu-
ture studies, we suggest that the progressive bounds could
be defined asrobust while they remain true whatever the
fluctuation of fX in a given variational class.

5.6 Comparing with and taking benefit of other approaches

Last but not least, future theoretical and applied studies will
have to be compared with (and possibly take benefit from)
approaches developed in other areas. For instance, evolu-
tionary algorithms are currently studied in multi-objective
optimization for covering a maximal hypervolume at each
step (Beume et al. 2007). In high-dimensional problems,
“divide-and-conquer”strategies of designing experiments can
benefit from the increasing use of parallel computing (Wilkin-
son 2008). In this regard, it will be essential to combine the
knowledge of computer code monotony with the will to ex-
plore primarily the input space along most relevant dimen-
sions.
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A Space transformation

When inputsX = (X1, . . . ,Xd) are independent and continuous,Ψ−1
FX

is
simply the product of inverse cumulative distribution functions (cdf),
and the item(2) in Assumption 3 (§ 2.2.1) is satisfied since univari-
ate cdf preserve monotony. In dependent cases (and possiblywhen in-
puts mix continuous and discrete distributions), the generalized Rosen-
blatt’s transform (Rüschendorf 2009) can be used if the inputs can be
stochastically conditioned, e.g.:

FX(x1, . . . ,xd) = F1(x1)
d

∏
k=2

Fk|1,...,k−1(xk|x1, . . .,xk−1).

The the item(2) appears trickier to satisfy:Ψ−1
FX

(ννν) must be an increas-
ing function of all components ofννν . Next lemma, however, provides a
sufficient condition. Finally, a practical result which ensures Condition
(2) has been obtained by Chen (2009) in the case when the input dis-
tribution is chosen multinormal. Indeed it deserves particular attention
since, in real applications, a multinormal copula is often selected as
an approximate way to tackle the difficulties of assessing correlations
between input parameters.

Lemma 3 Assume that for k= 2, . . . ,d, there exists a mapping gk and
a set of (possibly random) parametersθk independent of X1, . . . ,Xk
such that:

(i) Xk = gk(X1, . . . ,Xk−1,θk),
(ii) gk is a globally increasing function of X1, . . . ,Xk−1;
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then the inverse Rosenblatt’s transform

Ψ−1
FX

(ν1, . . . ,νd) = F−1
1 (ν1)

d

∏
k=2

F−1
k|1,...,k−1(νk|ν1, . . .,νk−1),

is a globally increasing function ofννν .

Example 5 In corollary of Lemma 3, any standard binormal input dis-
tribution with positive correlation coefficientµ ensures thatΨ−1

FX
(ννν)

is increasing. Indeed,X = (X1,X2) where X1 ∼ N (0,1) and X2 =

µX1+
√

1−µ2θ with θ ∼ N (0,1).

Proof (Lemma 3)
Assume(i). ∀t ∈ IR, ∀k∈ {2, . . . ,d}, denotept

θk
(X1, . . .,Xk−1) =

P(gk(X1, . . .,Xk−1,θk)< t|X1, . . .,Xk−1). Then,∀y∈ IR, letAt
X1,...,Xk−1

(y)
denote the event{pt

θk
(X1, . . .,Xk−1)≤ y} defined in a probability space

({0,1},A t
k ,P). Thus, by definition,

F−1
k|1,...,k−1(y|X1, . . .,Xk−1) = inf

{
t ∈ IR |P

(
At

X1,...,Xk−1
(y)
)
= 1
}
.

Assuming(ii ), pt
θk
(X1, . . .,Xk−1) is a globally decreasing function of

X1, . . .,Xk−1. Thus the occurence of eventAt
X1,...,Xk−1

(y) similarly de-
creases. It also appears necessary to increaset in order to counter-
balance this tendency, which implies that the minimum valueof all
t ∈ IR such thatP(At

X1,...,Xk−1
(y)) = 1 increases. HenceF−1

k|1,...,k−1 is

a globally increasing function ofX1, . . . ,Xk−1, ∀k ∈ {2, . . . ,d}. Since
X1 = F−1(ν1) is naturally an increasing function ofν1, a simple recur-
sive reasoning shows thatF−1

k|1,...,k−1 is a globally increasing function of
ν1, . . . ,νk−1. The statement of the lemma follows.

B Computation of progressive bounds

A key point is that any bound computation does not need any call to
the costly functionG. One must evaluate thed-dimensional integral of
a known function (the joint pdf ofX) over the dominated spaces. The
space transformation proposed in § 2.2.1 allows for a simplifed and
exact computation of the bounds.

Consider first the simple case described in Lemma 1 where dom-
inated spaces(ID−

x̃ , ID
+
x̃ ) are defined by a single pointx̃ ∈ ID. Denote

ν̃νν = (ν̃1, . . ., ν̃d) its image point intoU throughΨ−1
FX

. Denote similarly

(U−
ν̃νν ,U+

ν̃νν ) the image spaces of(ID−
x̃ , ID

−
x̃ ) throughΨ−1

FX
.

If G̃(ν̃νν)≤ 0, the failure-dominated image spaceU−
ν̃νν is a hypercube

whose vertexes are the origin 0d = (0, . . . ,0), the pointν̃νν and the pro-
jections ofν̃νν on axes of the canonical baseBc(U). ThenU+

ν̃νν = {1d}=
{(1, . . . ,1)} and

P
(
X ∈ ID+

x̃

)
=
∫

ID

d

∏
i=1

1{xi≤x̃i} fX(x) dx,

= P
(
ννν ∈U+

ν̃νν
)
=

d

∏
i=1

(1− ν̃i).

If now G̃(ν̃νν)> 0, the safety-dominated image spaceU+
ν̃νν is a hypercube

whose vertexes are the opposite corner 1d, the pointν̃νν and the axes of
the base resulting from theπ−rotation ofBc(U), centered on 1d. ThenU−

ν̃νν = {0d} and

P
(
X ∈ ID−

x̃

)
= P

(
ννν ∈U+

ν̃νν
)
=

d

∏
i=1

ν̃i .
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Fig. 10 A two-dimensional case. Axes define canonical bases. Trans-
forming physical spaceID in uniform spaceU simplifies the calculus
of P(X ∈ ID−

X̃1
) andP(X ∈ ID+

X̃2
).

The calculus of probability bounds is thus immediate in thissimple
case. An example involving two points in failure and safety spaces,
respectively, is displayed on Figure 10.

The more complicated case of computing bounds (1), emanating
from a progressive DoE (for instance as displayed on Figure 1), can be
treated in two ways.

First and fortunately, an exact method can be implemented. Cal-
culating the volume of a union of hyperrectangles sharing the same or-
thogonal basis is known in computational geometry as Klee’smeasure
problem, for which recursive sweepline algorithms (van Leeuwen and
Wood 1981) can provide exact solutions. Overmars and Yap (1991) and
Chlebus (1998) proposed algorithms with complexityO(nd/2 logn) for
d ≥ 3. In comparison, typical algorithms used in MOO (cf. Remark1)
have complexityO(nd+1) (Knowles and Corne 2003). Although some
recent improvements have been brought by Chan (2008), Overmars and
Yap’s complexity has not significantly decreased since2.

When d exceeds 4 or 5, this exact method rapidly appears too
costly. Therefore a trivial MC method can take over. VolumeV−

n (resp.
V+

n ) can be consistently estimated by sampling uniformlyM inde-
pendent itemsννν1, . . . ,νννM ∈ UM then computing the proportion of
items insideU−

n (resp.U/U+
n ). The sampling cost is here indepen-

dent ofd. However, this statistical approach introduces estimation error
which weakens one of the main property of MRM algorithms:com-
putedbounds are not certain 100%-confidence bounds forpf . Since
in practice both methods suffers from numerical roundness in [0,1]d,
M should be chosen high enough to merge with the roundness error
encountered using the sweepline in small dimensions.

C Proofs of statements in the main text

In next statements and proofs, the notationFn is often removed for a
better reading. Especially, the expectancies and variances of quantities
θn are defined with respect to the availableσ−algebraFn.

Proof (Proposition 1)

2 Additional details and the pseudo-code of a sweepline algorithm
with exponential complexity, used in the experiments presented in this
article, are available in the Electronic Supplementary Material.
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One may writeℓ′′n(pf ) = ∑n
k=1 ω̃k

(
pf
)

Sk
(
pf
)

with

Sk
(
pf
)
= −1+

(
pk − pf

)
ω̃k
(
pf
)(

2pf − p−k−1− p+k−1

)
,

= −1+
(
pk − pf

)(
{p+k−1− pf }−1−{pf − p−k−1}−1) .

Note that∀k, pk ∈ {p−k−1, p
+
k−1}. If pk = p+k−1, thenSk(pf ) =−(p+k−1−

pf )/(pf − p−k−1) ≤ 0 if pf ∈ (p−k−1, p
+
k−1) ⊃ [p−n−1, p

+
n−1]. Similarly,

if pk = p−k−1, thenSk(pf ) = −(pf − p−k−1)/(p
+
k−1 − pf ) < 0 if pf ∈

(p−k−1, p
+
k−1). Henceℓ′′n(pf ) < 0 in (p−n−1, p

+
n−1). Besides, note that

limpf →p−n−1
ℓ′n(pf ) = ∞ and limpf →p+n−1

ℓ′n(pf ) =−∞. Hence, by twice

continuity and differentiability ofℓn(pf ), the mean value theorem im-
plies the existence and unicity of a MLE ˆpf n in (p−n−1, p

+
n−1).

Proof (Theorem 1)

We first prove the following result:∀ n≥ 1,

J−1
n (pf ) ≤ VMC

n (pf )

(
2pf

1− pf

)(
ρmed

n−1

)2
. (19)

Indeed, sincẽωn+1 depends only onFn for n≥ 1, notice that

E
Fn

[
ℓ′n(pf )

]
=

n

∑
k=1

E
[
ω̃k(pf )E

[
pk − pf |Fk−1

]]
= 0.

so that the Fisher informationJn(pf ) = Var[ℓ′2n (pf )] = E[ℓ′2n (pf )] is
equal to−E[ℓ′′n(pf )] by twice differentiability and continuity ofℓn(·),
like in a classic iid. case. Condition(i) implies that∀n < ∞, p−n−1 <

pf < p+n−1, ie. pf cannot be reached in any finite number of iterations,
so that these quantities are well defined. Using the notationSk(pf ) de-
fined in the proof of Proposition 1,

Jn(pf ) = −E
Fn

[
pf (1− pf )

nVMC
n (pf )

n

∑
k=1

ω̃k
(
pf
)

Sk
(
pf
)
]
,

= n−1 J̃n(pf )

VMC
n (pf )

with J̃n(pf ) equal to

E
Fn

[
n

∑
k=1

pf (1− pf )
(
p+k−1− pf

)2ξνννk−2(
pf − p−k−1

)−2ξνννk

]
.

Thus

J̃n(pf ) =
n

∑
k=1

{
E

Fk

[
ξνννk

(
pf (1− pf )(
pf − p−k−1

)2

)]

+ E
Fn

[
(1−ξνννk)

(
pf (1− pf )(
p+k−1− pf

)2

)]}
.

Since

1
pf

((
p+k−1− pf

)
+
(
pf − p−k−1

))
≤ ρk−1,

hence

p+k−1− pf ≤ pf (ρk−1−1)+ p−k−1 ≤ pf (ρk−1−1)+ pf ,

pf − p−k−1 ≤ pf (ρk−1+1)− p+k−1 ≤ pf (ρk−1+1).

Thus

pf (1− pf )(
p+k−1− pf

)2 ≥ 1− pf

pf ρ2
k−1

,

pf (1− pf )(
pf − p−k−1

)2 ≥ 1− pf

pf (1+ρ2
k−1)

.

Consequently, since(ρn)n is a strictly decreasing process,

J̃n(pf ) ≥
(

1− pf

pf

)
E

Fn

[
1

ρ2
n−1

(
T1,n+T2,n (1+1/ρn−1)

−2
)]

whereT1,n = ∑n
k=1(1−ξνννk) andT2,n = ∑n

k=1 ξνννk . Thus

J̃n(pf ) ≥ n

(
1− pf

pf

)
E

Fn

[
ρ−2

n−1

]
,

≥ n

(
1− pf

pf

)(
ρ−2

n−1

)med
P
(

ρ−2
n−1 ≤

(
ρ−2

n−1

)med
)

using Markov’s inequality, hencẽJn(pf )≥ n
(

1−pf
2pf

)(
ρmed

n−1

)−2
, which

proves (19).

The weak consistency and the asymptotic normality of the MLE
can be proved using arguments mainly developed by Crowder (1975,1983).
We first obtain the conditions of a martingale central limit theorem,
then the weak consistency. Both results can then be combinedto lead
to the final asymptotic normality.

First consider the fact that(ℓ′n(pf ))n is a martingale:

E
[
ℓ′n+1(pf )− ℓ′n(pf )|Fn

]
= ω̃n+1(pf )E

[
pn+1− pf |Fn

]
= 0.

Furthermore, because of the increasing of the weights,

Jn(pf ) =
n

∑
k=1

E
[
ω̃k(pf )

]
≤ nE

[
ω̃n(pf )

]
≤ n sup

{F u
n }

ω̃n(pf )

where{F u
n } describes the family of all possibleσ−algebrae gener-

ated by the all possiblen successions of nested uniform samplings.
Condition(i) implies this upper bound is finite. Therefore(ℓ′n(pf ))n is
a square integrable martingale. One can show that

∆2
n(pf ) =

(
ℓ′n(pf )− ℓ′n−1(pf )

)2
= ω̃2

n(pf )(pn − pf )
2

hence

E
[
∆2

n(pf )|Fn−1
]
= ω̃2

n(pf )Var[pn|Fn−1] = ω̃n(pf )

since

Var[pn|Fn−1] =
(
p+n−1− p−n−1

)2
E[ξνννn |Fn−1]−

(
pf − p−n−1

)2
,

=
(
p+n−1− p−n−1

)(
pf − p−n−1

)
−
(
pf − p−n−1

)2
,

= ω̃−1
n (pf ).

Thus, the increasing (orangle bracket) process linked to(ℓ′n(pf ))n,
defined by

< ℓ′(p) >n =
n

∑
k=1

E
[
∆2

k (pf )|Fk−1
]
,

is such thatJn(pf ) = E[< ℓ′(p) >n], and from (19)∃ C> 0 such that

∣∣∣∣
< ℓ′(p) >n

Jn(pf )
−1

∣∣∣∣ ≤
C
(
ρmed

n−1

)2

n

∣∣∣∣∣
n

∑
k=1

(
ω̃k(pf )−E

Fk

[
ω̃k(pf )

])
∣∣∣∣∣ (20)

which tends to 0 under Condition(ii ), then

< ℓ′(p) >n

Jn(pf )

a.s.−−→
n≥1

1. (21)
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Besides, for anyε > 0,

P

(
|∆k(pf )|√

Jn(pf )
< ε

)
= P

(
Aε

n,k(pf )< ξνννk < Bε
n,k(pf )

)

with ξνννk a Bernoulli variable in{0,1} and

Aε
n,k(pf ) =

pf − p−k−1− ε
√

Jn(pf )

p+k−1− p−k−1

,

Bε
n,k(pf ) =

pf − p−k−1+ ε
√

Jn(pf )

p+k−1− p−k−1

.

which are defined for allk under Condition(i). With Jn(pf )→ ∞ and
p+n−1− p−n−1 tending to a finite positive or null limit, then

lim
n→∞

P

(
|∆k(pf )|√

Jn(pf )
< ε

)
= P

(
−∞ < ξνννk < ∞

)
= 1

so
|∆k(pf )|√

Jn(pf )

IP−−−→
n→∞

0. Thus, for anyε > 0, ∃ Nε ∈ IN∗, N∗ < ∞, such

that∀ n> N∗ no event|∆k(pf )| ≥ ε
√

Jn(pf ) can be observed. Neces-
sarily, the sum∑n

k=1 J−1
k (pf )∆2

k (pf )1{|∆k(pf )|≥ε
√

Jn(pf )} is bounded.

SinceJn(pf )→ ∞, a Lindeberg condition can be satisfied:

1
Jn(pf )

n

∑
k=1

E


∆2

k (pf )1{ |∆k(pf )|√
Jn(pf )

≥ε

}|Fk−1


 IP−−−→

n→∞
0. (22)

Finally (21) and (22) prove the martingale central limit theorems (Bercu
2008):

J−1/2
n (p)ℓ′n(pf )

L−−−→
n→∞

N (0,1), (23)
√

Jn(pf )

< ℓ′(pf )>n

ℓ′n(pf )
L−−−→

n→∞
N (0,1). (24)

The weak consistency of the MLE can be proved using a sufficient
condition given by Crowder (1975). Denote

Γn = inf
{F u

n }

{
pf − p−n , p

+
n − pf

}

andσn =
√

n/(Γ 2
n+1ρmed

n−1). Clearly the sequence{σn} is positive and
tends to infinity, whateverpf . Denoting

Mn = σ−1
n

(
p+n−1− p−n−1

)−2

√
n

∑
k=1

(
ω̃k(pf )−E

Fk

[
ω̃k(pf )

])

one hasMn = o(1). Noticing that∀ n ≥ 0, −Sn(pf ) = ω̃n(pf )(pf −
pn)

2 ≥ ω̃n(pf )Γ 2
n+1, one has

−σn
ℓ′′n(pf )√
Jn(pf )

≥

n
∑

k=1
ω̃2

k (pf )

√
M2

n +n−1(ρmed
n−1)

2 ∑n
k=1 ω̃2

k (pf )

∞∼
√

n

ρmed
n−1

thus

P

(
−σn

ℓ′′n(pf )√
Jn(pf )

≥ 1

)
≥ P

(√
n(ρmed

n−1)
−1(1+o(1)) ≥ 1

)

which implies that,∀p̃f in an neighborhood of the true valuepf where
ℓ′′n is continuous, such thatα = |p̃f − pf |> 0,

lim
n→∞

P

(
−σn(p̃f − pf )

ℓ′′n(pf )√
Jn(pf )

(p̃f − pf )≥ α2

)
= 1.

From Equation (2.3) in Crowder (1975), this proves the weak consis-
tency of the MLE.

Finally, sincep−n−1 < p̂f n < p+n−1, for anyn there always exists an
open neighborhoodVp̂f n

of pf containing ˆpf n. From twice differentia-
bility of ℓn(·) and continuity ofℓ′n(·) in Vp̂f n

, the mean value theorem
implies there exists some intermediate point ¯pn ∈Vp̂f n

betweenpf and
p̂f n such that

ℓ′n
(
p̂f n

)
= 0 = ℓ′n(pf )+

(
p̂f n− pf

)
ℓ′′n(p̄n)

Thus, withℓ′′n(p̃n) 6= 0,

(
p̂f n− pf

)
= ℓ′n(pf )

(
−ℓ′′n(p̄n)

)−1
. (25)

Then
∣∣−ℓ′′ (p̄n)−Jn(pf )

∣∣ ≤ |An(pf )|+Bn(pf )+Cn(pf , p̄n)

with

An(pf ) =
n

∑
k=1

(
ω̃k(pf )−E

Fk

[
ω̃k(pf )

])
,

Bn(pf ) =
n

∑
k=1

ω̃k(pf )
∣∣ω̃k(pf )(pf − pk)

2−1
∣∣ ,

Cn(pf , p̄n) =
n

∑
k=1

∣∣Vk(pf , p̄n)
∣∣

with Vk(pf , p̄n) = ω̃2
k (p̄n)(p̄n − pk)

2 − ω̃2
k (pf )(p− pk)

2. Since ¯pf n ∈
[p̂f n, pf ] thenp̄n

IP−→ pf by weak consistency of ˆpf n andVk(pf , p̄n)
IP−→0

by continuity of mappingsx 7→ ω̃k(x) on [p−n−1, p
+
n−1], using Slutsky’s

theorem. Then the sequence{|Vk(pf , p̄n)|} is bounded and∃ K > 0,
K <∞, such thatCn(pf , p̄n)≤ nK. We deduce from (19) that limn→∞ J−1

n (pf )Cn(pf )=
0. Condition(i) implies that limn→∞ J−1

n (pf )|An(pf )| = 0. Then it is
worthy to note that because of Condition(iii ),

ω̃k(pf )(pf − pk)
2−1

IP−−−→
n→∞

0.

Denotingµn= sup
k≤n

|ω̃k(pf )(pf −pk)
2−1|, the sequence{µn} decreases

toward 0 and

Bn(pf )

Jn(pf )
=

(
Bn(pf )

< ℓ′(pf )>n

)(
< ℓ′(pf )>n

Jn(pf )

)
,

≤ µn

(
< ℓ′(pf )>n

Jn(pf )

)

which tends to 0 due to (21). Finally,

−ℓ′′ (p̄n)

Jn(pf )
IP−−−→

n→∞
1. (26)

Combining the results (25), (23) and (26) and taking accountof the
consistency of ˆpf n, the final result can finally be concluded from The-
orem 3 in Crowder (1983).

Proof (Proposition 2)

Remind thatVMLE
n = J−1

n (pf ) and note that, taking back to the nota-
tions of the previous proof,̂Jn(pf ) =< ℓ′(pf ) >. By twice continuity
and derivability ofĴ −1(.) in (p−n , p

+
n ), a Taylor expansion gives

Ĵ −1(p̂f n) = Ĵ −1(pf )−
Ĵ′n(pf )

Ĵ 2
n (pf )

(
p̂f n− pf

)
(1+o(1)) .
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Thus, after some calculus,

Ĵ 5/2
n (pf )

|Ĵ′n(pf )|
(
Ĵ −1(p̂f n)−VMLE

n

)
= WnYn+WnZn

with

Wn =

√
Jn(pf )

Ĵn(pf )
,

Un = sgn(Ĵ′n(pf ))
√

Jn(pf )
(
p̂f n− pf

)
(1+o(1)),

Zn =
Ĵ 3/2
n (pf )

|Ĵ′n(pf )|

(
Ĵn(pf )

Jn(pf )
−1

)
.

From (21)Wn
a.s.−−→ 1, andUn

L−→ N (0,1) from Theorem 1. Thanks

to Slutsky’s theorem, it is enough to show thatZn
IP−→ 0 to prove the

statement of the proposition. Notice that

Ĵ′n(pf ) =
n

∑
k=1

ω̃2
k (pf )

{
2pf −

(
p+k−1+ p−k−1

)}

which is always nonzero under Assumption(v). Using Hölder’s in-
equality, one has

n
∑

k=1
ω̃k(pf )

∑ ω̃2
k (pf )

{
2pf −

(
p+k−1+ p−k−1

)} ≤ ∑
{

2pf −
(
p+k−1+ p−k−1

)}−1

n
∑

k=1
ω̃k(pf )

hence

Ĵ 3/2
n (pf )

|Ĵ′n(pf )|
≤ ∑

{
2pf −

(
p+k−1+ p−k−1

)}−1

√
n
∑

k=1
ω̃k(pf )

Using Hölder’s inequality again, one has

Ĵ 3/2
n (pf )

|Ĵ′n(pf )|
≤
√

n

∑
k=1

(
p+k−1− pf

)(
pf − p−k−1

)

2pf −
(
p+k−1+ p−k−1

)

and it can be shown with simple calculus that each term of the sum is
stricly smaller than 1. Then

|Zn| ≤
√

n

∣∣∣∣
Ĵn(pf )

Jn(pf )
−1

∣∣∣∣ .

and from (20) and (19),∃D > 0, D < ∞, such that

|Zn| ≤ Dn1/2−δ

which converges toward 0 ifδ > 1/2. ThusZn
a.s.,IP−−−→ 0.

Proof (Lemma 2)

EFk [p̃k] = E

[
p−k−1+E

[
ξνννk

fk−1(νννk)

∣∣∣∣Fk−1

]]
,

= E

[
p−k−1+

∫Uk−1

P
(
G̃(ννν)≤ 0

) fk−1(ννν)
fk−1(ννν)

dννν
]
,

and from (3),P(G̃(ννν) ≤ 0|ννν ∈ Uk−1) = (pf − p−k−1)/(p
+
k−1− p−k−1).

Then

EFk [p̃k] = E
Fk−1

[
p−k−1+

pf − p−k−1

p+k−1− p−k−1

Vol(Uk−1)

]
,

= E

[
p−k−1+

pf − p−k−1

p+k−1− p−i−1

(
p+k−1− p−k−1

)
]
,

= pf .

Proof (Proposition 3)

DenoteV̆k = Var
[
E
[
p̆f k+1|Fk

]]
. Then

V̆n−1 = V
Fn−1

[
n−1

∑
i=1

ωi p̃i

]
,

= E

[
Var

[
n−1

∑
i=1

ωi p̃i |Fn−2

]]
+V̆n−2,

=
n−1

∑
k=1

E

[
Var

[
k

∑
j=1

ω j p̃ j |Fk−1

]]
.

Since

Var
[
p̆f n

]
= V̆n−1+E

[
Var

[
n

∑
j=1

ω j p̃ j |Fn−1

]]
,

then Var
[
p̆f n

]
=

n

∑
k=1

E

[
Var

[
k

∑
j=1

ω j p̃ j |Fk−1

]]
,

=
n

∑
k=1

E
[
ω2

k Var[p̃k|Fk−1]
]
. (27)

With ξ 2
µµµk

= ξµµµk
and since ˜pk is unbiased knowingFk−1, one has

Var[p̃k|Fk−1] = E
[
p̃2

k|Fk−1
]
− p2

f ,

= (p−k−1)
2+2p−k−1(pf − p−k−1)

+
∫Uk−1

ξννν

f 2
k−1(ννν)

fk−1(ννν) dννν − p2
f ,

= −
(
p2

f −2pf p−k−1+(p−k−1)
2)

+
(
p+k−1− p−k−1

)∫Uk−1

ξννν
gk−1(ννν)
fk−1(ννν)

dννν

which is equal to
(
p+k−1− pf

)(
pf − p−k−1

)
+
(
p+k−1− p−k−1

)
Ak−1( fk−1) (28)

where,∀k≥ 1,

Ak−1( fk−1) =
∫Uk−1

1{G̃(ννν)≤0}
gk−1(ννν)
fk−1(ννν)

dννν − (pf − p−nk−1)

andgk−1 is the uniform pdf onUk−1. Then simple algebra leads to the
developed formula forVWISE

n from (27) and (28), noticing that

E
[(

p+k−1− pf
)(

pf − p−k−1

)]
= pf (1− pf )(1−ck−1).

Corollary 1 is straightforward using a Lagrangian method.
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Proof (Proposition 4)

For anyk≥ 1 such thatbk−1 ≤ 0,V∗WISE
n ≤VU

n (pf ). Since(U+
0 ,U−

0 )=
(U+

N ,U−
N) with N ≥ k0 then(p+0 , p

−
0 ) are not trivial (p+0 < 1 andp−0 >

0). Consequently,ρ0 <∞. Note that(ρn) is a strictly decreasing stochas-
tic process, upperly bounded by the deterministic finite upper bound
ρ0. Note that

∀k= 0, . . . ,n−1, 1−ck ≤ pf

1− pf
E

Fk
[ρk].

This can be proved as follows. One hasϒk(pf ) ≤ ρk, thus 1− p+k ≥
1− p+k −ρkpf . Hence

pf (1− p+k )+(1− pf )p
−
k ≥ (pf + p−k )−2pf p−k −ρkp2

f

then

pf (1− p+k )+(1− pf )p
−
k − (1− p+k )p

−
k ,

≥ (pf + p−k )−2pf p−k −ρkp2
f − p−k + p+k p−k ,

≥ pf −2pf p−k −ρkp2
f + pf p−k sincepf ≤ p+k ,

≥ pf −ρkp2
f − p2

f sincepf ≥ p−k ,

≥ pf (1− pf )−ρkp2
f .

Thus

p−k
pf

+
1− p+k
1− pf

− p−k (1− p+k )

pf (1− pf )
≤ 1− pf ρk

1− pf

and the result follows by taking the expectation overννν1, . . . ,νννk.
Finally, we obtain

VU
n (pf ) ≤ pf (1− pf )

n
1
n

n

∑
i=1

ω2
i

pf ρ0

1− pf

which proves (11) after basic algebra.

Proof (Proposition 5)

Denoting fn−1(ννν) = k(ννν)/
∫Un−1

k(ννν) dννν wherek is a bounded func-
tion fromUn−1 to IR∗

+, the Cauchy-Schwarz inequality proves that

An−1( fn−1) =

[∫Un−1

ξννν gn−1(ννν)
k(ννν)

dννν
][∫Un−1

k(ννν)gn−1(ννν) dννν
]

×
(
p+n−1− p−n−1

)
−
(
pf − p−n−1

)
,

≥
[∫Un−1

ξννν gn−1(ννν) dννν
]2(

p+n−1− p−n−1

)

−
(
pf − p−n−1

)
,

≥
(

pf − p−n−1

p+n−1− p−n−1

)2(
p+n−1− p−n−1

)
−
(
pf − p−n−1

)
,

≥ −
(
p+n−1− pf

)(
pf − p−n−1

)
(
p+n−1− p−n−1

)

which implies that

E
Fn−1

[
(p+n−1− p−n−1)An−1( fn−1)

]
≥ −E

[(
p+n−1− pf

)(
pf − p−n−1

)]
,

≥ −pf (1− pf )(1−cn−1)

and the equality, implying ˜pn = pf ∀n≥ 1 and a null global variance,
happens only whenξννν/k(ννν) takes a constant value on the domain
{ννν ∈ Un−1, G̃(ννν) ≤ 0}. The existence ofkn−1 is needed by having
Supp( fn−1(ννν)) =Un−1 and the half-ball condition expresses the lower
semicontinuity of the importance distribution function onany point of
the failure surfaceUl .

Proof (Proposition 6)

Observe that ˜pn+1 ≥ p−n . Let ννν ∼ fn and assume thatξννν = 1. Denote
‖.‖ theL2 Euclidian norm. Then

p̃n+1 = p−n +exp

(‖ννν −νννn,0‖2

2σ 2
n

)∫Un

exp

(
−‖x−νννn,0‖2

2σ 2
n

)
dx,

≤ p−n +exp

(‖ννν −νννn,0‖2

2σ 2
n

)∫

Rd
exp

(
−‖x−νννn,0‖2

2σ 2
n

)
dx,

≤ p−n +(2π)d/2σ d
n exp

(‖ννν −νννn,0‖2

2σ 2
n

)
,

≤ p−n +(2π)d/2σ d
n

[
1+

‖ννν −νννn,0‖2

2σ 2
n

(1+o(1))

]
,

≤ p−n +(2π)d/2D(σn)+o
(
(2π)d/2σ d−2

n ‖ννν −νννn,0‖2
)
.

With ‖ννν − νννn,0‖2 ≤ d for all ννν ∈ U, and sinceηn ≤ 1 ⇒ D(σn) ≤
D(µn,d) = (p+n − p−n )/(2π)d/2, then

p̃n+1 ≤ p−n +(p+n − p−n )+o
(

d(2π)d/2σ d−2
n

)
,

≤ p+n +o
(
n−q) from (16).

Proof (Theorem 2)

Consider the stochastic process defined byZ0 = 0 and

Zn = λn
(
p̆f n− pf

)
∀n≥ 1,

and

λn =
n

∏
k=1

(1−βk)
−1 .

Then from (18) and sinceλn = λn+1(1−βn+1),

Zn+1 = λn
(
p̆f n− pf

)
+ pf (λn−λn+1)+λn+1βn+1 p̃n+1,

= Zn+
λnβn+1

1−βn+1

[
p̃n+1− pf

]
.

Because ˜pn+1 is unbiased (cf. Lemma 2),

E[Zn+1|Fn] = Zn

and E[Z2
n] = λ 2

nV∗WISE
n < ∞ at any fixedn

hence(Zn)n is a square integrable martingale. Furthermore, denoting
∆Zn = Zn−Zn−1, then

E
[
∆Z2

n+1|Fn
]
= (λn+1βn+1)

2 Var[p̃n+1|Fn]

with, according to (28),

Var[p̃n+1|Fn] =
(
p+n − pf

)(
pf − p−n

)
+
(
p+n − p−n

)
An( fn),

= pf (1− pf )(1− d̃n)

with

d̃n =
p−n
pf

+
1− p+n
1− pf

− p−n (1− p+n )
pf (1− pf )

+
bn( fn)

pf (1− pf )
.

It must be noticed from (9) that

1−βn =

n−1
∑

k=1
(1−dk−1)

−1

n
∑

k=1
(1−dk−1)−1

,
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therefore

λn =
n

∑
k=1

(1−dk−1)
−1

andλnβn =(1−dn−1)
−1. Thus, defining the increasing (orangle bracket)

process associated to(Zn)n by

< Z >n =
n

∑
k=1

E
[
∆Z2

k |Fk−1
]
,

then

< Z >n =
n

∑
k=1

λ 2
k β 2

k

[
pf (1− pf )(1−ck−1)+Bk−1( fk−1)

]
,

= pf (1− pf )
n

∑
k=1

(1−dk−1)
−1 (1− d̃k−1)

(1−dk−1)
.

Sinceλ 2
nV∗WISE

n = pf (1− pf )∑n
k=1(1−dk−1)

−1, then

< Z >n

λ 2
nV∗W ISE

n
= 1+ εn

with

εn =

n
∑

k=1
(1−dk−1)

−2ak

n
∑

k=1
(1−dk−1)−2

and ak = dk−1 − d̃k−1. Under assumptions(i) to (iii ), an
IP−→ 0. Then

∃N ∈ IN such that∀n≥ N, |an| ≤ ∑n−1
k=1 |ak|. Indeed, assuming the con-

tradiction of this assumption implies that∀N, ∃n≥N such that any par-
tial sum of the|ak| with k< n be upperly bounded by|an|; this would
imply that the sum of term|an| converges toward 0, which is only pos-
sible if all an are zero. Finally, since(1−dk−1)

−2 > 1 for k > 1, then

∀n≥N, |an+1|<∑n−1
k=1(1−dk−1)

−2|ak|. Equivalently,∀n≥N,
ε ′n+1

ε ′n
< 1

where

ε ′n =
n

∑
k=1

(1−dk−1)
−2|ak|

/
n

∑
k=1

(1−dk−1)
−2 .

The sum of general termε ′n also converges, then necessarilyε ′n → 0
and since|εn| ≤ ε ′n, the sequence{εn} converges absolutely toward 0.
Then

< Z >n

λ 2
nV∗W ISE

n

a.s.,IP−−−→
n→∞

1. (29)

For all 1≤ k ≤ n, denote nowHn,k = λn

√
V∗WISE

n (1− dk−1) which
tends toward infinity whenn→∞, even thoughk= n. Note that∀ε > 0,

P

(∣∣∣∣∣
|∆Zk|

λn

√
V∗W ISE

n

∣∣∣∣∣< ε

)

= P

(
pf − p−k−1− εHn,k <

δννν
fk−1(ννν)

< pf − p−k−1+ εHn,k

)

so that this probability tends toP(−∞ < δννν < ∞) = 1. Consequently,

∀ε > 0,1{|∆Zk|≥ε
√

λ 2
nV∗WISE

n }
IP−→0 and the sum∑n

k=1 E[∆Z2
k1{|∆Zk|≥ε

√
λ 2

nV∗WISE
n }|Fk]

is bounded, so a Lindeberg condition is satisfied:

1
λ 2

nV∗W ISE
n

n

∑
k=1

E
[
∆Z2

k1{|∆Zk|≥ε
√

λ 2
nV∗WISE

n }|Fk

]
IP−→ 0. (30)

Finally, (29) and (30) prove the martingale central limit theorem (Bercu
2008):

1√
λ 2

nV∗WISE
n

λn
(
p̆f n− pf

) L−→ N (0,1).

Finally, from the fact that limn→∞ < Z >n= ∞ and using Theorem 3.6
in Bercu (2008),

λn
(
p̆f n− pf

)

< Z >n

a.s.−−→ 0.

Using (29) and Slutsky’s theorem, one has(λnV∗W ISE
n )−1(p̆f n−pf )

a.s.−−→
0 with λnV∗W ISE

n = pf (1− pf ) ∀n ≥ 1, which proves the strong con-
sistency of ˘pf n.

Proof (Proposition 7)

The proof is simply based on the Azuma-Hoeffding inequalityapplied
to the martingale(Zn)n defined in the Proof of Theorem 2. Indeed,
since

an ≤ ∆Zn ≤ an+(1−dn−1)
−1/ fn−1(νννn)

with an = (1−dn−1)
−1(p−n−1− pf ), then∀ε ′ > 0,

P
(
Zn ≤−ε ′

)
≤ exp


− 2ε ′2

n
∑

k=1
(1−dk−1)2/ f 2

k−1(νννk)




The result can then be deduced usingε = ε ′/(λnpf ).
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A sweepline algorithm to compute volumes of hypercu-
bic unions

Sweepline (orplane sweep) algorithms are commonly used to jointly
detect and sort intersections between segments [6]. Thed-dimensional
volume is calculated recursively by exploring alln− 1-dimensional
“slices” of thed-th dimension. See [8,1,3] for more explanations. When
segments are parallel or perpendicular such as their intersections define
a union of hypercubes sharing the same orthogonal basis, thevolume
calculation is known as Klee’s measure problem [4,2]. Non-optimized
pseudo-code follows to be used for direct implementation.

Let ∆n be then×d matrix of n vertexes(ννν1, . . .,νννn) defining the
union of hypercubes (for an example, see Figure 11). In the following
pseudo-code, the volume considered isV−

n , also defined by the points
of ∆n and the origin(0, . . . ,0) of theU−space.

Algorithm VOL(∆n,n,d).

1. Let ∆ ′
n =σn,d(∆n) be the n×d permutation of ∆n arranged

in the increasing order of the

n−vector of d−dimensional components.

2. Remove the d−dimensional components from ∆ ′
n and denote

Voln = 0.
3. For i ∈ {1, . . . ,n},

(a) Consider the slice ∆ (i)
n = {ννν ′

i , . . .,ννν ′
n ∈ ∆ ′

n}.
(b) Denote Ṽol

(i)
n the d−1−dimensional volume of ∆ (i)

n :

if dimZ(i)
n = 1,

– ∆ (i)
n is a n− i+1−vector and Ṽol

(i)
n =max{ν ∈

∆ (i)
n };

– force i to the index of this maximal

component in ∆ ′
n;

else Ṽol
(i)
n = VOL(∆ (i)

n ,n− i +1,d−1).

(c) Let Λi =∆ ′
n[i,d]−∆ ′

n[i−1,d] the size of ∆ (i)
n (assuming

∆ ′
n[0,d] = 0).

(d) Compute Vol
(i)
n =Λi · Ṽol

(i)
n the d−dimensional volume.

(e) Update the total volume Voln = Voln+Vol
(i)
n .

To our knowledge, this algorithm remains little used for dimension
d larger than 2 or 3. This is not surprising since it losses its intuitive
aspects and because its complexityC(n,d) (number of runs for ad-
dimensional hypervolume betweenn points) isO(nd). This appears
when looking at the first developments ofC(n,d):

C(n,d) =
n−1

∑
k=0

C(n−k,d−1) =
n−1

∑
k=0

(k+1)C(n−k,d−2),

=
n−1

∑
k=0

(
k−1

∑
p=0

p

)
C(n−k,d−3),

=
n−1

∑
k=0

(k+1)(k+2)
2

C(n−k,d−3),

. . .

Note however than the fastest currently known version of this algo-
rithm has been proposed by Overmars and Yap [7], which runs intime
O(nd/2 logn) for d ≥ 3. An alternative approach has been proposed by
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ννν j

νννm
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ννν f

failure surface
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νννn

νννn
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Fig. 11 Two-dimensional uniform space aftern= 14 MRM iterations.
Points∆14 = {02,νννa,νννb,νννc,νννd,νννe,ννν f ,νννg} have positive signatures
and are vertexes ofU−

n . Points{νννh,ννν i ,ννν j ,νννk,ννν l ,νννm,νννn,12} have zero
signatures and are vertexes ofU+

n .

Chlebus [3] with the same asymptotic performance, althoughits expo-
sition has been restricted to dimensions 3 and 4. At the present time
the computational difficulties raised by diminishing the cost still re-
main open problems, although some slight improvements havebeen
recenlty proposed by Chan [2]. We suggest that some ideas of pos-
sible improvements could come from a parallel with multi-objective
optimization contexts (cf. Remark 1 in the article). Indeed, algorithms
running in polynomial timenk1dk2) to compute hypervolume metrics
of Pareto frontiers have already been proposed by Fleischer(2003).
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