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Bounding and estimating an exceedance probability in outpufrom
monotonous computer codes

Nicolas Bousquet

Abstract This article deals with the estimation of a proba-Keywords Exceedance probabilityComputer codelnput

bility ps of an undesirable event. Its occurence is formalizedincertainty: Monte Carlo acceleration

by the exceedance of a threshold reliability value by the uni

dimensional output of a computer co@ewith multivariate

probabilistic inputX. WhenG is assumed time-consuming 1 Introduction

and monotonous with respect Xg the Monotonous Relia- ] o
bility Method, proposed by de Rocquigny (2009) in an engi-'r_‘ many tgchnlcal areas, the_excggdance of some unidimen-
neering context, can provide bounds and crude estimates S°nal variableZ over a certain critical valug® is an event

pt, via deterministic or stochastic designs of experimentsih€ Probability ps of which must be carefully monitored.
The present article consists in a formalization and tetinic For instance, a conservative estimation of a river flood prob

deepening of this idea, as a large basis for future theoretRPility Pr, defined by the downstream water heighand a

cal and applied studies. Three kinds of results are especial91Ven dyke height', can be a fundamental task required by
emphasized. First, the bounds themselves remain too cru§@ntrol authorities. The terronservativaneans here that
and conservative estimators pf for a dimension o up- ~ Pf should not be undere;tlmated. Smce. thg. natural frame-
per than 2. Second, a maximum-likelihood estimatoppf work (?f such a concern is s.tructural reliability, Where the
can be easily built, presenting a high variance reductian wi Ventis often undesirablp will be often called thdailure
respect to a standard Monte Carlo case, but suffering frorRrobability and obviously be assumed stricly positive.
conservative bias. Third, the theoretical properties @ina-f We consider here the frequent case wiesreZ = G(X)

ily of unbiased estimators gdf, based on sequential nested whereQ isa determmlstlcfu.nc.:tlon, usually a computer code,
importance samplings, are analyzed. Their supplementa@‘dx is avectorofunce_rtaln |_nput parameters. Inthef!ood—
potential improvement requires further studies whose maifi'd €xample,X can typically include parameters of river
lines are discussed. Along the paper, the efficiency and difige0metry, friction coefficients and upstream rainfall ingig
culties of these approaches are illustrated by a generinexa 2NdG is & hydraulical code resolving numerically fluid mech-
ple. In fine, we show that both approaches lead to promisin§niSm equations. Probabilistic approaches being commonly
parsimonious estimation algorithms provided a sequentidfS€d to take account of the variability of input parameters,
emulation of the limit state (failure) surface, seen as @sup X IS assumed to be a random vector with probability density
vised classification problem, can be made under monotorfynction (pdf) fx in ad—dimensional spack.

constraints. Besides, some connections and researchesvenu | "€ Most traditional way to estimate

are identified in various mathematical areas like multaari pr = P(G(X) < 0) — / 1 (%) dx.

statistics, multi-objective optimization and computatbge- f - p (GX=0}X

ometry. is adopting a Monte Carlo (MC) strategy, namelyis es-
timated byp?, =n~!y_; 15x,) <0} Wheren s large and
theXy are independently sampled accordingoThis esti-
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the dimensionl. Itis thus the most appropriate method whenbe modelled byg(X), the code monotony itself is assumed.
G is a complete black box. Most traditional relaxations of this hypothesis are assgmi
This strategy presents however some difficulties whichZ = g(X, &) whereg(x,&) = G(x) + € or g(x,&) = G(x)e
prohibitits use in many problems, especially those for Wwhic wheree is somemodel error Provideds can be assessegl,
a trial of G is very time-consuming. Indeed, a good estima-is still a monotonous code.
tion of a low probabilityp; ~ 109 typically requires at least
10°+2 trials (Lemaire and Pendola 2006). Furthermpfe ~ Recently some articles (de Rocquigny 2009, Limbourg
is not a robust estimator. In the sense given by Glynn et akt al. 2010, Rajabalinejad et al. 2010) highlighted the pos-
(2009), it means that for anyits relative error, namely its  sibility of taking advantage from code monotony to bound
coefficient of variation C\fj¢ |, tends to an infinite limit and estimate;. Under the name dflonotonous Reliability
whenps — 0. MethodgMRM), De Rocquigny (2009) proposed a class of
Many non-intrusive strategies have been proposed to asequential algorithms which build a progressive bounding o
celerate the MC approach and build parsimonious estimahe limit state surface, thanks to a sequential DoE, whieh al
tors, the variances of which being smaller than the variance®ws for the computation of a crude estimatormfat each
VMC — p¢(1— py)/nof the MC estimator. Traditional meth- step. Mainly aimed at the community of engineers in struc-
ods of the engineer community in structural reliabilityr@€i  tural reliability, these articles consisted in a brief dgstton
and Second-Order Reliability Methods (FORM/SORM), cf.of the MRM features and behavioral studies on some ex-
Madsen and Ditlevsen 1996) consider the estimatiopsof amples. On the case-studies they considered, their emlpiric
as an optimization rather than a propagation problem. Thog@sults showed that the precision of FORM/SORM meth-
methods are generally very parsimonious but lead to estim&ds, as well as a classic MC approach (for a same number of
tors with weakly or non-controllable error. trials), was significantly improved. Similar results welg o
Statistical methods like quasi-MC, sequential MC or im-tained by Rajabalinejad et al. (2010). However, although a
portance sampling approaches (Kroese and Rubinstein 200%rallelization of such algorithms was already implemente
are based on a static or sequential selection ofisign of ~ (Limbourg et al. 2010), the convergence properties of the
experiment{DoE), namely the set of pointg, on which ~MRM class have not been theoretically studied yet.
G is tried, to improve the covering dD in areas close to
the limit state surface. Most advanced methods often getrid The aim of the present article is to start addressing this
of the time-consuming difficulties by emulating the behav-issue. Our main contribution is a clear formalization of MRM
ior of G (Cannamela et al. 2008), for instance using krig-the proper definition of two classes of estimatorpefand
ing techniques. Although they introduce prediction errorproviding some theoretical conditions on the DoE and the
such techniques may appear necessary to implement Markbmit state surface such that these estimators have betipr p
vian particle-based strategies (LEcuyer et al. 2007July-  erties than MC ones. A second contribution is to offer a prac-
setsimulations (Au and Beck 2001), which build sequencesical view of the technical tools needed to study the sequen-
of conditional estimations gb; and can lead to robust esti- tial inference techniques based on code monotony. Finally,
mators of very low probabilities. along the paper some connections are done with other areas
of computational mathematics, especially about implemen-
All these methods try to minimize the strenght of thetation issues.
hypotheses placed dB. However, in the engineering prac-
tice the behavior oZ can be known to be monotonous with To go more into details, we describe in Sectidn 2 the
respect taX. In the flooding example, an increasing of the general principle of MRM algorithms. Sectibh 3 deals with
upstream rainfall usually implies an increasing of the dewn a first estimator ofps, defined as the maximum likelihood
stream water height toward a certain limit linked to the topo of progressively sampled dependent-data, for which asymp-
logical features of the river. See de Rocquigny (2009) fortotic normality conditions are provided, implying robust-
further details on this example and Rajabalinejad et all@20 ness, conservatism and a theoretically good MC accelera-
on a similar one. Monotonous properties of computer codeon. Furthermore it does not require any calibration work.
have been considered in various theoretical and engine€eFhis estimator is however built on a sequence of nested naive
ing domains, e.g. proving the MC acceleration of Latin Hy-uniform sampling, and can suffer from high bias when the
percube Sampling (MacKay et al. 1979) for the estimatiordimension increases. Therefore Seclibn 4 is dedicateeto th
of expectancies, carrying out screening methods for sensstudy of a class of unbiased estimators based on nested gen-
tivity analyses (Lin 1993), predicting the behavior of net-eralized importance sampling. Their study shows that a sig-
work queuing systems (Ranjan et al. 2008) or estimating thaificant improvement of the first results emanates from the
safety of a nuclear reactor pressure vessel (Munoz-Munigsequential resolution of a supervised classification bl
et al. 2010). GiverX and assuming* — Z(X) can reliably  under monotony constraints. A Discussion section ends this



paper, focusing especially on the research avenues that mienote by the symbat the partial order between elements

be explored to improve the theoretical and applied resultef any d—dimensional space in bijection with, namely

presented here, before getting turnkey estimators. Guide-> y means that all componentsfare together larger or

lines are also provided to connect the general convergenagual to the components pf Then assume that some point

results presented here with advanced techniques evoked hemlueG(X) is known, and consider the sets

inbefor.e. Finallyf note that the te.chnical proofg of altsta D — {xeD|x+%}, D; — {xeD |x=<%}.

ments in the main text are given in the Appendix. % %
The increasing monotony implies that@(X) > O (resp.
G(X) < 0), thenDj is safety-dominatedésp. I}, is failure-

2 The principle of Monotonous Reliability Methods dominated). This proves the next lemma.

2.1 Working assumptions, definitions and basic properties Lemma 1 Both inequalities are true with probability 1:
Let D : X — G(X) be a deterministic computer code de- p; <1—P(X € Dy) if G(X) >0,

fined as a real-valued scalar functiomot= (Xy,...,Xg)on  p > P(X € D) else.

its definition domainD ¢ RY. By deterministic we mean

thatG(x) produces the same output every time if it is given ~ More generally, i trials of the numerical mod& have
the same inpux. A probability space€D, <7, P) is defined been performed for a sample winput vectors(x;)-1.... n,

in order to model the input uncertainty, givingXothe na- we may group them into the safe and failure sub-samples
ture of a random vector with joint pdfy and cumulative following the corresponding values ¢6G(xj))j=1,..n, re-

distribution function (cdffx. spectively
Zn = {x€ (x))j=1..n | G(x}) = 0},
Assumption 1. Gis globally increasingoverD. =y = {Xx€ (Xj)j=1..n | G(xj) <0},

Global monotony can be defined as follows; ds € then generate the sets

{—1,+1},Ve > 0,VX = (X1,...,X4) € D, such that D = {xeD|3x; €=, x=xj},
G(Xtr. - X5 1,% +SE,Xis1, .- Xa) D, = {xeD|3x; €, xXXj}.
< G(X1ye e X1y X Xig s - -5 Xg) Doing so we obtain generalized bounds for. denoting
P, =P(X € D) andp; =1—P(X € D}}) to alleviate the

wheres represents the sign of monotonic dependesce:  npotations, we have
1 (resp. $= —1) whenG is decreasingrésp.increasing) B N
along with thei—th componenk;. In this paper, the increas- Pn < Pt < Ppn. (1)
ing monotony assumption is made without loss of generalitHereafter,D,; and D;, will be referred to asdominated
since any decreasirig-th component can be changed from spaceswhere the sign o&(X ) is known. Note that the com-
Xi 10 —X;. plementarynon-dominatedpace

Do =D/ (D} ©D;)

Assumption 2. Gis continuous with respect to all its inputs . . .
. . : is the only part of space where further trial<®é&re required
(possibly extended to continuous domains).

to improve the bounding and some estimatiorpef

The smoothness @ (ie. x — G(X) is differentiable) is
not required for the algorithms proposed by De Rocquign)fb

(2009) and Limbourg et al. (2010). This relaxes a Standar(cjlependent orps, it is desirable to evaluate the precision

hypothesis placed on computer code functions when dea”nt%ached by the computation along the algorithmic stepsiéiyu

with estimations based on interpolation (O'Hagan 2006)'sépeaking, the width between the bounds). Various criteria

However, further in the text a smoothness assumption on th S . :
.y . . n=pP(P,, P, ) can be considered according to the context
limit state surface is needed to get theoretical convergen . . S

of the study. For instance, typical safety studies in the nu-

results on the estimation . clear field would categorize failure or initiating events ac
cording to logarithmic probability classes. In a concern of
generality, a criterion built on relative bounding preaisi
appears desirable, e.g.

recision criterion. Assuming a computational budget in-

Definition 1 A set of points ofD is saidsafety-dominated
(resp. failure-dominatedif G is guaranteed to be positive
(resp.negative) in any point of this set. Ya(pt) = (Pt — pn)/Pt = |pd/pPr — 1+ |1—p,/psl.
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Reaching a precision orderon Y;(ps), independently of 2.2.2 The algorithmic scheme
the unknownps, also appears simple. It is enough to run

MRM until Denote nowl,,, U andU, = U/ (U ¢ U,,) the image
3 PN spaces througw,:;1 of D, D;f andDy. The scheme shared
Pn=Ya(Py) = (Pn —Pn)/Pn < € by all MRM variants can be described as follows.

since one always haé(ps) < pn.

Remark 11n multi-objective optimization (MOO ; Figueira
et al. 2005), a dominated space can be interpreted as a syhrn Global Scheme
set of a performance space delimited by a Pareto frontier. In
this framework, the code is thought as a monotonous rul
of decision depending af variables, for which the set of

tep 0. Initialization:
(ag) let UJ={19}, Uy ={0%} and Up=[0,1)

best possible configurations (the frontier) is searcheth Bo (bo) let (pg,Pg) =(0.1)

frameworks share concerns of parsimony because of the lim- (co) select an initial DoE {Vl ’ aV(lml)}
ited amount of time in practice for examining the applicabil

ity of the solutions in MOO. Stepn>1. While p(p, 1,Py 1) > €

(a) ifn>1, select a DoE {V,(-,D,...,VE]%)}EUn,1
(b) compute the signatures

2.2 The algorithm E\S#) — ]l{é(vﬁ”)w} )
2.2.1 Space transformation (c) update the spaces

U, =0,_,uU"
Transforming the input space often appears as a preliminary Uy =T} ,uU"
task of well-known methods in structural reliability to sim _ - TTr
plify its exploration. For instance FORM/SORM methods ;thr; U/(Un UTn)
involve the two-steps Nataf iso-probabilistic transfotioa U = {v €U | 3 ng>, Ergj) -1, v=< Vr(lj)}
of D to a standardized Gaussian space. The rationale for _ _ -
such transformations is that estimatipg appears simpler. Ut = {v cev |3 v, &V=0 v= v,(#)}
In our case, a link can be done between the computation of and their volumes (Vi Vi)

the bounds around; and a classic computational geometry update the bounds (pr,pt)= (Vi 1— V)
problem which can be exactly solved, as explained in Ap- noen n .
pendiXB.

At each step, the DoE must be chosen taking account of

. . . . ] the increasing monotony . Denotingvﬁ,l) and VE,Z) two
Assumption 3. There exists an invertible transformatieéf, : : . W .
D — U wherel is the d—dimensional hypercub®, 1]¢ points of the DoE and assuming to kndw”, the signature

such that: of v,(12) is unnecessary to compute in two cases:
i 2(1) _ D2 (2) - (2 _
(1) the transformed input vector= Y, (X) has all its com- I én™ =1andvi™ = v = va” € U v andén™ =1,
ponents ind_ependgnt_and_ identically distribqted (iid) and¢ Ergl) -0 andv,ﬂl) < v,(12) - vﬁ,) c IU* andEn _
follows a uniform distribution ofiJ, the new failure func- .
tion (or code)G becoming Thus the order o6 trials should be carefully monitored, in
EW) = GowL(y) = G(X): relation with the partial order between the points in the DoE
(V) = Go Fx (v) = G(X); Reducing the DoE to a single point, ira; = 1 for all steps,
(2) G remains a monotonic (increasing) function of the newMinimizes the number of unnecessary trials. This strategy i
input vectorv. favored in the present paper. A two-dimensional example of
MRM progression is displayed on Figire 1.

When theX; are independent, this assumption is always2.2.3 Initialization via deterministic Design of Experinie
satisfied smceW,:X can simply be chosen as the product
of the marginal cdfs. In dependent cases, explanations arirst MRM iterations should be monitored to reduce signif-
some technical requirements about the choicéj—’,_gf1 are icantly the width of intervalp;, pt], such that later iter-
given in AppendiXZA. The image space is now described aations mainly focus on scale refinements. Whencorre-
the probability spac€U, #(U), P). sponds to the probability of a rare event, one could hope that
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Fig. 1 Two-dimensional uniform space after= 14 MRM iterations. \UZ

Points{0?, V4, Vp, V¢, Vg, Ve, Vt,Vg} have positive signatures and are
vertexes ofUy, . Points{vy, Vi, Vj, Vi, V|, Vm, Vi, 12} have zero signa-  Fig. 2 Diagonal deterministic (DD-MRM) strategy, assuming a low
tures and are vertexes of; . ps, stopping after 4 steps.

pt rapidly evolves from 1 to a low value. Most interesting A stochastic exploration of succesive non-dominated space
refinements begin whepy, > 0, namely when one finds the has two advantages. First, it is likely to diminish the cost
first point with signature 1 other than the origif.0n this  of deterministic DoEs. Second, it allows for a statisticad e
perspective, we suggest to start the algorithm using a-detetimation of p;, which is what the remainder of the paper
ministic DoE until reachingy; > 0, then switch on another deals with. Before that, some basic observations can be done

DoE, typicallystochastidcf. §8[2.2.4). about the behavior of the bounds and the precision criterion
De Rocquigny (2009) suggested using isoprobabilistic
DoEs gridding regularlyiJ. Such algorithms, however, in- Obviously, 1- p,, andp;; both decrease and are bounded

volve exponentially-increasing numbers of trials, whigh u in [0,1]. Sincep, and p} are known, these processes are
holds the need for switching to another DoE providing fastegredictible

explorations of the uniform space. In the applications pre- Thus 1- p, andp;| are supermartingales boundedih
sented further, a dichotomic diagonal MR method (DD-MRM)p > 1. Therefore, from generalized Doob’s theorem (Bercu
illustrated on Figur&l2 in a 2-dimensional case, was use®008), there exists two random limitp, p5;) such that

It explores the non-dominated spdCy in a very intuitive o s < pr < pi < 1 andp; as,LP b= and pi as,LP
way, maximizing the removable volume at each iterationy The sequence of random variablgs,} is a strictly

and stops at stefp > 1 such that decreasing predictive process, and converges similafly to
log(1/ps) ward the random variable, = p} /p, — 1> 0. Lebesgue’s
> monotonous convergence theorem implies almost sure con-
ko> —; 02 t th lies almost

. vergence of expectancies pf, pi andp, conditioned on
Consequently, an expected crude prior valugpotan help Fn_x. Using Theorem 2.1 in Cadre (2002), the sequence

to estimate the minimal numbkg of trials. {pMedh of median values oy, along a sampling strategy is
decreasing and converges uniformly to Nj&gd.

2.2.4 Stochastic Designs of Experiments

fExample 1Along the paper, the results will be mostly illus-
trated using the following generic toy example. For a given
dimensiord, let

From now and to the end of the main text, without loss o
generality, we assume to start the notafibig , Uy , pg , Po )
afterN — 1 introductive deterministic steps with> ko + 1.
From stepN, the DoE is chosen stochastic and we denote d

Fn theo—algebra generated by a seriesistochastic sam-  Yd = Ha(X) = X/ (X1 + .szi)

plings vi,..., v, (although this notation is sometimes dis- =

missed to alleviate the text when there cannot be misundewhere the inputX; follows the gamma distributios (i +
standing). All stochastic processes considered in theviell  1,1). ObviouslyY d > 2,G4 is increasing if—Xg, Xo...., Xq)
ing are adapted to the filtratiqi?n )n. andYy follows the beta distributiose(2,21(d + 1) (d + 2) —



3). Therefore, denotingq p,, the ps—order quantile ofvy,
the code defined by

Gy(X) = Hg(X) — aq,p

is related to the known exceedance probabibity

Choosingps = 5% and a sampling strategy of the DoE g
only based on nested uniform sampling, the behavior of the
bounds is displayed on Figuré 3 for dimensions 2 to 4, in g
addition to this of the 95% confidence interval of a stan-
dard MC estimation. Whed = 2, the “100%-confidence” g | o
deterministic bounds lead to a significantly better precisi °
sharper than the statistical confidence interval. The kiehav
of pn andp™is displayed on Figurie 4.
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Unidimensional casesWhend = 1, thenp,, = pJ = ps

and the dynamic bounds are consistent estimatorp;of
whatever the sampling of the DoE. Thus any estimator of
ps located between these bounds is automatically consis-

tent, ando, 225 0 andped 4™, 0.

Indeed, it is enough to notice that the sequeage-
|pn — Pt| = ps — p,, is decreasing. Therefore one can ex-
tract a strictly decreasing sequer{eg ) } from {a,}. Since o 100 200 a0 a00 s00

Ag(n+1)/8o(n) < 1, the sumyp_; a, k) is converging, which
implies ag(n) — 0 thena, — 0. Thendc, — 0 such that

|pn — Ps| < cn, which provesp, = py.
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Multidimensional cases. In multidimensional cases, ve®n-
jecturﬂ that the limitsp,, and p, may be not equal tgs.

This counter-intuitive idea results from the following spe
ulation: in dimensions higher than 2, the addition of hyper-
cubes with diminishing sizes seems not to asymptotically fil
the non-dominated space if the limit state surface presents
some linearity in a non-empty measurable set of points.in ° o0 o ac0 so0
This speculation is precised in the following example, Whic e

was k|nd|y provided by G. Bouchard (Xerox Research CenFig. 3 MRM bounds and MC 95% confidence areasriet 300 trials
tre Europe) of Gqg withd =2 (a), d =3 (b) ord = 4 (c). The results are based on

' a succession of nested uniform samplings in the non-dosdnateas
eand estimated over 300 parallel computations with= 0.05.
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Example 2Consider the particular case where the failur
surfacel; is the diagonal hyperplane such that=1/2
vd > 2. Then we conjecture that any deterministic or stochagygte thatVe,(2) = 1/2 = ps as it could be expected, but
tic n—sized DoE cannot be faster to coWér than the (frac- Va(d) < ps Vd > 3; actuallyVs,(d) — 0 whend increases.
talized) dichotomic strategy illustrated in Figlide 5: attea
stepk > 1 with k < log,(n+ 2), d“~1 hypercubes of side
(1/2)%, namely of volume 29, are built such that their
higher vertice (the furthest to the origin) belong&o When
n — oo, the total dominated volume is

An obvious consequence of this quick behavior study is
that, as soon higlighted by Limbourg et al. (2010) and shown
in Figure[3, the bounds remain very crude conservative esti-
mates ofps and cannot be practical by themselves in applied
log,(n+2) 1 1 studies whem increases. Thereforg, cannot be used as a
Ve (d) = rm}» > gl kd g (m - 1) precision criterion strictly speaking, but rather as aridad

tor of reduction speed in space exploration. Hopefully, the

1 This conjecture is maybe false and the rationale used hemsne bounds may be used to build statistical estimatorpofo
to be checked. improve significantly some features of the MC estimators.

k=1




When at stefk the sampling is uniform, the occurence
of a nonzero signaturgy, follows a Bernoulli distribution
A(W), conditional to.%_1, with
=P (G(v) <0[veTUy),

_ P(G(v)<0)-P(G(v)<0vel, )P(veU, )

P(v € Ug1)
o from Bayes’ formula, hence
. Pf— P
- = f,l 3)
S P ™ Pea

b fteraions After n steps, all information aboyts is thus brought by
Fig. 4 Plots of convergence criterigm, (median and 95% confidence the_ dependent-data ||ke||h0dd1(pf) - _L”(pf |V1’ SRR VF‘) )
areas estimated over 300 parallel computations). defined by the product of these conditional Bernoulli densi-

ties:
N _ E 175
j\ AN NP =Pa \ [ PP b
N Ln(pt) = |_| - -  — )
MR k=1 \ Pk-17 P2 P17 P
> . the maximum estimatops | of which is considered in next
N proposition.
o Proposition 1 Denote/y(ps) = logLn(ps). There exists a
Fig. 5 Fractalized (dichotomic) covering of a half-cube in two éim  unique solutiongs , in (p,_4, p:fl) of the likelihood equa-
sions. tion £(ps) = SR_q1 & (Pr) (P« — Pr) = O, semi-explicitely
defined by
Following Limbourg et al. (2010), it could be tempting no_ o,
to consider crude estimators based on an average of these kzlwk (Btn) P
bounds. But since the bounds may not be consistent estitf, = — R )
mators ofps, the self consistency of such estimators seems kzle (pfn)
guestionable whed is higher than 2. Therefore a cautious a . N B
elicitation of these estimators is required, as well as tie ¢ Where R = p_;+ (P_1— Pic1) éve (4)
iiati i ~ - -1

to probabilistic arguments to study their convergence. and @ (x) = [(x—p_1) (P —%)] -

3 A maximume-likelihood estimator of p¢
Numerically a simple Newton-Raphson routine can effi-

This section is dedicated to a first approach of the stadistic ciently do the job. The existence of the Ml is however
problem of estimatingys, assumingvy,...,V, 1 are suc- restricted to cases wheps cannot be reached by at least
cessively uniformly sampled in the nested non-dominatedne of the two bound&p,, 4, p, ) for any finiten. This is
spacedly,...,Un. The results presented here are useful intrue when a non-empty subsetldf is smooth, namely when
three senses. Firstly, the estimation procedure does rdt neU; is not the surface of union of hyperrectangles sharing the
to be calibrated. Secondly, the results highlight asymptot same orthogonal basis, which seems the most likely in prac-
Monte Carlo acceleration, conservatism and robustnegs prdice. Condition(i) in Theorenil formalizes this smoothness
erties in estimation which testify to the interest of takamg ~ condition.

count of code monotony in any computational framework  Although we are in a data-dependent context, the asymp-
(without specially parsimonious requirements). Thirdig  totic results aboups,, presented in this theorem are classic
gain in variance with respect to a MC estimator appears as the sense that the Cramer-Rao bound for the variance is
a new objective to overtake, for instance via a generalizedtill given by the inverse of the Fisher information, and is
importance sampling approach considered in the followingsymptotically reached by the MLE. They are technically
section. based on the martingality of the score procgs$ps)}-



which increases from 0 to 1 whéa— co.
Theorem 1 Denote W (py) the variance of a standard MC

n—estimator and J(pr) = 3§_ E,;, [@x(pt)] the Fisher in- ThusVME < an(ps)VMC(pf) with
formation. Assuming that

n
) ) _ o(pf) = 57— < L
(i) Uy is€*in a non-empty measurable subset af T (1—ce 1)t
then =t
2
VMLE — 3-1(p¢) < VMC(py) (12Df ) (p'qleld) _ Proposition 2 Under the assumptions of Theoréin 1, and
—Pf

assuming in addition

Furthermore, under the supplementary assumptions: (iv) &> 1/2 in Assumptiorfii),

(i) 35 €[0,1), with & = 0 only if pT9— 0, such that (v) #n> 1such that
n
o _E_ [& -0 nl—é med) —2 ) n . n
kzl (ak(pf) Ty [O‘)K(pf)}) ( (pnfld) ) pr = (Zn)fl Z w,((pf) Pr_1+ P l z
(i) (py —pr)/(ps — pn)—>1 - =
then pr. & then
Pty Pt 5/2(

P (-1 MLE\ £,
7pf) zﬂ/V(O,l). IJ’(pf | ( (Bfn) —Va )—> (0,1).

whered(ps) = Sh_; éx(ps).

and

1 "
e (Pro

Condition (ii) implies that, when the number of steps . . .
comes to infinity, the weights end to vary in a negligible pro- Asa consequence, an as_ymptotlc confidence interval for
portion in regards of all possible trajectories of sucaassi ps can be established: denotingthe standard normal—order
uniform nested samplings. Although it is difficult to check, percentile,
this behavior seems rather reasonable in practice because u
trajectories mainly vary at the first steps of the algorithm, I|m P (pfn Mhajz a2 )
when the non-dominated space is still large. A close |dea o \/Jn Bt ) \/Jn Pt )
expressed in Conditiofiii ), is requiring that asymptotically

the redgcjcion speeds of intervdls; , ps] and [pr, p;] be- Using the recent results by Furrer (2002), strong consis-
come similar. _ tency needs supplementary hypotheses sucliftat) /Jn(ps) —
In corollary of the previous theorem, note that asymptot- aimost surely, and checking the Lipschitzian nature of the
ically the coefficient of variation (CV) is such that mapping”(p;): there should exist a sequenk,} > 0 al-
med most surely finite such that, ps in a neighborhood op+
CV [Pr,) < _Ptbn-y /2 included in(p,,_, P 1)
N ] Vi Prs:Pra)
which remains finite at ang whenps — 0*. The MLE is % (pfdf(pf) _ ﬁf&f(ﬁf)) < /\n|pf B 5f|-

thus asymptotically robust. &1

Whenps is low, the MLE p; , is a conservative estimator
of ps since its bias remains strictly positive, as exemplified
on FigurdY. This behavior is due to the fact that the highest
welghts favor local estimatong, = p, when approaching
the failure surfac&J; (§y, = 1 in (). On the exemple con-
sidered in this last figure (as well as in other experiments
not shown here), a marked gap in relative bias was noticed

The variance reduction with respect\M$f'(ps) shown
in the previous theorem is practical to demonstrate thisxasy
totic robustness, but remains however submitted to the be
havior of p™ed, which is bounded and goes to 0 whae 1,
but can stay at high values whdrincreases (cf. Figuid 4).
Therefore it must be noticed that from Jensen’inequality,

LE -t pi(1— ps) between dimensions 3 and 4. Under dimension 4, the bias re-
Vo < z E-1[dx(pr)] = +————— () mainsreasonable from a moderate number of iterations (typ-
k=1 Z (I-ce1)t ically 400). Else it dramatically stays at high values. How-

k=1

ever, note that from a strictly statistical criterion (rootan
square error), all MLE in dimensions 2 to 4 for the generic
P 1-p. p(1- p{)] example end to improve the standard Monte Carlo estimator

%=Fs [pf 1o pr  pr(1—ps) 6) (Figure[® left).

wherecg=0andv k > 1,




4 Weighted importance sampling estimators of

S . S .
o o
— Monte Carlo
- MLE (d=3)
- = MLE (d=4)

4.1 Definition

0.08
|
0.08
|

Now denotef,_1(V) any importance sampling pdf defined
onUy_4, from which the new point of the DoB, is sam-
pled at iteratiork. Denote

0.06
|
0.06
|

RMSE

vy
f-1(vi)’
thus gk can be seen as a generalization of estimptode-
fined in [4). We obviously assume that SUfip1) = Uy 1
such thatpy is always well defined. Notice that
9] 100 200 300 400 500 0 100 200 300 400 500 ﬁk G [plzil, p<k|»71} <:> fkfl(vk) Z (p;71 o plzil)fl (7)

nb. iterations nb. iterations
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|
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f)k = pE,1 +

Standard deviation
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L
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Fig. 6 Root mean square error (RMSEft) and standard deviation . .. .
(right) of the standard Monte Carlo estimator apd, for d =3 and ~ L€mMma 2 Estimatorfy is unbiased.
d = 4, for p; = 0.05. Empirical estimations are made over 300 parallel

MRM runs.
Consequently, the weighted importance sampling esti-
mator (WISE)
1 n
Pa = kzlﬁkpk, (8)
] -odz2 where thewy are deterministic weights ifd, n, the sum of
o | - d=4 which being equal ta, is unbiased too. Its variance is given
. in next proposition.
% - | \\.\_ Proposition 3 The variance ofy; , is
T -, n 2 1,x
e Sl yWIsE _ 5 % {/ CW<0} 4y, (e — po 2] 7
e TS 2 o v PR
s J T expectations being defined with respect#p_1. An alter-
100 200 200 200 s00 native writing is VW'SE= VY (p¢) +VF (ps) where
nb. iterations U MC n 2
Fig. 7 Relative bias of the MLEp; for the dimensionsl € {2,3,4}. Vi (1) = Vo™ (pr) kle (1-6k-1),
n 2 . 1,4 ( _n-
G(v)<0 Pt — Py 1)
VE(pr) = Y SKE| [ S=lgy. Pl
& n JUk-1 kfl(v) (pnfl_ pnfl)

Controlling and correcting the bias could be the subwith /™ (ps) = 0if all the f_; are chosen uniform, the’s
ject of a research based on bootstrap experiments, usingb@ing defined il {6).
monotonous estimation of the failure surfdCe calibrated
from the last obtained non-dominated point&inHowever,
naturally unbiased estimators with non-asymptotic proper )
ties appear more relevantin our costly-computational &am 4-2 General properties
work. Rather than the usual Monte Carlo variance, gettingl_ ) ,
variances of such unbiased estimators that are below thehe features of this variance deserves some comments.
asymptotic variance of the MLE should become an aim. Befa) In the most naive case of sampling, namely wigr=
cause the latter reaches the Cramer-Rao bound, this needs to 1 and f_; is uniform onUy_1, then a MC approach
consider other forms of sampling than (naive) uniform ones, remains always beaten since
in the succession of nested non-dominated spaces, to speed 10
up the volume removing. Next section provides general re- VY (ps) = VMC(py) (1 - z ckl> < VMC(py).
sults to handle and select these samplings. &




(b) Surprisingly,V\V'SE is the weighted sum of the vari-

ances of estimatong, k < n (see proof), so that they are Proposition 4 Assume that forany k 1,

decorrelated and the weighted sum of unbiased estim

tors of Vaffi] provides an unbiased estimatongf 'SE,
For instance, fok < n, definingVi = (fx — p,_;) (Bx —
P 1), one has EVi] equal to

E [Efkl [fki"(v) ( fki"(w + P E[ﬁnﬂlﬁk])n :
= EMU“ fkiV(V) dV—(pf—le)%UkilEv dV],

-F MU ) P pk”Z] |
= Var[f].

(c) Assuming the{ fx_1} are known, the weight§wy} can

be theoretically calibrated such that the variance be min-

imized, as explained in Corollaky 1.

Corollary 1 Denote @ =0and d, = cx— E[bk(fk)]/(ps (1—
pt)) Vk > 1 where

Lig (pr — Py)
b ( f :/ {G(v)<0} dv — k )
= L TR (D%~ pn)

The solution of the optimization problem

(@f,...,ax) = argminvg"'S%

under the constrainy p_, w = n, is

W = - . (©)
(1-dk1) Yy (1-dj-g)?t

j=1

Consequently, the optimized variance is

Vi WISE = VY€ (pg) k :
kzl(1* de1)7t

(d) When allf,_4 are chosen uniform, thesy = ¢« and

-1
Vn*WISE _ (i E71 [ql(pfﬂ) > VAVILE
k=1

from (8). This result was expectable sing¥'E is the

Cramer-Rao bound for this kind of sampling. This testi-
fies from the need of eliciting carefully the importance

pdf to diminish the variance.
(e) Eliciting importance pdf fx_;} such thaby_1(fx_1) <

a_

]]_ ~
HEW<O Gu < (e - Vot . — b
/T[Jk—l fk1(v) dv < (Pt =P d)(Ppy = Pog)- (10)
Then3 C > 0 such that
C n
CVIBi] = Ty 2, % (11)
=

andps , is also a robust estimator oftp

(f) As usual in importance sampling approaches in struc-
tural reliability (Rubino and Tuffin 2009), a particular
choice of the importance density (in our case, of succes-
sive importance densities) can reduce the variance of the
estimator to 0: see Propositibh 5. This density is obvi-
ously not elicitable in practice since it requires to know
the failure surfacd’; and the probabilityp; that we are
precisely looking for. But this result illustrates the po-
tentiality of strong variance reduction induced by impor-
tance sampling approaches carrying out approximations
of .

Proposition 5 A null variance \V'SE = 0 can be reached
if and only if, at each step njk,_1(v) a density odU} =
Ut NU,_1 such that

(pr — Pp_y) tif G(v) <0,

v = { (P P (12)
and,Vv| e U,
Vol (U, NUp_
lim [ kn-1(v) dv = (Vl—ﬂ
£—0 BY, Pf — Pph_1

where B, = {v| +ue, u € [0,1]} is the open half-ball of
radiuse > 0 centered orv; containing safety points only.

More realistically, constrainingy_1(fx_1) < 0 can be
achieved giving more weight to a failure-dominated area
with maximal volume, namelyy_1 should sample close to
T,. Tthis intuitive reasoning was the rationale for Limbourg
et al. (2010) to propose an empirical directional stratelgy a
each MRM step. The benefit of such a strategy is illlustrated
in next toy example.

Example 3Consider a unidimensional problem whéfe=
{vs} = {pt} € [0,1]. After k— 1 iterations, denote, , =
P, andv, ; = p/ ;. Assuming to known a priori a per-
fect estimation oflJ; (ie., with negligible error), let choose

0 for all k ensures the non-asymptotic robustness of th
estimatomps ,, especially when the weights are optimize
Next proposition details this property. Note that this con-
dition is automatically checked if,_; is elicited such
that ) is true for alvy € Uy_1.

be1(fk-1) = (Vs—V, 1) | A

d%k,l(v) as the truncated Cauchy distribution/ey ;. v, ,]
with modevs and scalg/. Then, after basic algebra,

(y+vs—v, 1)?/3
Vi1 Vi1

1
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with A = arctarf(vy} ; —vs)/y)+arctari(vs—v, ;)/y) <  and definegy = pin ann. Finally, let f, be a multinormal dis-
mso that, assuming the mild conditiog— v, ; < /3/m~ tribution with meanv,o and variancec?ly, truncated on
0.977, one must selegt< m ! — (vs—v,_;)?/3toensure Un. Then

_bk,l(fk,l) < 0 a_nd gdecreasir;g(_ie., a more concentrated Pr < Prsr < P40 (nfq) )

importance distribution aroursk) increasesby_1(fx_1)]|.

The quasi-determinism implied by small importance vari-

Then Remarkée) and(f) show that a realistic sequence :
ances has two major consequences.

of good importance pdffy}, cleverer than simple uniforms, ) )
must be elicited based on a sequencewfogatesof the (1) Asampled ~ fi_; remains close to the location param-
failure surfacél;. Next subsection is dedicated to a heuris- ~ €t€rVk-10, which takes the sense of the point®f 1

tic (work-in-progress) approach of the elicitation{d} in such that, given the classifiéy, the maximal domi-
practice. nated volume can be removed at stgased on the

equality 1— ¢ = E[(pr — p ) (P} — pr)], @ simplified
criterion to minimize invy._1 o could be

4.3 Heuiristic elicitation of fy} in practice Cie1(V) = (B s — B (V) (B (V) — Bry._y) 17)
Since an arbitrary number of points can be independently Wherep " (v) s the bound implied by the position of
sampled in both dominated areas at each stapcan be with respect tdUy . See Examplel4 for a crude illustra-

easily interpreted as the decision frontier of a supervised 10N of the potential benefits of this approach.
classification binary problem, without horseriding of sles _ L
(perfectly separable). A nonparametric estimatiop, of (i) Thesequencép, , p"} becomes quasi-deterministic too,
the frontierl, can be done using Multi-Layer Perceptron N the sense that Vgs, ] and Vafp;] can decrease to-
(MLP) neural networks or Support Vector Machines (SvM), ~ Ward 0. As seen in next subsection, such a behavior ap-
as recommended by Hurtado (2004) in the field of structural P&&rs as a sufficient condition for the distributiorpef, ~
reliability analysis. Li et al. (2006) emphasized that such 0 be asymptotically normal.

tools are flexible, can estimate a frontier on the basis of &xample 4Treating the generic example in dimensiba-

few samples, and can overcome the curse of dimensionap, a simple MLP with 3 hidden layers was calibrated at each
ity. To be realistic and coherent with the features2fwo jteration. It was found decreasingly monotonous on nearly

constraints must be applied on the estimatiofigf: 90% of the iterations, and its prediction error was rarely
— the volume 01@; ={vel, e Uy, v < v, } must found over 15%. At iteratiom, 10° points were uniformly
be equal to the current estimator,, ()f'pf; sampled in the non-dominated space. The mode of a trun-

— T, must be a decreasing function of the coordinates. cated gaussian importance pdf was selected among these
' o ) ) points by minimizing the criterior{17). Its standard devi-

Once the classifiél)y has beeq qbtalned, Ioc_atlon and Scaleation was chosen as, — n72(27T)72Nn‘2- Despite the cru-
parameters fof_, must be elicited (assuming a form for dity of this elicitation, the decreasing of the width betwee

fis has been chosen) such that the constraints the bounds was found significantly improved with respect to

Pk € [p;l, piﬁrl} (13)  the naive approach based on uniform sampling (Figlire 8),
Pt € [P 1 pk++ﬂ (if possible), (14) as well as the precision of the estimators (Fiddre 9).
' 1
——dv < (P;,—po T —po
./@k oy AV = (Bt Picy) (Pn —Poa) (15)

. . 4.4 Asymptotic behavior
are respected. Typically, choosing a small scale parameter

(or asmallimportance variance) will lead to satisfy thefdu gecause all estimatons, are dependent, finding the non-
ary constraintd (13) anf{{(114), as exemplified in next propoasymptotic distribution ofps;, seems rather difficult. The
sition when using truncated multinormal importance pdf. asymptotic behavior ops”, which is also needed to deter-
mine the behavior of variance and weights empirical esti-
Proposition 6 For d > 2, let i, 4 be the unique positive so- mators, can however be studied using tools from martingale
lution of equation Mx) = x Ldxd2= (Pt — pr )/ (2m)9/2. theory sw_mlar to those that have begn useq to explore the
asymptotic behavior of the MLE. This requires an autore-
gressive writing ofpf,, which is simple to get. Indeed, de-

Note thatu, g strictly decrease with n, following the de-
creasing of g — py ). Forq>d—2, let{nn} be a sequence ;
of values in[0, 1] such that, for d> 2, noting .

%[N

ot 2
fin = o (n¥(4-2)g-1/(0-2) (o)~ 9/2(0-2)) (16)  Bo=——
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From Chebychev’s inequality, Conditidhn in Theorem
[Zis checked if Valp,, ] and Vafp;{] can decrease toward 0,
which may be ensured by a quasi-deterministic choice of the
trial vy at iterationk, as explained before.

To go more in details, consider only the behavioppt
Notice that
Pn = Pn_1+ &v, VOl 4 (Vn)

where Vo[,_,(v) is the element of volume added 1g,_,,
namely the volume of the set of all points ®f, located
underv. Therefore one has

Var[p,] = Var[p, ;] +2Cov|p;, ;,Es, , [EvVol,_1(V)]]
+V [EVV0|,;1(V)]
with

Fig. 8 MRM bounds (uniform / importance samplings) and 95% \/ [fvvoll;l(v)] = Var [Efml [EVVoll;l(v)H

Monte Carlo confidence boundsl = 2). Results are averaged over
300 repeated simulations.

05

— MC
MRM-MLE
MRM-WISE

0.4
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01

0.0

150 200 250

nb.iterations

Fig. 9 Coefficients of variation for the MC, MLE and WISE estimators
(d=2).

where m:[”} is the k" optimized weight associated to the
n—estimatorps ,, then

Pnig = (1= Bnr1) Prp+ BataPia. (18)

Then the following results are based on the martingality of

the proces$Z,} defined byZ, = An(Pt, — pr) WhereA, =
n
na-p"

k=1

Theorem 2 Under the following assumptions:
() pn —ElP;] =0, pi —Elpi] =0,
(i) Covipy . pi] =0,

(o)~ Elg{ "0

(Pr,— pr)

and Z, A(0,1).

+E [Varfn,l [EVVO|;71(V)”

Formally, Vafp, ] can decrease toward O when the sam-
pling is quasi-deterministic in the sense discussed inéxé n
items.

1. Denotedy the Dirac measure iw. Assuming the se-
quence| fn}n can be elicited such thdg(v) — dy,,,, con-
verges weakly to O allows fov[§, Vol ;(v)] to con-
verge toward 0 in the same sense, using Prohorov’s the-
orem. It simply requires the tighness of the set of mea-
sures{fn}n and the boundness of their two first mo-
ments, which are both ensured selecting bour{dagh
on|[0,1]9.

. Furthermorep,,_, is obviously an increasing function of
the {Vvi}1<i<n—1. Assuming thavy is selected such that
the additive dominated volume is maximized at iteration
n, then k&, ,[éyVol,_1(v)] is a decreasing function of
the {V;}1<i<n_1. Since these two random variables are
bounded then, from Schmidt (2003 € N, ¥n> N,

Cov|p,_1,Ef, 4 [EvVol 1 (V)]] <O.

As a consequence of an importance sampling close to
determinism, the sequence of spa¢&g, } becomes itself
nearly deterministic, which allows for the conditi@iii ) in
Theoreni P to be checked.

Finally, Condition(ii) in Theoren[2 says that asymp-
totically, the probability of improving one bound becomes
decorrelated on the probability of improving the other.sThi
can be ensured by the symmetry of the volumes of the non-
dominated spacedJ,,, U} ), which seems a relatively mild
condition in asymptotic terms (ie., when the frontiers & th
dominated sets become very close to the failure suffage

Despite those theoretical conditions remain difficult to
check in practice, we noticed that even a single uniform
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nested sampling can lead to observe variance decreasing foox. They are based on sequential designs of experiments.
the bounds and asymptotic normality of the WISE estimatorThough the sequential bounds aroumd seem not being
We are thus confident in the fact that those conditions can bable to be considered as both consistent and conservative
relaxed in future studies. estimators ofps, except in dimensions 1 and 2, a parsimo-
nious estimation op; can be led by statistical means and
theoretically studied by probabilistic arguments. Two fam
ily of estimators have been proposed, the properties of each
4.5 Controlling the WISE estimators improving significantly those of standard Monte Carlo esti-
mators.
As an important feature of the estimator, it is possible to it tne first one allows for simple computation and leads
bound its convergence speed in function of the decreasing 5 new target variance (rather than the Monte Carlo vari-
series of criterigoy > ... > pn. Practical usefulness of this gnce) in this monotonous context, it can suffer from too con-
resultis to help to stop the computation when reaching a preservative bias. The second family of estimators, based-on se
determined estimation error. Next proposition summarizeauemiaﬂ importance sampling, appears as the most promis-
this result under the form of a non-asymptotic Hoeffding-jng result. However, more work is needed to get a fine cal-
type concentration inequality, which does not depend on thgyration of importance distributions through a criterian t
distribution of the estimatops .. minimize, and estimating the various quantities involved i
the procedure (importance weights, estimator variancg). A
Anti-conservatism can be defined by the fact that at anyjetajled in §42, future studies should especially focus on
stepn, the estimatoipy,, can underestimatps. Obviously  pyijiding sequential emulations (surrogates of the limit
the probability of such an event is asymptotically 1/2 be-giate surfacéx € D, G(x) = 0} under monotony constraints.
cause of the asymptotic normal distributionmf,. Inanon-  gych constraints have began to be studied in the supervised
asymptotic framework, however, it can be formalized as theassification area (see Pelckmans et al. 2005 and Lang 2005,
probability among others), which efficiently stand up the curse of di-

oft mensionality, but remain to be adapted to our framework.
f
The framework considered here remains general and let

. Y . . . ) us hope in a wide range of interesting theoretical researche
sllghtly terr_n_bemg associated to a given (pOSS_'P'y NO and possible applications. In this regard, our concern was t
mative) PrECISIOTE. U_pper bound_s for_th|s probability can _provide theoretical and applied tools to allow direct imple
then be prow_ded using t_he mart'”ga“?y argume”ts usgd "thentation, not only in the specific area of structural réliab
the asy_rr_lptotlc study. A first result is given in the following ity where these methods have been heuristically proposed.
proposition. In the following points, we briefly describe other points of
technical interest as other research avenues.

that the computed estimatqr ,“is slightly underps, the

Proposition 7

2
< E (1- dkl)l) 5.2 Relaxing hypotheses on inpxit
k=1
(1—di_1)2/12 4 (Vi) A fir.st significant issue is relaxin_g the h_ypotheses ma_de on
k=1 the input vectoiX. If the stochastic ordering of the distribu-
tion functionFx must be known in absence of another clear
transform, taking into account the correlations between
components oK, Lemma3B in Appendik’A appears some-
what restrictive. One could think, for instance, that some
5 Discussion conditions on the copula function induced in the input rep-
resentation must be checked to ensure that the monotony of
5.1 Main results and mains concerns transformed codé& is preserved (as those obtained in Chen
2009 about normal copulas). Because inputs can be summa-
In this article, we have formally described the main fea-rizable in many different ways (through correlation matri-
tures of methods taking advantage of monotony for boundees, copulas and marginal distributions, hierarchicaldbui
ing and estimating probabilitigs; of undesirable events, in ings...), looking for various conditions of monotony is apr
the common case when such events are defined as a thresioal response to applied concerns. A connected work must
old exceedance by the output of a time-consuming blacke done about the relaxation of monotony constraints : one

pun(e) < exp| —2(pe)?

M>
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should explore the conditions for which the methods develin D. An immediate and pleasant consequence is the possi-
oped here can be applied with success to computer codedity to recompute the bounds without any supplementary
with local monotonous properties. call to G. The only difference lies in the differing probabil-
ity weight associated to those spaces when the uncertainty
model changes fronfix to f¢: one just needs to recompute

5.3 Behavior and control of estimators the hypervolumic calculations (De Rocquigpyivate com-
municatior)
The difficulty to check asymptotic conditions and the non-
. : . L Pn(E) = f&(x) dx,
asymptotic behavior of estimators can remain tricky issues™n W) X
which however can be partially solved using control the- X
ory. Estimation results could be enhanced focusing on the; () = 1— o f% (x) dx
convergence properties of estimapmy,. The result given in T4 (Un)

(@3) must be seen as a first step toward methods for control-

ling the estimation error (and also the convergence speedp! instance by a simple Monte Carlo method. In these fu-
in function of precision criterigs, ..., on. As a sum of de- ture studies, we suggest that the progressive bounds could
pendent random variables, one can hope that Stein’s convdie defined asobustwhile they remain true whatever the
gence, more refined concentration theorems and large deJluctuation offy in a given variational class.

ations results (Chatterjee 2007, Kontorovich and Ramanan

2008) are applicable too, resulting in a better statistoal

trol. Ideally, better concentration results could be aggiif ~ 5-6 Comparing with and taking benefit of other approaches
the variance opr , can be incorporated into the convergence _ ) )
bounds, producing Bernstein-type or Bennett-type indqual Last but not least, future_ theoretical apd applied stud_lés w
ties as alternatives to the Azuma-Hoeffding inequalliy) (19 have to be compared with (and possibly take benefit from)

similarly to the standard case of the sum of iid random vari&PProaches developed in other areas. For instance, evolu-
ables. tionary algorithms are currently studied in multi-objeeti

optimization for covering a maximal hypervolume at each
step (Beume et al. 2007). In high-dimensional problems,
“divide-and-conquer” strategies of designing experirsean
benefitfrom the increasing use of parallel computing (ki
on 2008). In this regard, it will be essential to combine the
nowledge of computer code monotony with the will to ex-
lore primarily the input space along most relevant dimen-
ons.

5.4 Relaxing hypotheses on the failure surface

The lack of consistency of the bounds observed in practicE
and theoretically could be overcame by supplementary hy-
potheses made on the regularity of the failure surface. Fdt
instance, it seems natural to link the vertexes by addigge s
ments such that the bounds can be redefined as volumes of _ o,
their convex hulls. This implies that the failure surfaceslo Acknowledgements The author thanks Etienne de Rocquigiggle
not bresent. in the uniform space. a very iagged shape. Ho Centrale Paris) for giving him the opportunity to work onstisiub-
P ) » P ’ yJ gg_ . pe. Vjvect and his support, and Philip Limbourg (University of Bloiirg-
ever, since this feature appears somewhat difficult to chedkssen) for some fruitful advices about sweepline algorith@uil-
in practice, it should be accepted that the interval betweetaume Bouchard (Xerox Research Centre Europe) must beetdok

the bounds is no more of 100%-confidence. enlightening discussions about the convergence of thedsouviany
thanks to Merlin Keller (ENGREF) for his careful reading bktpa-

per.
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A Space transformation

simply the product of inverse cumulative distribution ftions (cdf),
and the item(2) in Assumption 3 (§2.2]1) is satisfied since univari-
ate cdf preserve monotony. In dependent cases (and possibly in-
puts mix continuous and discrete distributions), the galized Rosen-
blatt's transform (Ruschendorf 2009) can be used if thetmpan be
stochastically conditioned, e.qg.:

When inputsX = (Xy,...,Xq) are independent and continuot:l»%’(l is

d

The the iten{2) appears trickier to satisW#F;l(v) must be an increas-
ing function of all components af. Next lemma, however, provides a
sufficient condition. Finally, a practical result which enss Condition

(2) has been obtained by Chen (2009) in the case when the input dis
tribution is chosen multinormal. Indeed it deserves paldicattention
since, in real applications, a multinormal copula is oftefested as

an approximate way to tackle the difficulties of assessirgetations
between input parameters.

Lemma 3 Assume that for k2, ...,d, there exists a mapping gnd
a set of (possibly random) parametefig independent of X..., Xk
such that:

(I) Xk = gk(XL cee 7kal7 ek),
(ii) gk is aglobally increasing function ofiX..., X¢_1;
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then the inverse Rosenblatt’s transform

Vl I_LFKH

is a globally increasing function af.

L (VI 1 (Vv Vi),

Example 51n corollary of Lemmd&B, any standard binormal input dis-
tribution with positive correlation coefficiert ensures thaw,:;l(v)
is increasing. IndeedX = (X1,X2) whereX; ~ 47(0,1) and X; =

X1 ++/1— p20 with 6 ~ 4(0,1).

Proof (Lemmal[3)

Assume(i). vt € R, Vke {2,...,d}, denotepy (X,...,Xc 1) =
P(gk(xl7 LRES) kal7 ) < t|Xl7 . '7)<k71)' Then'Vye R! |etA§(1xk71(y)
denote the everv[tp‘GK (X1,-..,Xk_1) <y} defined in a probability space
({0,1},.%t, 2). Thus, by definition,

V¥, Xe1) = inf{te RIP (A x () =1}

Assuming(ii), ptak (X1,...,Xc1) is a globally decreasing function of
X1,...,X 1. Thus the occurence of eveAl ., (y) similarly de-
creases. It also appears necessary to increaseorder to counter-
balance this tendency, which implies that the minimum vamall

Rt k1

,d}. Slnce
Xi1=F~ (vl) is naturally an |ncreaS|ng functlon of, a S|mple recur-
sive reasoning shows t 1 is aglobally increasing function of

Vi,...,Vk_1. The statement of the lemma follows.

B Computation of progressive bounds

A key point is that any bound computation does not need anyteal
the costly functiorG. One must evaluate tieedimensional integral of
a known function (the joint pdf oK) over the dominated spaces. The
space transformation proposed ifL.§ 2.2.1 allows for a sfegpland
exact computation of the bounds.

Consider first the simple case described in Lerfiina 1 where dom
inated space$éDy ,Dy) are defined by a single poifite D. Denote
v = (Uy,..., Uq) its image point intdJ throughw,:;l. Denote similarly
(U, U}) the image spaces 6Dy, Dy ) through¥ *.

If G(¥) <0, the failure-dominated image spddg is a hypercube
whose vertexes are the origifl & (0,...,0), the pointv and the pro-
Jectlons ofv on axes of the canonlcal ba&(U) ThenU} = {19} =
{(1,...,1)} and

/t;, i|j]1{><i§>a} fx (x) dx
,|j(17 ).

If now é(\"/) > 0, the safety-dominated image sp&o‘@ is a hypercube

whose vertexes are the opposite corrferttie point and the axes of
the base resulting from the—rotation of Z.(TU), centered on® Then

U, ={0°} and
d

P(X € D)

Pveuy)

P(XeDy) =P(veU}) = [10.

X
) 12

N

safety space

%// //

o
U2

failure space
failure surface
failure “gurface Gv)=0
G(X)=0

L

2

\\\\ ‘@
s\ \1\\\\\

Uniform spacell

Vi

X1
N \
Physical space D

Fig. 10 A two-dimensional case. Axes define canonical bases. Trans-
forming physical spac® in uniform spacelJ simplifies the calculus
of P(X € D>:<1) andP(X € D§2).

The calculus of probability bounds is thus immediate in gimaple
case. An example involving two points in failure and safgtaces,
respectively, is displayed on Figtire] 10.

The more complicated case of computing bouiids (1), emanatin
from a progressive DoE (for instance as displayed on Figyreah be
treated in two ways.

First and fortunately, an exact method can be implementat. C
culating the volume of a union of hyperrectangles shariegstime or-
thogonal basis is known in computational geometry as Kle®asure
problem, for which recursive sweepline algorithms (vanuvween and
Wood 1981) can provide exact solutions. Overmars and Yaqul(1&nd
Chlebus (1998) proposed algorithms with compleiyn®/2logn) for
d > 3. In comparison, typical algorithms used in MOO (cf. RenfBrk
have complexityO(nd*1) (Knowles and Corne 2003). Although some
recent improvements have been brought by Chan (2008), Gverend
Yap's complexity has not significantly decreased

Whend exceeds 4 or 5, this exact method rapidly appears too

costly. Therefore a trivial MC method can take over. VolWfe(resp.
V") can be consistently estimated by sampling uniforrklyinde-
pendent itemwy,...,vy € UM then computing the proportion of
items insideU, (resp U/U). The sampling cost is here indepen-
dent ofd. However this statistical approach introduces estimagioor

which weakens one of the main property of MRM algorithrosm-
putedbounds are not certain 100%-confidence boundspforslnce
in practice both methods suffers from numerical roundneg8, ]9,
M should be chosen high enough to merge with the roundness erro
encountered using the sweepline in small dimensions.

C Proofs of statements in the main text

In next statements and proofs, the notati#p is often removed for a
better reading. Especially, the expectancies and varsapicguantities
6, are defined with respect to the available-algebraZ,.

Proof (Proposition[)

2 Additional details and the pseudo-code of a sweepline lgor
with exponential complexity, used in the experiments preein this
article, are available in the Electronic Supplementaryeviat.
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One may write/}; (pr) = R, @ (Pr) Sc (pr) with

S(pt)

=14 (P —pr) & (Pr) (2Pf — Py — Pi_) 5
1+ (pe—pr) (AP —pe = {pr — Pt )

Note thatvk, px € {p_q, B_1}- If Pc=py_q, thenSc(ps) = — (P, —
P1)/(Pr — Pe_q) <O if pr € (P_1. P 1) D [P 1. Pt_4]. Similarly,
if pc = Py, thenSc(pr) = —(Pr — Py_1)/(Px_1 — Pr) < O if pr €

(P_1-Py_1). Hencely(ps) < 0 in (p,_;. Pt ;). Besides, note that

|impf‘>p';1f:.|(pf) =owand Iimpﬁphfg(pf) = —oo. Hence, by twice

continuity and differentiability of,(ps), the mean value theorem im-

plies the existence and unicity of a MUE ,in (p,_;, Py _;)-

Proof (Theorem 1)

We first prove the following resulty n > 1,
- 2py 2
1 MC med
3 i) < vieon (25 ) (o) 19)
Indeed, sincéd, 1 depends only or#, for n > 1, notice that
n

€., [4p0)] = 3 ELGA(PIE [~

yk,]_” =0.

so that the Fisher informatiodn(pr) = Var¢2(ps)] = E[¢2(ps)] is
equal to—E[!(pr)] by twice differentiability and continuity ofy(-),
like in a classic iid. case. Conditiofn) implies thatvn < oo, p; <

Thus
Pr(l—pr) _ 1-ps
(pk+—l_pf)2 TPy
p:(1-pr) 1-—ps
(pr—pcy)® PR

Consequently, sincgon)n is a strictly decreasing process,

jn(pf) > (17 Pr ) Eyn |:p2i (Tl_,n"rTZ‘n(l"r 1/Pn1)2>:|

pt n—1

whereTyp = Y3 1(1—&y,) andTon = 3¢_4 &v,. Thus
~ 1- _
Jn(pr) > n( pfpf ) Es, [P 4],

1—ps _ d _ _
> (52 (2™ (2 < 002"

using Markov’s inequality, hencé(ps) > n (%) (pmes 2, which
proves[(19).

The weak consistency and the asymptotic normality of the MLE
can be proved using arguments mainly developed by Crow8&5(1983).
We first obtain the conditions of a martingale central linmédrem,

then the weak consistency. Both results can then be combiniead
to the final asymptotic normality.

First consider the fact th&t;,(ps))n is @ martingale:

E [¢h1(Pr) — €h(P1)| 0] = @nia(Pr)E [Pnsa — Pi|Fn] = O.

Furthermore, because of the increasing of the weights,

>

pr < Py ;, ie. pr cannot be reached in any finite number of iterations, Jn(p) = ¥ E[&(pr)] < nE[@n(pr)] < nsupGn(pr)

so that these quantities are well defined. Using the not&iopy ) de-
fined in the proof of Propositiddl 1,

Jn(pf) = 7E,7n

with J,(pr) equal to

n
k=1

Thus

. n pi(1—pr)

Jn = E@ EVk o 2
(pr) kzl{ T { <(pf—pk1)2>:|

pr(1—ps)
+ B, (a8 | P
| {( )<<p;1pf>2>”

1
= (B 1= pt)+(Pr—Pi1)) < Prer,

Since

Pt

hence

Pi1—Pr < Prlo-1—D+ Py < Pr(P-1—1)+pr,
Pr— Py < Pr(P-1+1) —pi g < pr(pc1+1).

1 {74}

where {.#}'} describes the family of all possible—algebrae gener-
ated by the all possible successions of nested uniform samplings.
Condition(i) implies this upper bound is finite. Therefo{, (ps))n is

a square integrable martingale. One can show that

AZ(pr) = (6n(pr) — o1 (Pr))? = GR(Pr)(pn— Pr)?

ki

hence

E[A2(pr)|-Fn-1] = & (pr)Var[pn|- Zn-1] = Gh(pr)

since

Var(pn|-Zn-1] = (P4 1 — prll)zE[fan?n—ﬂ —(pr — p;—1)27

= (Pr_1 = Pn1) (P = Phog) — (Pr — p;l){
= @y t(pr).

Thus, the increasing (aangle bracket process linked tq¢;,(ps))n,
defined by

>

<l(p) >, = S E[82(pr)| Fic)
k:

is such thatl,(ps) = E[< ¢ (p) >,], and from [I®}3 C > 0 such that

C(ore)’
n

||
PR

n

> (@(p-E,, [@(pn])’ (20)

‘<€’(p) >y '
k=1

1] <
JIn(pr) N

which tends to 0 under Conditid(i ), then

< f/(p) >n as

In(pr) n>1 (21)
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Besides, for ang > 0, Finally, sincep,, ; < pr, < pi_;, for anyn there always exists an
(o)) open neighborhooﬂ/,;fn of ps containingps, . From twice differentia-
k(Pf — P(Af ¢ bility of ¢ d continuity of/; Vg, th lue th
pllE4E o) —p (pr) < &w, < BE(pr) ility of £n(-) and continuity oft(-) in ¥ , the mean value theorem
(« /In(Pr) ) (o v < Bhudpr) implies there exists some intermediate pgint Vg, betweerpt and
h that
with &y, a Bernoulli variable i{0,1} and Pry such tha
Aﬁ (pf) B ps — p;ilfg /Jn(pf) Eﬁ] (ﬁfn) =0= g:'](pf) + (p\fnf pf)gqu([jn)
* Pii—Pe: Thus, with?”(pn) # 0,
P — Py +EV(Pr) . — o\
BLu(pr) = ——E Y (Bra—Pr) = ta(po) (~£n(Pn) " (25)
P1— Py
which are defined for ak under Condition(i). With J,(ps) — c and Then
Pt — p;_, tending to a finite positive or null limit, then |=€" (Pn) = 3n(P)| < [An(Pr)] +Bn(pt) +Ca(pt, Pr)
A .
lim P M<g :P(_oo<ka<oo):1 with
e In(pr) n
An(pt) = ax(pr) —E,, [éx(p1)]
—‘A'S(f;)‘) —)nj 0. Thus, for anye > 0, 3 N; € N*, N* < o, such k;< )
n{Pf © n
thatv n> N* no eventiAy(pt)| > £4/Jdn(pr) can be observed. Neces- Bn(pr) = Y ax(pr)|@x(pr)(pr — -1],
i n -1 2 H =
siarlly, the sumzk:r]k. (ps )Ak(pf)]l.{‘.Ak(pf)‘zg\/m}.IS bounded. k;1
SinceJy(ps) — o, a Lindeberg condition can be satisfied: Cn(Pr, Pr) = z |Vk Pt pn)|
K=1
1 n . _ D — ~ . —
T 2 E[BEPOL [ i (Fer| S0 (22)  with Vi(pr, Bn) = @(Pn) (P — P — @E(pr) (p— P)?. Sincepy, €
A k=1 { In(ps) 25} [Pt ,,, pt] thenpy LN ps by weak consistency qdt ‘andvk(pf ,Pn) Po

Finally (21) and[(2R) prove the martingale central limitdhems (Bercu by continuity of mappings— x(x) on [P, ;, Py 4], using Slutsky's

2008): theorem. Then the sequenéki(ps, pn)|} is bounded and K > 0,
' K < o, such thaCp(ps, pn) < nK. We deduce fronf(19) that lign, J5* (ps )Cn(pt) =
J;l/z(p)f;](pf) <., _¥(0,1), (23) 0. Condition(i) implies that IimHmJg_l_(p__f)|A,1(pf)| =0. Then itis
n—e worthy to note that because of Conditi@ii ),
Jn(pr) ’ Zz
¢ —— A4(0,1). 24 ~
<0(pf) >, n(Pf) P (0,1 (24) @(pf)(pf*pk)zflﬁa

The weak consistency of the MLE can be proved using a sufﬁcienD " _ - 2_19| th d
condition given by Crowder (1975). Denote enotingtin _igr?'wk(pf)(pf —P)® 1, the sequencun} decreases

r— inf {pf PP — pf} toward 0 and

QU
: Ba(Pr) _ [ Ba(Pr) ) (<L(P)>n
and o, = /n/(I, +lpn d) Clearly the sequencgon} is positive and  Jy(ps) ~ \ < (ps) >n n(ps) ’
tends to infinity, whateveps. Denoting <2(pt) >n
8 “”( (pr) )

Mo = 032 (P} 1~ P ) \/ki (@(pr) —E,, [@x(pr)] )

which tends to 0 due tG(21). Finally,

one hasVi, = 0(1) Noticing thatv n > 0, —Sy(ps) = &n(ps)(ps — —"(pn) P
pn) > wn(pf) nt1 ONE has In(pf) noe T (26)
i § @ (pr) Combining the result§ (25)_(P3) arld [26) and taking accadirthe
n(Pr) > 2 ﬁd consistency opy,, the final result can finally be concluded from The-
\/Jn () \/M2+n Lpmed2sh | &P (pr) feliiy orem 3 in Crowder (1983).
thus
tapr) o
P —0on— > P (vn(eR) *(1+0(1) > 1
( Jn(ps ) ( >
which implies thatyps in an neighborhood of the true valpe where
£y is continuous, such that = | §; — ps| > 0, Proof (Proposition[2)
) N Gpr) . 2 Remind that/M'E = J;%(p;) and note that, taking back to the nota-
Jim P <U”(pf —Pr) /37(p) (B —pr)za” ) =1 tions of the previous prooth(ps) =< ¢'(ps) >. By twice continuity
and derivability ofJ ~1(.) in (p, , pi}), a Taylor expansion gives
From Equation (2.3) in Crowder (1975), this proves the weaksis-
tency of the MLE. Jh(pf)

I HPBr,) =T pr) - (Br,— pr) (1+0(1)).

J2(pr)
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Thus, after some calculus, and from [3),P(G(v) < 0[v € Ux_1) = (pr — P_1)/ (P 1~ Pr_1)-
Then

jns/z(pf) F s MLE

- J -V, = WhYn +WhZn - Pt — P

Fpn] O (P TVaT) = e Enlpd =B, |peys o Pt Volaukl)}

P1— P
with Pr—po
Elpcq+ ¢ (P 1~ pkl):| )
Wy — In(Pr) —Pi
Ja(pr)’ = pr.
Un = sgndh(pe))y/dn(pr) (Br, — pr) (1+0(1)),
322 (pr) (dn(pr)

2= Wilp)] (Jnuof)‘ )

From [Z1)W, 2% 1, andU, <> .#(0,1) from Theoren{IL. Thanks

to Slutsky’s theorem, it is enough to show ttiati 0 to prove the  DenoteVy = Var [E [Ps k+1|g‘k“, Then
statement of the proposition. Notice that

n-1

21 whi|,

i=

Proof (Proposition[3)

J(ps) Z%(pf {2pt — (P 1+ Pca)}

n—-1
which is always nonzero under Assumptior). Using Holder’s in- = E|Var }Zl&lﬁilfnfz +Vh-2,
equality, one has =
n-1 k
no_ = z E | Var Z ; Pj| Fi—1
1 — p—
kglwk(pf) - > {20 — (Bat Py} _ K=t =
S2(pr){2pt — (P 1+ P y)} — g &x(pr) Since
k=1 n
hence Var [Py, = Vo 1+E|Var 2, 5-|¢9‘n1}
"3/2 [t - -1 n k
J ( < Z {zpf (fk*l‘i’ pk—l)} then Var[p'f } z Var z w] ﬁ] |yk71 :| ,
‘ (pf)‘ kzla)‘(pf) ? =1
. =53E Fia]]. (27)
Using Holder’s inequality again, one has K=1
— With £2 = &, and sincepy is unbiased knowing?,_1, one has
3/2(pf (1 —Pr) (P — P s) e = S hs P
|3 (p1)] 2ps — pk ) = E B 1] — %,
and it can be shown with simple calculus that each term of tihe is = (pkfl) +2P (P = Pca)
stricly smaller than 1. Then / fi (V) dv — p?
k-1 — P%,
j(pf) Uklsz 1( ) f
n
20l = v Jn(pr) 71" = — (Pt -2pip a1+ (Pr)?)
_ Ok—1(V
and from [20) and(I9)D > 0, D < », such that + (pktl* pkfl) /U dv fi iv; dv
k-1 —
|Z,| < D270 which is equal to
asP (Pi_1—Pt) (Pr—P1) + (B2 — Pc1) A 1(fic 1) (28)

which converges toward 0 & > 1/2. ThusZ, —= 0.
where,vk > 1,

. %-1(V) -
Ac1(fier) = /Uki1 Hew<or 1, v) dv — (Pr — Pry1)

andgyg_; is the uniform pdf orilJy_;. Then simple algebra leads to the
developed formula fov\V'SE from (27) and[{ZB), noticing that

Proof (Lemmald E[(P1=P1) (Pr=Pia)] = Pr(l—pr)(—cca)-
Corollary[ is straightforward using a Lagrangian method.

Ez [P = |:pk 1+E{%(v)‘ 3‘]«1”7

el [, pev=0 g o]
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Proof (Proposition[4) Proof (Proposition[6)
For anyk > 1 such thaby_1 < 0,V,;WISE<VY(ps). Since(U§, Uy ) = Observe thapyi1 > p,, . Letv ~ f, and assume thd, = 1. Denote
(Uy;, Uy) with N > ko then(pg , py ) are not trivial f < 1 andpg > ||| theL? Euclidian norm. Then
0). Consequentlyyg < . Note thatp,) is a strictly decreasing stochas- 5 5
tic process, upperly bounded by the deterministic finiteewggmund i1 = p;+exp(” Vnol| )/ exp<,m> dx
po. Note that 20 Un 208 ’
P ~ [V = Vnol® / [[x—Vnol®
vk=0,...,n—1, 1l-¢ < E. . < —_—
N Sy 5, [PK] < pn +exp( 2072 Ja &P 202 dx,
This can be proved as follows. One hggps) < p, thus 1— pk+ > _ d4/2 ~d [lv— Vn,0H2
1— p;’ _ pkpf_ Hence S pn + (27-[) Un eXp 20}% }
Pr(1—pg)+(L—pr)p > (Pr+P) — 201 By — Pkb? < pr+ (2208 |14 IV —Vnol® (1+0(1))
then - ! 20% 7
Pr(1—p¢)+ (1= pr)pc — (1= PP <y +(2m°°D(an) +0( (217 2v —viol?).
_ - 2 - _
> (Pt + P ) — 2Pt Py — PkPT — P + Py Py With [|[v — vnol/? < d for all v € T, and sincen, < 1= D(ay) <
> P —2piPy — PPF + Prp, sincepr < py, D(Hna) = (p§ — Pn)/(2m)%/2, then
> Pr = PcPf — Pfsinceps > py. Pt < P +(P7 — pﬁ)*‘)(d(zn)d/zar?i)’
o o 2
> pr(1—pr) — PxP§- < p+o(n"9) from (I8).
Thus
P 1opc pdom) g piw
pr - 1-pr  pr(l—pr) T 1-ps

and the result follows by taking the expectation over.. ., v
Finally, we obtain

v pr(1—pr) 1 » PiPo Proof (Theorem[d)
VW (pr) < PRSP ; o

which proves[(Ill) after basic algebra.

Consider the stochastic process define@§y- 0 and

Zy = )\n(ﬁfnf pf) vn>1,

and
il 1
Anv=[1A-B)"
il
Proof (Proposition[5) Then from [I8) and sinc&, = An1(1— Bni1),
Denoting f_1(v) = k(v)/ ;. , k() dv wherek is a bounded func-  Znt1 = An (Bt — Pr) + Pt (An—Ant1) +AnsaBasaPosa,
tion from U,_1 to R, the Cauchy-Schwarz inequality proves that AnBri1 .
= Zn+1 [Pn1— pr]-

Aualtos) = [ [ 2SI [ [ qwige a(v) av P

Ju,, Kk(v) JUp 1 Becausepy 1 is unbiased (cf. Lemndd 2),

x (Pho1 = Paoa) = (Pr = Poia), E[Znst| 7] = Zn

2 2 2\ /*WISE 2
_ and = A3V < o atany fixedn
> {/ EvOn-1(v) dv} (an:l - pn,l) BZa) non y
/Un-1 hence(Z,), is a square integrable martingale. Furthermore, denoting
— (Pr—pPn_1) AZn = Zn— Zn_1, then
2 ~
Pt — Pn_1 . . _ E[AZ34] %] = (Ant1Bni1)? Var(fng1| 7]
>\ | (Pra—Pra) —(Pr—Pya) ) _
Pn1=Pn-1 with, according to[{ZB),

(Ph1 —+pf) (Pt~ Pns) = (Pt —pr) (Pr —Pn )+ (Ph — Pn) An(Fr).
(Pr1—Poa) = pr(1—pr)(1—dh)

Y

which implies that ith
Wi
+ — + —
- =P 1) A1 (e > —E = —P.q)l,
1 [(pn 1 pn 1) l( n l)] [(pn 1 pf) (pf pn 1)] &n pn N 1— pn p;(lf pn+) N bn(fn)

Z —pr(1=pr)(I-Cn1) pr - 1-pr  pr(l—pr)  Pr(l-pr)
and the equality, implying, = pr Vn > 1 and a null global variance,
happens only wher, /k(v) takes a constant value on the domain It must be noficed fron{{9) that
{v € Up_1, G(v) < 0}. The existence ok,_; is needed by having n-1
Supf fr-1(v)) = Up_1 and the half-ball condition expresses the lower
semicontinuity of the importance distribution function amy point of 1-pn=
the failure surfacéd’y,.

(1—dg )t

S

IMs|IT™M

1

(1—dy1)7t
K1

)
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therefore

n

A=Y (A—deq)?

2
andAnB, = (1—dn_1)~. Thus, defining the increasing (angle bracket
process associated (@), by

n
<Z>, =Y E[AZE i),
k=1

then
<Z>, zAkBk Pr(1—pr)(1—ck 1) +Bea(fk1)],
k=1
. -
1 (1—dk1)
f(1— (1—d —_—
Pr) Z k1) 1—de 1)

SinceA2ViWISE= pe(1— ps) Sh_1(1—di_1)7%, then

<Z>,

PRV
with
d 2
¥ (1—dk-1)"%a
k=1
&= ¢
Y (1-01)?
k=1

anday = dg_1 — dx_1. Under assumption§) to (iii ), an P, 0. Then
3N € N such that/n > N, |an| < Ti~1|a]. Indeed, assuming the con-
tradiction of this assumption implies thé¥, 3n > N such that any par-
tial sum of thejay| with k < n be upperly bounded bjg,|; this would
imply that the sum of terna,| converges toward 0, which is only pos-
sible if all a, are zero. Finally, sincél — dy_1)~2 > 1 fork > 1, then

8/
n+1
1

N 1(1—dk_1) ?|ay|- Equivalently/n> N,

where

/

1 A1) 2élkl/Z(l—dkl)
1

The sum of general terrg, also converges, then necessasfy— 0
and sincee,| < g, the sequencée,} converges absolutely toward O.
Then

<Z>, aspP
AVWISE 1o

HM::

1. (29)

For all 1< k < n, denote nowHpx = AV VEWISE(1 — dy_1) which
tends toward infinity when — , even thougl = n. Note thatve > 0,
8z

P( Ao VTS "‘”)
_O
fk,l(V)

=P <pf —Pe_1— €Hnk <
so that this probability tends tB(—o < dy < ») = 1. Consequently,

< pf— pkifl"‘anAK)

Finally, from the fact that lim_,., < Z > = o and using Theorem 3.6
in Bercu (2008),

An(ﬁfn* pf) E) 0

<Z>,

Using [29) and Slutsky’s theorem, one Iiagv;V'S&) =1 (¢, — pr) =2
0 with ANV WISE = pe(1— pg) ¥n > 1, which proves the strong con-
sistency ofps ..

Proof (Proposition[7)

The proof is simply based on the Azuma-Hoeffding inequaljplied
to the martingalgZ,), defined in the Proof of Theoref 2. Indeed,
since

an < AZy < an+(1—dn1)”
(l_dn—l)il(pafl_

1/ fn-1(vn)

with a, = ps), thenve’ >0,

2 8/2

3 (1= 0?/ 124w

P(Za<—¢') <exp| —

The result can then be deduced using €’ /(Anps).

P n 2 ;
ve >0, ﬂ{‘AZk‘ES\/W} — 0andthe Sunzk:l E[AZk ]lﬂAZk\EE\/W} ‘yk]

is bounded, so a Lindeberg condition is satisfied:

1 n ) P
Agvgwise 2. F (0281 e s | A 0 (30)
Finally, (29) and[(3D) prove the martingale central lim&dhem (Bercu
2008):

1

M (Br,— pr) S (0,2
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Electronic Supplementary Material

A sweepline algorithm to compute volumes of hypercu-
bic unions

Sweepline (oplane sweepalgorithms are commonly used to jointly
detect and sort intersections between segmehts [6]dIdimensional
volume is calculated recursively by exploring all- 1-dimensional
“slices” of thed-th dimension. Se& B[, 3] for more explanations. When
segments are parallel or perpendicular such as their @téoss define

a union of hypercubes sharing the same orthogonal basispthme
calculation is known as Klee's measure probléifi[4,2]. Nptiroized
pseudo-code follows to be used for direct implementation.

Let A, be then x d matrix of n vertexes(v1, ..., vy) defining the
union of hypercubes (for an example, see Figuie 11). In thewimng
pseudo-code, the volume considerel,js also defined by the points
of A, and the origin(0, ..., 0) of theU—space.

Algorithm  VOL(Ap, n,d).

1. Let A\,=0nd(An) be the nxd permutation of A, arranged
in the increasing order of the
N—vector of O—dimensional components.

2. Remove the d—dimensional components from A/ and denote

Vn 12

.

" \\‘fb failureV:rfacevj/

U, -\\VVd
o

Un

Vi

0?

Fig. 11 Two-dimensional uniform space after= 14 MRM iterations.
PointsAgq = {0%,Va, Vb, Ve, Vd, Ve, V1, Vg} have positive signatures
and are vertexes @, . Points{ vy, Vi, Vj, Vi, Vi, Vm, Vn, 12} have zero
signatures and are vertexeslaf .

Vol,=0.

3. For ie{l,...,n},

(a) Consider the slice A\ = {vi,...,vheA}.

(b) Denote \chif:) the d—1—dimensional volume of Ar(]'): Chlebus[[3] with the same asymptotic performance, althotsgExpo-
o) sition has been restricted to dimensions 3 and 4. At the ptesee
it dimzn’ =1, i the computational difficulties raised by diminishing thestcstill re-

- AS) is a N—i+1—vector and Vol,(q> =max{vE main open problems, although some slight improvements haee
Ar(]')}; recenlty proposed by Chahl[2]. We suggest that some ideassef p

— force | to the index of this maximal sible improvements could come from a parallel with multjeaiive
component in A}; optimization contexts (cf. Remark 1 in the article). Indealdorithms

else Vo1l =vor(AY n—i+1,d-1).
(c) Let Ai=A[i,d]—Al[i—1,d] the size of A (assuming
Ah0,d]=0).
(d) Compute Voqu) =N\ ~Vc\;ﬁ:)
(e) Update the total volume Vol =Voln+Volg) .

To our knowledge, this algorithm remains little used for dirsion
d larger than 2 or 3. This is not surprising since it lossesntsifive

running in polynomial time*¢d*2) to compute hypervolume metrics
of Pareto frontiers have already been proposed by Fleig206B).
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